An offline-online learning framework combining meta-learning and reinforcement learning for evolutionary multi-objective optimization
•An offline-online learning framework combining meta-learning and reinforcement learning (O2-MRL) is first proposed for evolutionary multi-objective optimization. O2-MRL can adaptively select and schedule the most appropriate MOEAs for diverse MOPs, thereby fully leveraging the complementary strengt...
Saved in:
| Published in: | Swarm and evolutionary computation Vol. 97; p. 102037 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.08.2025
|
| Subjects: | |
| ISSN: | 2210-6502 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •An offline-online learning framework combining meta-learning and reinforcement learning (O2-MRL) is first proposed for evolutionary multi-objective optimization. O2-MRL can adaptively select and schedule the most appropriate MOEAs for diverse MOPs, thereby fully leveraging the complementary strengths of different MOEAs and providing a novel perspective for solving MOPs.•O2-MRL overcomes the respective limitations of existing offline and online algorithm selection methods by integrating their advantages into a unified learning framework.•Experiments are conducted on forty-seven benchmark MOPs and two real-world MOPs. The experimental results demonstrate that O2-MRL consistently achieves superior and robust performance across diverse MOPs with varying dimensions, without increasing computational complexity.•The framework of proposed O2-MRL is flexible and applicable to various MOPs, and it can be extended to solve MOPs across different application domains.
Many multi-objective evolutionary algorithms (MOEAs) have been proposed in addressing the multi-objective optimization problems (MOPs). However, the performance of MOEAs varies significantly across various MOPs and there is no single MOEA that performs well on all MOP instances. In addition, existing methods for adaptive MOEA selection still face limitations, which restrict the further optimization for MOPs. To fill these gaps and improve the efficiency of solving MOPs, this study proposes an offline-online learning framework combining meta-learning and reinforcement learning (O2-MRL). Instead of proposing a new MOEA or optimizing a strategy, O2-MRL solves MOPs by taking full advantage of the existing MOEAs and addresses the limitations of existing MOEA selection methods. O2-MRL can adaptively select the appropriate MOEAs for various types of MOPs with different dimensions (Offline) and automatically schedule the selected MOEAs during the optimization process (Online), offering a new idea for optimizing MOPs. To evaluate the performance of the proposed O2-MRL, forty-seven benchmark MOPs are used as instances, and nine representative MOEAs are selected for comparison. Comprehensive experiments demonstrate the significant efficiency of O2-MRL, as it achieves optimal solutions in 60.28 % of the MOPs across different dimensions and improves the optimization results in 48.23 % of them, with an average improvement of 8.72 %. In addition to maintaining high optimization performance, O2-MRL also demonstrates superior convergence speed and stability across various types of MOPs. Two real-world MOPs are employed to evaluate the practicality of O2-MRL, and the experimental results indicate that it achieves optimal solutions in both cases. |
|---|---|
| AbstractList | •An offline-online learning framework combining meta-learning and reinforcement learning (O2-MRL) is first proposed for evolutionary multi-objective optimization. O2-MRL can adaptively select and schedule the most appropriate MOEAs for diverse MOPs, thereby fully leveraging the complementary strengths of different MOEAs and providing a novel perspective for solving MOPs.•O2-MRL overcomes the respective limitations of existing offline and online algorithm selection methods by integrating their advantages into a unified learning framework.•Experiments are conducted on forty-seven benchmark MOPs and two real-world MOPs. The experimental results demonstrate that O2-MRL consistently achieves superior and robust performance across diverse MOPs with varying dimensions, without increasing computational complexity.•The framework of proposed O2-MRL is flexible and applicable to various MOPs, and it can be extended to solve MOPs across different application domains.
Many multi-objective evolutionary algorithms (MOEAs) have been proposed in addressing the multi-objective optimization problems (MOPs). However, the performance of MOEAs varies significantly across various MOPs and there is no single MOEA that performs well on all MOP instances. In addition, existing methods for adaptive MOEA selection still face limitations, which restrict the further optimization for MOPs. To fill these gaps and improve the efficiency of solving MOPs, this study proposes an offline-online learning framework combining meta-learning and reinforcement learning (O2-MRL). Instead of proposing a new MOEA or optimizing a strategy, O2-MRL solves MOPs by taking full advantage of the existing MOEAs and addresses the limitations of existing MOEA selection methods. O2-MRL can adaptively select the appropriate MOEAs for various types of MOPs with different dimensions (Offline) and automatically schedule the selected MOEAs during the optimization process (Online), offering a new idea for optimizing MOPs. To evaluate the performance of the proposed O2-MRL, forty-seven benchmark MOPs are used as instances, and nine representative MOEAs are selected for comparison. Comprehensive experiments demonstrate the significant efficiency of O2-MRL, as it achieves optimal solutions in 60.28 % of the MOPs across different dimensions and improves the optimization results in 48.23 % of them, with an average improvement of 8.72 %. In addition to maintaining high optimization performance, O2-MRL also demonstrates superior convergence speed and stability across various types of MOPs. Two real-world MOPs are employed to evaluate the practicality of O2-MRL, and the experimental results indicate that it achieves optimal solutions in both cases. |
| ArticleNumber | 102037 |
| Author | Huang, Zhaorong Pang, Yongsheng Chu, Xianghua Li, Shuxiang |
| Author_xml | – sequence: 1 givenname: Shuxiang surname: Li fullname: Li, Shuxiang organization: School of business administration, South China University of Technology, Guangzhou 510641, China – sequence: 2 givenname: Yongsheng surname: Pang fullname: Pang, Yongsheng organization: College of Management, Shenzhen University, Shenzhen 518060, China – sequence: 3 givenname: Zhaorong surname: Huang fullname: Huang, Zhaorong organization: Business School, Sichuan University, Chengdu 610064, China – sequence: 4 givenname: Xianghua surname: Chu fullname: Chu, Xianghua email: x.chu@szu.edu.cn organization: College of Management, Shenzhen University, Shenzhen 518060, China |
| BookMark | eNp9UMtOwzAQ9KFIlNIv4OIfSHHsOiEHDlXFS6rEBc6Wvd4gh8SunLQV3PlvnBYhTuxlpNmZ1exckIkPHgm5ytkiZ3lx3Sz6A-7DgjMuE8OZKCdkynnOskIyfk7mfd-wNEUSyGpKvlaehrpunccs-BFoizp6599oHXWHhxDfKYTOuCPX4aCzX4X2lkZ0vg4RsEM__DGHSFOSdje44HX8oN2uHVwWTIMwuD3SsB1c5z71uL8kZ7Vue5z_4Iy83t-9rB-zzfPD03q1ySClHTIQWNW5NSgMmlJqCZzdaMsKbgptQEACIYBJzSotSg2VLJccuGBLC9IaMSPidBdi6PuItdpG16V0KmdqLFA16ligGgtUpwKT6_bkwhRt7zCqHhx6QOtiekbZ4P71fwM294PA |
| Cites_doi | 10.1109/ACCESS.2018.2832181 10.1109/TEVC.2022.3208595 10.1016/j.ins.2022.06.056 10.1109/TEVC.2019.2940828 10.1109/TEVC.2013.2281535 10.1109/TFUZZ.2019.2945241 10.1109/TEVC.2020.2999100 10.1109/TEVC.2007.892759 10.1109/TETCI.2022.3146882 10.1109/4235.585893 10.1109/TASE.2019.2918691 10.1109/TAI.2024.3419757 10.1007/s11704-022-2037-1 10.1109/TEVC.2022.3186667 10.1016/j.tcs.2019.10.033 10.1016/j.eswa.2015.10.021 10.1504/IJBIC.2016.076329 10.1016/S0065-2458(08)60520-3 10.1016/j.engappai.2023.107630 10.1016/j.ins.2018.10.013 10.1162/evco_a_00236 10.1109/TEVC.2010.2064321 10.1016/j.ins.2020.08.101 10.1016/j.swevo.2023.101449 10.1109/MCI.2017.2742868 10.1016/j.engappai.2024.108646 10.3233/IDA-1997-1302 10.1109/TEVC.2019.2898886 10.1016/j.procs.2021.09.235 10.1109/TNNLS.2022.3148435 10.1162/evco_a_00242 10.1016/j.ins.2022.05.106 10.1016/j.autcon.2024.105598 10.1109/TEVC.2013.2260862 10.1109/TSMCB.2012.2227469 10.1109/TEVC.2021.3135691 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.swevo.2025.102037 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_swevo_2025_102037 S2210650225001956 |
| GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AAAKF AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATLK AATTM AAXKI AAXUO AAYFN AAYWO ABAOU ABBOA ABGRD ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFS ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADMUD ADNMO ADQTV ADTZH AEBSH AECPX AEIPS AEKER AENEX AEQOU AEUPX AFJKZ AFPUW AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM APXCP ARUGR AXJTR BJAXD BKOJK BLXMC EBS EFJIC EFKBS EFLBG EJD FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HAMUX HVGLF HZ~ J1W JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 ROL SDF SES SPC SPCBC SSA SSB SSD SST SSV SSW SSZ T5K ~G- ~HD AAYXX CITATION |
| ID | FETCH-LOGICAL-c255t-c3e9f1dbe3beb75a5c208ad062b6abc3cb6a33c05a09a37ac95742c2304dc5db3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001512529700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2210-6502 |
| IngestDate | Sat Nov 29 07:36:35 EST 2025 Sat Sep 27 17:14:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-objective optimization Online algorithm selection Offline algorithm selection Meta-learning Reinforcement learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c255t-c3e9f1dbe3beb75a5c208ad062b6abc3cb6a33c05a09a37ac95742c2304dc5db3 |
| ParticipantIDs | crossref_primary_10_1016_j_swevo_2025_102037 elsevier_sciencedirect_doi_10_1016_j_swevo_2025_102037 |
| PublicationCentury | 2000 |
| PublicationDate | August 2025 2025-08-00 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: August 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Swarm and evolutionary computation |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Schutze, Lara, Coello (bib0022) 2011; 15 Xue, Zhang, Browne (bib0070) 2012; 43 Ishibuchi, Pang, Shang (bib0006) 2022 Li, Wang, Zhang, Ishibuchi (bib0019) 2018; 6 Qi, Li, Wang, Jin, Han (bib0026) 2022; 608 Yuan, Liu, Gu, Zhang, He (bib0061) 2021; 25 Pan, Shen, Qin, Zhang (bib0045) 2024; 166 Brazdil P, Soares, Vilalta (bib0036) 2008 Zhang, Wu, Zhang, Wang (bib0048) 2023; 34 Tian, Yang, Zhang (bib0064) 2020; 28 Cenikj, Petelin, Seiler, Cenikj, Eftimov (bib0011) 2025 Deb, Agrawal, Pratap, Meyarivan (bib0021) 2000 Qin, Zhuang, Huang, Huang (bib0043) 2021 Zhao, Liu, Zhu, Xu (bib0044) 2023 E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the strength Pareto evolutionary algorithm, TIK-report, 103 (2001). Gong, Yu, Kang, Qiao, Guo, Zeng (bib0012) 2024 Yan, Tian, Liu (bib0015) 2025 Dantas, Pozo (bib0053) 2020; 805 Cui J (bib0037) 2019; 41 Zhang, Li (bib0055) 2007; 11 Zhong, Yao, Gong, Qiao, Gan, Li (bib0001) 2024 Li, Deb, Zhang (bib0002) 2019; 23 Li, Yang, Liu, Shen (bib0018) 2013 Cui, Hu, Weir, Wu (bib0035) 2016; 46 de Farias, Araújo (bib0060) 2022 Kiziloz, Deniz (bib0069) 2021 Liefooghe, Daolio, Verel, Derbel, Aguirre, Tanaka (bib0008) 2020; 24 Qiao, Yu, Qu, Liang, Yue, Ban (bib0007) 2023; 27 Ma, Yang, Wu, Ji, Zhu (bib0017) 2016 Li, Zhang, Feng, Zhou, Bai, Zhao (bib0051) 2024 Deb, Mohan, Mishra (bib0057) 2003 Chu, Li, Gao, Zhao, Cui, Huang, Yang (bib0068) 2020; 2020 Jiang, Wang, Peng (bib0024) 2020 Kerschke, Hoos, Neumann, Trautmann (bib0032) 2019; 27 Wang, Zhang, Hu (bib0046) 2024 Wolpert D H (bib0004) 1997; 1 Rice (bib0034) 1976; 15 Liu, Han, Ling, Han, Jiang (bib0059) 2023 Wen, Zhang, Xing, Ye, Li, Zhang, Wang (bib0047) 2024 Wang, Zhou, Huang (bib0049) 2024; 5 Zhao, Huang, Wang, Liu (bib0062) 2024; 135 Xue, Cai, Neri (bib0025) 2022 Wang, Gao, Lin, Huang, Suganthan (bib0042) 2023 Deb, Jain (bib0056) 2013; 18 Zhao, Zhu, Wang, Xu, Zhu, Jonrinaldi (bib0041) 2022 Gong, Cai, Chen, Ma (bib0066) 2014; 18 Kerschke (bib0005) 2019; 27 Zou, Yen, Tang, Wang (bib0010) 2021; 546 Fu, Wang, Fang, Xing, Zhang, Chen (bib0050) 2023; 17 Zitzler, Künzli (bib0023) 2004 Prusty, Patnaik, Dash, Priyadarsini Prusty (bib0040) 2024; 129 Tian, Li, Ma, Zhang, Tan, Jin (bib0009) 2023; 7 Zhang, Pan, Meng, Lu, Mou, Li (bib0030) 2022 Peng, Qiu (bib0027) 2022 Tian, Lu, Zhang, Tan, Jin (bib0063) 2020 Chu, Cai, Cui, Hu, Li, Qin (bib0033) 2019; 476 Wang, Zuo, Gong (bib0052) 2023 Cai, Ma, Gong, Tian (bib0065) 2016; 8 Zhou, Wen (bib0031) 2024 Shekhovtsov (bib0058) 2021; 192 Tian, Cheng, Zhang, Jin (bib0054) 2017; 12 Liu (bib0067) 1997; 1 Wu, Zhou, Zhu, Xia, Wen (bib0028) 2019; 17 Xu, Chen, Shi, Ruan, Wu, Zhang (bib0038) 2024 Yi, Zhang, Bai, Zhou, Yao (bib0003) 2022; 26 Vodopija, Tušar, Filipič (bib0014) 2022; 607 Alsouly, Kirley, Muñoz (bib0013) 2023; 27 Yuan, Liu, Yang (bib0016) 2024; 84 Wang, Li, Chen, Chen (bib0029) 2023 Verma, Kumar, Singh (bib0039) 2023 Tian (10.1016/j.swevo.2025.102037_bib0054) 2017; 12 Zhao (10.1016/j.swevo.2025.102037_bib0044) 2023 Yuan (10.1016/j.swevo.2025.102037_bib0016) 2024; 84 Xue (10.1016/j.swevo.2025.102037_bib0025) 2022 Deb (10.1016/j.swevo.2025.102037_bib0057) 2003 Yuan (10.1016/j.swevo.2025.102037_bib0061) 2021; 25 10.1016/j.swevo.2025.102037_bib0020 Kerschke (10.1016/j.swevo.2025.102037_bib0032) 2019; 27 Liu (10.1016/j.swevo.2025.102037_bib0067) 1997; 1 Gong (10.1016/j.swevo.2025.102037_bib0012) 2024 Schutze (10.1016/j.swevo.2025.102037_bib0022) 2011; 15 Deb (10.1016/j.swevo.2025.102037_bib0021) 2000 Chu (10.1016/j.swevo.2025.102037_bib0033) 2019; 476 Zhang (10.1016/j.swevo.2025.102037_bib0048) 2023; 34 Zhao (10.1016/j.swevo.2025.102037_bib0062) 2024; 135 Brazdil P (10.1016/j.swevo.2025.102037_bib0036) 2008 Li (10.1016/j.swevo.2025.102037_bib0051) 2024 Qi (10.1016/j.swevo.2025.102037_bib0026) 2022; 608 Zou (10.1016/j.swevo.2025.102037_bib0010) 2021; 546 Cenikj (10.1016/j.swevo.2025.102037_bib0011) 2025 Zhao (10.1016/j.swevo.2025.102037_bib0041) 2022 Shekhovtsov (10.1016/j.swevo.2025.102037_bib0058) 2021; 192 Yi (10.1016/j.swevo.2025.102037_bib0003) 2022; 26 Vodopija (10.1016/j.swevo.2025.102037_bib0014) 2022; 607 Ishibuchi (10.1016/j.swevo.2025.102037_bib0006) 2022 Wu (10.1016/j.swevo.2025.102037_bib0028) 2019; 17 Gong (10.1016/j.swevo.2025.102037_bib0066) 2014; 18 Tian (10.1016/j.swevo.2025.102037_bib0063) 2020 Zhang (10.1016/j.swevo.2025.102037_bib0030) 2022 Wang (10.1016/j.swevo.2025.102037_bib0042) 2023 Peng (10.1016/j.swevo.2025.102037_bib0027) 2022 Rice (10.1016/j.swevo.2025.102037_bib0034) 1976; 15 de Farias (10.1016/j.swevo.2025.102037_bib0060) 2022 Wang (10.1016/j.swevo.2025.102037_bib0049) 2024; 5 Tian (10.1016/j.swevo.2025.102037_bib0009) 2023; 7 Ma (10.1016/j.swevo.2025.102037_bib0017) 2016 Zhang (10.1016/j.swevo.2025.102037_bib0055) 2007; 11 Kiziloz (10.1016/j.swevo.2025.102037_bib0069) 2021 Deb (10.1016/j.swevo.2025.102037_bib0056) 2013; 18 Liu (10.1016/j.swevo.2025.102037_bib0059) 2023 Xu (10.1016/j.swevo.2025.102037_bib0038) 2024 Li (10.1016/j.swevo.2025.102037_bib0019) 2018; 6 Li (10.1016/j.swevo.2025.102037_bib0018) 2013 Cui (10.1016/j.swevo.2025.102037_bib0035) 2016; 46 Prusty (10.1016/j.swevo.2025.102037_bib0040) 2024; 129 Jiang (10.1016/j.swevo.2025.102037_bib0024) 2020 Zitzler (10.1016/j.swevo.2025.102037_bib0023) 2004 Alsouly (10.1016/j.swevo.2025.102037_bib0013) 2023; 27 Yan (10.1016/j.swevo.2025.102037_bib0015) 2025 Wang (10.1016/j.swevo.2025.102037_bib0029) 2023 Fu (10.1016/j.swevo.2025.102037_bib0050) 2023; 17 Qin (10.1016/j.swevo.2025.102037_bib0043) 2021 Wolpert D H (10.1016/j.swevo.2025.102037_bib0004) 1997; 1 Zhou (10.1016/j.swevo.2025.102037_bib0031) 2024 Zhong (10.1016/j.swevo.2025.102037_bib0001) 2024 Qiao (10.1016/j.swevo.2025.102037_bib0007) 2023; 27 Wang (10.1016/j.swevo.2025.102037_bib0046) 2024 Wang (10.1016/j.swevo.2025.102037_bib0052) 2023 Chu (10.1016/j.swevo.2025.102037_bib0068) 2020; 2020 Kerschke (10.1016/j.swevo.2025.102037_bib0005) 2019; 27 Verma (10.1016/j.swevo.2025.102037_bib0039) 2023 Pan (10.1016/j.swevo.2025.102037_bib0045) 2024; 166 Cui J (10.1016/j.swevo.2025.102037_bib0037) 2019; 41 Dantas (10.1016/j.swevo.2025.102037_bib0053) 2020; 805 Xue (10.1016/j.swevo.2025.102037_bib0070) 2012; 43 Tian (10.1016/j.swevo.2025.102037_bib0064) 2020; 28 Liefooghe (10.1016/j.swevo.2025.102037_bib0008) 2020; 24 Li (10.1016/j.swevo.2025.102037_bib0002) 2019; 23 Wen (10.1016/j.swevo.2025.102037_bib0047) 2024 Cai (10.1016/j.swevo.2025.102037_bib0065) 2016; 8 |
| References_xml | – start-page: 89 year: 2024 ident: bib0012 article-title: A surrogate-assisted evolutionary algorithm with dual restricted Boltzmann machines and reinforcement learning-based adaptive strategy selection publication-title: Swarm Evol. Comput. – start-page: 207 year: 2023 ident: bib0039 article-title: A meta-learning framework for recommending CNN models for plant disease identification tasks publication-title: Comput. Electron. Agric. – volume: 27 start-page: 949 year: 2023 end-page: 963 ident: bib0007 article-title: Feature extraction for recommendation of constrained multiobjective evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. – start-page: 147 year: 2023 ident: bib0044 article-title: Jonrinaldi, A selection hyper-heuristic algorithm with Q-learning mechanism publication-title: Appl. Soft Comput. – start-page: 118 year: 2022 ident: bib0027 article-title: A decomposition-based constrained multi-objective evolutionary algorithm with a local infeasibility utilization mechanism for UAV path planning publication-title: Appl. Soft Comput. – volume: 17 start-page: 166 year: 2019 end-page: 176 ident: bib0028 article-title: MOELS: multiobjective evolutionary list scheduling for cloud workflows publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 5 start-page: 5561 year: 2024 end-page: 5574 ident: bib0049 article-title: A novel incentive mechanism for federated learning over wireless communications publication-title: IEEE Trans. Artif. Intell. – volume: 2020 start-page: 1 year: 2020 end-page: 13 ident: bib0068 article-title: A binary superior tracking artificial bee colony with dynamic cauchy mutation for feature selection publication-title: Complexity – start-page: 261 year: 2013 end-page: 275 ident: bib0018 article-title: A comparative study on evolutionary algorithms for many-objective optimization publication-title: International Conference on Evolutionary Multi-Criterion Optimization – volume: 46 start-page: 33 year: 2016 end-page: 44 ident: bib0035 article-title: A recommendation system for meta-modeling: a meta-learning based approach publication-title: Expert Syst. Appl. – volume: 805 start-page: 62 year: 2020 end-page: 75 ident: bib0053 article-title: On the use of fitness landscape features in meta-learning based algorithm selection for the quadratic assignment problem publication-title: Theor. Comput. Sci. – volume: 546 start-page: 815 year: 2021 end-page: 834 ident: bib0010 article-title: A reinforcement learning approach for dynamic multi-objective optimization publication-title: Inf. Sci. – start-page: 75 year: 2022 ident: bib0041 article-title: An offline learning co-evolutionary algorithm with problem-specific knowledge publication-title: Swarm Evol. Comput. – volume: 23 start-page: 987 year: 2019 end-page: 999 ident: bib0002 article-title: Variable-length pareto optimization via decomposition-based evolutionary multiobjective algorithm publication-title: IEEE Trans. Evol. Comput. – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: bib0004 article-title: No free lunch theorems for search publication-title: IEEE Trans Evol. Comput. – start-page: 83 year: 2023 ident: bib0059 article-title: A many-objective optimization evolutionary algorithm based on hyper-dominance degree publication-title: Swarm Evol. Comput. – volume: 28 start-page: 2841 year: 2020 end-page: 2855 ident: bib0064 article-title: An evolutionary multiobjective optimization based fuzzy method for overlapping community detection publication-title: IEEE Trans. Fuzzy Syst. – volume: 24 start-page: 1063 year: 2020 end-page: 1077 ident: bib0008 article-title: Landscape-aware performance prediction for evolutionary multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 18 start-page: 82 year: 2014 end-page: 97 ident: bib0066 article-title: Complex network clustering by multiobjective discrete particle swarm optimization based on decomposition publication-title: IEEE Trans. Evol. Comput. – start-page: 58 year: 2020 ident: bib0024 article-title: Solving energy-efficient distributed job shop scheduling via multi-objective evolutionary algorithm with decomposition publication-title: Swarm Evol. Comput. – start-page: 190 year: 2024 ident: bib0031 article-title: A mutli-objective artificial electric field algorithm with reinforcement learning for milk-run assembly line feeding and scheduling problem publication-title: Comput. Ind. Eng. – volume: 26 start-page: 334 year: 2022 end-page: 348 ident: bib0003 article-title: Multifactorial evolutionary algorithm based on improved dynamical decomposition for many-objective optimization problems publication-title: IEEE Trans. Evol. Comput. – volume: 12 start-page: 73 year: 2017 end-page: 87 ident: bib0054 article-title: PlatEMO: a MATLAB platform for evolutionary multi-objective optimization [educational forum publication-title: IEEE Comput. Intell. Mag. – volume: 8 start-page: 84 year: 2016 end-page: 98 ident: bib0065 article-title: A survey on network community detection based on evolutionary computation publication-title: Int. J. Bio-Inspir. Comput. – volume: 6 start-page: 26194 year: 2018 end-page: 26214 ident: bib0019 article-title: Evolutionary many-objective optimization: A comparative study of the State-of-the-art publication-title: IEEE Access – volume: 41 start-page: 153 year: 2019 end-page: 160 ident: bib0037 article-title: An intelligent recommendation system for optimization algorithms based on multi-classification support vector machine and its empirical analysis publication-title: Comput. Eng. Sci. – start-page: 662 year: 2024 ident: bib0038 article-title: 3D meta-classification: a meta-learning approach for selecting 3D point-cloud classification algorithm publication-title: Inf. Sci. – volume: 607 start-page: 244 year: 2022 end-page: 262 ident: bib0014 article-title: Characterization of constrained continuous multiobjective optimization problems: A feature space perspective publication-title: Inf. Sci. – start-page: 147 year: 2023 ident: bib0042 article-title: Problem feature based meta-heuristics with Q-learning for solving urban traffic light scheduling problems publication-title: Appl. Soft Comput. – start-page: 849 year: 2000 end-page: 858 ident: bib0021 article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II publication-title: International Conference on Parallel Problem Solving from Nature – volume: 84 year: 2024 ident: bib0016 article-title: An adaptive parental guidance strategy and its derived indicator-based evolutionary algorithm for multi- and many-objective optimization publication-title: Swarm Evol. Comput. – volume: 25 start-page: 75 year: 2021 end-page: 86 ident: bib0061 article-title: Investigating the properties of indicators and an evolutionary many-objective algorithm using promising regions publication-title: IEEE Trans. Evol. Comput. – volume: 7 start-page: 1051 year: 2023 end-page: 1064 ident: bib0009 article-title: Deep reinforcement Learning based adaptive operator selection for evolutionary multi-objective optimization publication-title: IEEE Trans. Emerg. Top. Comput. Intell. – start-page: 222 year: 2003 end-page: 236 ident: bib0057 article-title: Towards a quick computation of well-spread pareto-optimal solutions publication-title: Evolutionary Multi-Criterion Optimization: Second International Conference – start-page: 94 year: 2025 ident: bib0015 article-title: An indicator-based multi-objective evolutionary algorithm assisted by improved graph convolutional networks publication-title: Swarm Evol. Comput. – volume: 129 year: 2024 ident: bib0040 article-title: SEMeL-LR: an improvised modeling approach using a meta-learning algorithm to classify breast cancer publication-title: Eng. Appl. Artif. Intell. – start-page: 87 year: 2024 ident: bib0001 article-title: A dual-population-based evolutionary algorithm for multi-objective optimization problems with irregular Pareto fronts publication-title: Swarm Evol. Comput. – start-page: 197 year: 2024 ident: bib0046 article-title: A Q-learning based hyper-heuristic scheduling algorithm with multi-rule selection for sub-assembly in shipbuilding publication-title: Comput. Ind. Eng. – start-page: 156 year: 2021 ident: bib0043 article-title: A novel reinforcement learning-based hyper-heuristic for heterogeneous vehicle routing problem publication-title: Comput. Ind. Eng. – volume: 15 start-page: 65 year: 1976 end-page: 118 ident: bib0034 article-title: The algorithm selection problem publication-title: Adv. Comput. – volume: 27 start-page: 99 year: 2019 end-page: 127 ident: bib0005 article-title: H., automated algorithm selection on continuous black-box problems by combining exploratory landscape analysis and machine learning publication-title: Evol Comput – start-page: 238 year: 2022 ident: bib0030 article-title: An automatic multi-objective evolutionary algorithm for the hybrid flowshop scheduling problem with consistent sublots publication-title: Knowl.-Based Syst. – volume: 43 start-page: 1656 year: 2012 end-page: 1671 ident: bib0070 article-title: Particle swarm optimization for feature selection in classification: a multi-objective approach publication-title: IEEE trans. Cybern. – start-page: 2477 year: 2016 end-page: 2483 ident: bib0017 article-title: A comparative study on decomposition-based multi-objective evolutionary algorithms for many-objective optimization publication-title: IEEE Congr. Evol. Comput. (CEC) – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: bib0055 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. – volume: 192 start-page: 4570 year: 2021 end-page: 4577 ident: bib0058 article-title: How strongly do rank similarity coefficients differ used in decision making problems? publication-title: Procedia Comput. Sci. – volume: 166 year: 2024 ident: bib0045 article-title: Deep reinforcement learning for multi-objective optimization in BIM-based green building design publication-title: Automat. Construct. – volume: 135 year: 2024 ident: bib0062 article-title: Carbon futures price forecasting based on feature selection publication-title: Eng. Appl. Artif. Intell. – volume: 1 start-page: 131 year: 1997 end-page: 156 ident: bib0067 article-title: Feature selection for classification publication-title: Intell. Data Anal. – start-page: 68 year: 2022 ident: bib0060 article-title: A decomposition-based many-objective evolutionary algorithm updating weights when required publication-title: Swarm Evol. Comput. – start-page: 937 year: 2022 end-page: 957 ident: bib0006 article-title: Difficulties in fair performance comparison of multiobjective evolutionary algorithms publication-title: Proceedings of the Genetic and Evolutionary Computation Conference Companion – volume: 27 start-page: 3 year: 2019 end-page: 45 ident: bib0032 article-title: Automated algorithm selection: survey and perspectives publication-title: Evol. Comput. – year: 2020 ident: bib0063 article-title: Solving large-scale multiobjective optimization problems with sparse optimal solutions via unsupervised neural networks publication-title: IEEE Trans. Cybern. – start-page: 832 year: 2004 end-page: 842 ident: bib0023 article-title: Indicator-based selection in multiobjective search publication-title: International Conference on Parallel Problem Solving from Nature – start-page: 94 year: 2025 ident: bib0011 article-title: Landscape features in single-objective continuous optimization: have we hit a wall in algorithm selection generalization? publication-title: Swarm Evol. Comput. – start-page: 216 year: 2023 ident: bib0029 article-title: Medical machine learning based on multiobjective evolutionary algorithm using learning decomposition publication-title: Expert Syst. Appl. – volume: 17 year: 2023 ident: bib0050 article-title: MAML2: meta reinforcement learning via meta-learning for task categories publication-title: Front. Comput. Sci. – year: 2008 ident: bib0036 article-title: Metalearning: Applications to Data Mining – volume: 34 start-page: 7978 year: 2023 end-page: 7991 ident: bib0048 article-title: Meta-learning-based deep reinforcement learning for multiobjective optimization problems publication-title: IEEE Trans. Neural. Netw. Learn. Syst. – volume: 15 start-page: 444 year: 2011 end-page: 455 ident: bib0022 article-title: On the influence of the number of objectives on the hardness of a multiobjective optimization problem publication-title: IEEE Trans. Evol. Comput. – start-page: 162 year: 2024 ident: bib0051 article-title: Multi-objective two-stage robust optimization of wind/PV/thermal power system based on meta multi-agent reinforcement learning publication-title: Int. J. Electr. Power Energy Syst. – start-page: 193 year: 2024 ident: bib0047 article-title: An improved genetic algorithm based on reinforcement learning for aircraft assembly scheduling problem publication-title: Comput. Ind. Eng. – volume: 27 start-page: 1427 year: 2023 end-page: 1439 ident: bib0013 article-title: An instance space analysis of constrained multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. – volume: 18 start-page: 577 year: 2013 end-page: 601 ident: bib0056 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints publication-title: IEEE trans. Evol. Comput. – volume: 476 start-page: 192 year: 2019 end-page: 210 ident: bib0033 article-title: Adaptive recommendation model using meta-learning for population-based algorithms publication-title: Inf. Sci. – start-page: 649 year: 2023 ident: bib0052 article-title: Migration-based algorithm library enrichment for constrained multi-objective optimization and applications in algorithm selection publication-title: Inf. Sci. – start-page: 127 year: 2022 ident: bib0025 article-title: A multi-objective evolutionary algorithm with interval based initialization and self-adaptive crossover operator for large-scale feature selection in classification publication-title: Appl. Soft Comput. – start-page: 159 year: 2021 ident: bib0069 article-title: An evolutionary parallel multiobjective feature selection framework publication-title: Comput. Ind. Eng. – reference: E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the strength Pareto evolutionary algorithm, TIK-report, 103 (2001). – volume: 608 start-page: 178 year: 2022 end-page: 201 ident: bib0026 article-title: QMOEA: A Q-learning-based multiobjective evolutionary algorithm for solving time-dependent green vehicle routing problems with time windows publication-title: Inf. Sci. – start-page: 94 year: 2025 ident: 10.1016/j.swevo.2025.102037_bib0015 article-title: An indicator-based multi-objective evolutionary algorithm assisted by improved graph convolutional networks publication-title: Swarm Evol. Comput. – start-page: 147 year: 2023 ident: 10.1016/j.swevo.2025.102037_bib0042 article-title: Problem feature based meta-heuristics with Q-learning for solving urban traffic light scheduling problems publication-title: Appl. Soft Comput. – start-page: 216 year: 2023 ident: 10.1016/j.swevo.2025.102037_bib0029 article-title: Medical machine learning based on multiobjective evolutionary algorithm using learning decomposition publication-title: Expert Syst. Appl. – volume: 6 start-page: 26194 year: 2018 ident: 10.1016/j.swevo.2025.102037_bib0019 article-title: Evolutionary many-objective optimization: A comparative study of the State-of-the-art publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2832181 – start-page: 156 year: 2021 ident: 10.1016/j.swevo.2025.102037_bib0043 article-title: A novel reinforcement learning-based hyper-heuristic for heterogeneous vehicle routing problem publication-title: Comput. Ind. Eng. – volume: 27 start-page: 1427 year: 2023 ident: 10.1016/j.swevo.2025.102037_bib0013 article-title: An instance space analysis of constrained multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2022.3208595 – volume: 608 start-page: 178 year: 2022 ident: 10.1016/j.swevo.2025.102037_bib0026 article-title: QMOEA: A Q-learning-based multiobjective evolutionary algorithm for solving time-dependent green vehicle routing problems with time windows publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.06.056 – volume: 24 start-page: 1063 year: 2020 ident: 10.1016/j.swevo.2025.102037_bib0008 article-title: Landscape-aware performance prediction for evolutionary multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2940828 – start-page: 162 year: 2024 ident: 10.1016/j.swevo.2025.102037_bib0051 article-title: Multi-objective two-stage robust optimization of wind/PV/thermal power system based on meta multi-agent reinforcement learning publication-title: Int. J. Electr. Power Energy Syst. – volume: 18 start-page: 577 year: 2013 ident: 10.1016/j.swevo.2025.102037_bib0056 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints publication-title: IEEE trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281535 – volume: 28 start-page: 2841 year: 2020 ident: 10.1016/j.swevo.2025.102037_bib0064 article-title: An evolutionary multiobjective optimization based fuzzy method for overlapping community detection publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2019.2945241 – start-page: 937 year: 2022 ident: 10.1016/j.swevo.2025.102037_bib0006 article-title: Difficulties in fair performance comparison of multiobjective evolutionary algorithms – start-page: 261 year: 2013 ident: 10.1016/j.swevo.2025.102037_bib0018 article-title: A comparative study on evolutionary algorithms for many-objective optimization – start-page: 207 year: 2023 ident: 10.1016/j.swevo.2025.102037_bib0039 article-title: A meta-learning framework for recommending CNN models for plant disease identification tasks publication-title: Comput. Electron. Agric. – volume: 25 start-page: 75 year: 2021 ident: 10.1016/j.swevo.2025.102037_bib0061 article-title: Investigating the properties of indicators and an evolutionary many-objective algorithm using promising regions publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2020.2999100 – start-page: 94 year: 2025 ident: 10.1016/j.swevo.2025.102037_bib0011 article-title: Landscape features in single-objective continuous optimization: have we hit a wall in algorithm selection generalization? publication-title: Swarm Evol. Comput. – ident: 10.1016/j.swevo.2025.102037_bib0020 – volume: 11 start-page: 712 year: 2007 ident: 10.1016/j.swevo.2025.102037_bib0055 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.892759 – volume: 7 start-page: 1051 year: 2023 ident: 10.1016/j.swevo.2025.102037_bib0009 article-title: Deep reinforcement Learning based adaptive operator selection for evolutionary multi-objective optimization publication-title: IEEE Trans. Emerg. Top. Comput. Intell. doi: 10.1109/TETCI.2022.3146882 – volume: 1 start-page: 67 year: 1997 ident: 10.1016/j.swevo.2025.102037_bib0004 article-title: No free lunch theorems for search publication-title: IEEE Trans Evol. Comput. doi: 10.1109/4235.585893 – volume: 17 start-page: 166 year: 2019 ident: 10.1016/j.swevo.2025.102037_bib0028 article-title: MOELS: multiobjective evolutionary list scheduling for cloud workflows publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2019.2918691 – volume: 41 start-page: 153 year: 2019 ident: 10.1016/j.swevo.2025.102037_bib0037 article-title: An intelligent recommendation system for optimization algorithms based on multi-classification support vector machine and its empirical analysis publication-title: Comput. Eng. Sci. – volume: 5 start-page: 5561 year: 2024 ident: 10.1016/j.swevo.2025.102037_bib0049 article-title: A novel incentive mechanism for federated learning over wireless communications publication-title: IEEE Trans. Artif. Intell. doi: 10.1109/TAI.2024.3419757 – volume: 17 year: 2023 ident: 10.1016/j.swevo.2025.102037_bib0050 article-title: MAML2: meta reinforcement learning via meta-learning for task categories publication-title: Front. Comput. Sci. doi: 10.1007/s11704-022-2037-1 – start-page: 87 year: 2024 ident: 10.1016/j.swevo.2025.102037_bib0001 article-title: A dual-population-based evolutionary algorithm for multi-objective optimization problems with irregular Pareto fronts publication-title: Swarm Evol. Comput. – volume: 27 start-page: 949 year: 2023 ident: 10.1016/j.swevo.2025.102037_bib0007 article-title: Feature extraction for recommendation of constrained multiobjective evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2022.3186667 – volume: 2020 start-page: 1 year: 2020 ident: 10.1016/j.swevo.2025.102037_bib0068 article-title: A binary superior tracking artificial bee colony with dynamic cauchy mutation for feature selection publication-title: Complexity – start-page: 832 year: 2004 ident: 10.1016/j.swevo.2025.102037_bib0023 article-title: Indicator-based selection in multiobjective search – volume: 805 start-page: 62 year: 2020 ident: 10.1016/j.swevo.2025.102037_bib0053 article-title: On the use of fitness landscape features in meta-learning based algorithm selection for the quadratic assignment problem publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2019.10.033 – volume: 46 start-page: 33 year: 2016 ident: 10.1016/j.swevo.2025.102037_bib0035 article-title: A recommendation system for meta-modeling: a meta-learning based approach publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.10.021 – volume: 8 start-page: 84 year: 2016 ident: 10.1016/j.swevo.2025.102037_bib0065 article-title: A survey on network community detection based on evolutionary computation publication-title: Int. J. Bio-Inspir. Comput. doi: 10.1504/IJBIC.2016.076329 – start-page: 83 year: 2023 ident: 10.1016/j.swevo.2025.102037_bib0059 article-title: A many-objective optimization evolutionary algorithm based on hyper-dominance degree publication-title: Swarm Evol. Comput. – volume: 15 start-page: 65 year: 1976 ident: 10.1016/j.swevo.2025.102037_bib0034 article-title: The algorithm selection problem publication-title: Adv. Comput. doi: 10.1016/S0065-2458(08)60520-3 – start-page: 197 year: 2024 ident: 10.1016/j.swevo.2025.102037_bib0046 article-title: A Q-learning based hyper-heuristic scheduling algorithm with multi-rule selection for sub-assembly in shipbuilding publication-title: Comput. Ind. Eng. – start-page: 147 year: 2023 ident: 10.1016/j.swevo.2025.102037_bib0044 article-title: Jonrinaldi, A selection hyper-heuristic algorithm with Q-learning mechanism publication-title: Appl. Soft Comput. – volume: 129 year: 2024 ident: 10.1016/j.swevo.2025.102037_bib0040 article-title: SEMeL-LR: an improvised modeling approach using a meta-learning algorithm to classify breast cancer publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.107630 – start-page: 75 year: 2022 ident: 10.1016/j.swevo.2025.102037_bib0041 article-title: An offline learning co-evolutionary algorithm with problem-specific knowledge publication-title: Swarm Evol. Comput. – start-page: 127 year: 2022 ident: 10.1016/j.swevo.2025.102037_bib0025 article-title: A multi-objective evolutionary algorithm with interval based initialization and self-adaptive crossover operator for large-scale feature selection in classification publication-title: Appl. Soft Comput. – volume: 476 start-page: 192 year: 2019 ident: 10.1016/j.swevo.2025.102037_bib0033 article-title: Adaptive recommendation model using meta-learning for population-based algorithms publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.10.013 – volume: 27 start-page: 99 year: 2019 ident: 10.1016/j.swevo.2025.102037_bib0005 article-title: H., automated algorithm selection on continuous black-box problems by combining exploratory landscape analysis and machine learning publication-title: Evol Comput doi: 10.1162/evco_a_00236 – start-page: 118 year: 2022 ident: 10.1016/j.swevo.2025.102037_bib0027 article-title: A decomposition-based constrained multi-objective evolutionary algorithm with a local infeasibility utilization mechanism for UAV path planning publication-title: Appl. Soft Comput. – start-page: 58 year: 2020 ident: 10.1016/j.swevo.2025.102037_bib0024 article-title: Solving energy-efficient distributed job shop scheduling via multi-objective evolutionary algorithm with decomposition publication-title: Swarm Evol. Comput. – volume: 15 start-page: 444 year: 2011 ident: 10.1016/j.swevo.2025.102037_bib0022 article-title: On the influence of the number of objectives on the hardness of a multiobjective optimization problem publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2064321 – volume: 546 start-page: 815 year: 2021 ident: 10.1016/j.swevo.2025.102037_bib0010 article-title: A reinforcement learning approach for dynamic multi-objective optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.08.101 – volume: 84 year: 2024 ident: 10.1016/j.swevo.2025.102037_bib0016 article-title: An adaptive parental guidance strategy and its derived indicator-based evolutionary algorithm for multi- and many-objective optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2023.101449 – volume: 12 start-page: 73 year: 2017 ident: 10.1016/j.swevo.2025.102037_bib0054 article-title: PlatEMO: a MATLAB platform for evolutionary multi-objective optimization [educational forum publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2017.2742868 – start-page: 222 year: 2003 ident: 10.1016/j.swevo.2025.102037_bib0057 article-title: Towards a quick computation of well-spread pareto-optimal solutions – volume: 135 year: 2024 ident: 10.1016/j.swevo.2025.102037_bib0062 article-title: Carbon futures price forecasting based on feature selection publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.108646 – volume: 1 start-page: 131 year: 1997 ident: 10.1016/j.swevo.2025.102037_bib0067 article-title: Feature selection for classification publication-title: Intell. Data Anal. doi: 10.3233/IDA-1997-1302 – start-page: 2477 year: 2016 ident: 10.1016/j.swevo.2025.102037_bib0017 article-title: A comparative study on decomposition-based multi-objective evolutionary algorithms for many-objective optimization publication-title: IEEE Congr. Evol. Comput. (CEC) – start-page: 159 year: 2021 ident: 10.1016/j.swevo.2025.102037_bib0069 article-title: An evolutionary parallel multiobjective feature selection framework publication-title: Comput. Ind. Eng. – volume: 23 start-page: 987 year: 2019 ident: 10.1016/j.swevo.2025.102037_bib0002 article-title: Variable-length pareto optimization via decomposition-based evolutionary multiobjective algorithm publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2898886 – start-page: 849 year: 2000 ident: 10.1016/j.swevo.2025.102037_bib0021 article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II – volume: 192 start-page: 4570 year: 2021 ident: 10.1016/j.swevo.2025.102037_bib0058 article-title: How strongly do rank similarity coefficients differ used in decision making problems? publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2021.09.235 – start-page: 89 year: 2024 ident: 10.1016/j.swevo.2025.102037_bib0012 article-title: A surrogate-assisted evolutionary algorithm with dual restricted Boltzmann machines and reinforcement learning-based adaptive strategy selection publication-title: Swarm Evol. Comput. – volume: 34 start-page: 7978 year: 2023 ident: 10.1016/j.swevo.2025.102037_bib0048 article-title: Meta-learning-based deep reinforcement learning for multiobjective optimization problems publication-title: IEEE Trans. Neural. Netw. Learn. Syst. doi: 10.1109/TNNLS.2022.3148435 – volume: 27 start-page: 3 year: 2019 ident: 10.1016/j.swevo.2025.102037_bib0032 article-title: Automated algorithm selection: survey and perspectives publication-title: Evol. Comput. doi: 10.1162/evco_a_00242 – start-page: 68 year: 2022 ident: 10.1016/j.swevo.2025.102037_bib0060 article-title: A decomposition-based many-objective evolutionary algorithm updating weights when required publication-title: Swarm Evol. Comput. – start-page: 662 year: 2024 ident: 10.1016/j.swevo.2025.102037_bib0038 article-title: 3D meta-classification: a meta-learning approach for selecting 3D point-cloud classification algorithm publication-title: Inf. Sci. – volume: 607 start-page: 244 year: 2022 ident: 10.1016/j.swevo.2025.102037_bib0014 article-title: Characterization of constrained continuous multiobjective optimization problems: A feature space perspective publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.05.106 – start-page: 190 year: 2024 ident: 10.1016/j.swevo.2025.102037_bib0031 article-title: A mutli-objective artificial electric field algorithm with reinforcement learning for milk-run assembly line feeding and scheduling problem publication-title: Comput. Ind. Eng. – volume: 166 year: 2024 ident: 10.1016/j.swevo.2025.102037_bib0045 article-title: Deep reinforcement learning for multi-objective optimization in BIM-based green building design publication-title: Automat. Construct. doi: 10.1016/j.autcon.2024.105598 – year: 2020 ident: 10.1016/j.swevo.2025.102037_bib0063 article-title: Solving large-scale multiobjective optimization problems with sparse optimal solutions via unsupervised neural networks publication-title: IEEE Trans. Cybern. – start-page: 238 year: 2022 ident: 10.1016/j.swevo.2025.102037_bib0030 article-title: An automatic multi-objective evolutionary algorithm for the hybrid flowshop scheduling problem with consistent sublots publication-title: Knowl.-Based Syst. – start-page: 649 year: 2023 ident: 10.1016/j.swevo.2025.102037_bib0052 article-title: Migration-based algorithm library enrichment for constrained multi-objective optimization and applications in algorithm selection publication-title: Inf. Sci. – volume: 18 start-page: 82 year: 2014 ident: 10.1016/j.swevo.2025.102037_bib0066 article-title: Complex network clustering by multiobjective discrete particle swarm optimization based on decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2260862 – year: 2008 ident: 10.1016/j.swevo.2025.102037_bib0036 – volume: 43 start-page: 1656 year: 2012 ident: 10.1016/j.swevo.2025.102037_bib0070 article-title: Particle swarm optimization for feature selection in classification: a multi-objective approach publication-title: IEEE trans. Cybern. doi: 10.1109/TSMCB.2012.2227469 – volume: 26 start-page: 334 year: 2022 ident: 10.1016/j.swevo.2025.102037_bib0003 article-title: Multifactorial evolutionary algorithm based on improved dynamical decomposition for many-objective optimization problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2021.3135691 – start-page: 193 year: 2024 ident: 10.1016/j.swevo.2025.102037_bib0047 article-title: An improved genetic algorithm based on reinforcement learning for aircraft assembly scheduling problem publication-title: Comput. Ind. Eng. |
| SSID | ssj0000602559 |
| Score | 2.3639927 |
| Snippet | •An offline-online learning framework combining meta-learning and reinforcement learning (O2-MRL) is first proposed for evolutionary multi-objective... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 102037 |
| SubjectTerms | Meta-learning Multi-objective optimization Offline algorithm selection Online algorithm selection Reinforcement learning |
| Title | An offline-online learning framework combining meta-learning and reinforcement learning for evolutionary multi-objective optimization |
| URI | https://dx.doi.org/10.1016/j.swevo.2025.102037 |
| Volume | 97 |
| WOSCitedRecordID | wos001512529700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 2210-6502 databaseCode: AIEXJ dateStart: 20110301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000602559 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLVKxwMvjE8xNpAfeBueUjtpnMdqGhpompA6pMJL5I-0oYJkaputf2B_YL9413acJitCgIQqpZFdO2nO0fW1c3wvQu8iIZjSFKwfDxQxMwYCg0JCBlzDJ1AD7pA-i8_P-WSSfO71bv1emKsfcVHw9Tq5_K9QQxmAbbbO_gXcTadQAOcAOhwBdjj-EfAj4wBOjfdIXBgMnxlidjj1SiyjJJc2NYRJIS1I8wurNs9sNFVlFw5bjW1s8PrWjdbOahFJKefOZh6WYH1-1ts62z7v-FosXCKOTnNl80l0hABnVlowzqs1kHa2ebvl7NHXspgt82xTcVrVNd9yYQIxNBXHeWWKJ6aXvBLtlQ0aNbq6erlta8uNsYoU5qgE3MqOCXcS363RwC1MzI-W1_D_jswlTKSKwEWZuRdme2w6Nv2CT2g3UT5AOzSOEt5HO6OPJ5NPzcpdMLTzMJO10N-LD2dlhYNbV_u1y9NyYy6eoMf1_AOPHG-eol5WPEO7PrcHrk39c3QzKnCXRtgzATc0wg2NcIdGGMDGHRq1GpcL3OYBvkcj3KbRC_Tlw8nF8SmpU3YQBc9kRRTLkulAy4zJTMaRiBQNuNDBkMqhkIop-GJMBZEIEsFioZIoDqkybya0irRkL1G_KIvsFcIw01daxjrMwjhMFOWKayoZD4WGATqie-i9f6rppYvMknrJ4jy1IKQGhNSBsIeG_smntXPpnMYU2PK7hq__teE-erRh9QHqrxZV9gY9VFer78vF25pVdy43qlg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+offline-online+learning+framework+combining+meta-learning+and+reinforcement+learning+for+evolutionary+multi-objective+optimization&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Li%2C+Shuxiang&rft.au=Pang%2C+Yongsheng&rft.au=Huang%2C+Zhaorong&rft.au=Chu%2C+Xianghua&rft.date=2025-08-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=97&rft_id=info:doi/10.1016%2Fj.swevo.2025.102037&rft.externalDocID=S2210650225001956 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon |