Impact of fast charging station for electric vehicles with grid integration: Forensic‐based investigation and Archimedes optimization algorithm approach
This manuscript proposes a novel technique for the precise model of electric vehicles (EVs) in the reliability and adequacy model of smart grids (SG). The proposed method combines forensic‐based investigation (FBI) and Archimedes optimization algorithm (AOA), named the FBIAOA technique. The objectiv...
Uloženo v:
| Vydáno v: | Optimal control applications & methods Ročník 45; číslo 3; s. 1305 - 1326 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Glasgow
Wiley Subscription Services, Inc
01.05.2024
|
| Témata: | |
| ISSN: | 0143-2087, 1099-1514 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This manuscript proposes a novel technique for the precise model of electric vehicles (EVs) in the reliability and adequacy model of smart grids (SG). The proposed method combines forensic‐based investigation (FBI) and Archimedes optimization algorithm (AOA), named the FBIAOA technique. The objective of the proposed method is to rise the profit of fast charging stations and lessen the rising energy demand on the grid that is made up of storage systems and renewable energy generation (wind and PV). The demand for EVs and renewable generation is calculated using the FBI algorithm method. The growth of the proposed method is to examine the reliability of SG depending on the aggregation of the state matrices of EV stochastic parameters. The proposed method can help accelerate the reliability calculations by determining the desired count of EV states. The proposed strategy is run in MATLAB and is evaluated in its performance with existing methods. The proposed method gives a lower cost than the existing genetic algorithm, cuttlefish algorithm, and tunicate swarm algorithm methods. |
|---|---|
| AbstractList | This manuscript proposes a novel technique for the precise model of electric vehicles (EVs) in the reliability and adequacy model of smart grids (SG). The proposed method combines forensic‐based investigation (FBI) and Archimedes optimization algorithm (AOA), named the FBIAOA technique. The objective of the proposed method is to rise the profit of fast charging stations and lessen the rising energy demand on the grid that is made up of storage systems and renewable energy generation (wind and PV). The demand for EVs and renewable generation is calculated using the FBI algorithm method. The growth of the proposed method is to examine the reliability of SG depending on the aggregation of the state matrices of EV stochastic parameters. The proposed method can help accelerate the reliability calculations by determining the desired count of EV states. The proposed strategy is run in MATLAB and is evaluated in its performance with existing methods. The proposed method gives a lower cost than the existing genetic algorithm, cuttlefish algorithm, and tunicate swarm algorithm methods. |
| Author | Kumar, Ashwani Singh, Abhishek Kumar |
| Author_xml | – sequence: 1 givenname: Abhishek Kumar orcidid: 0000-0001-5677-6498 surname: Singh fullname: Singh, Abhishek Kumar organization: Department of Electrical Engineering National Institute of Technology Kurukshetra India – sequence: 2 givenname: Ashwani surname: Kumar fullname: Kumar, Ashwani organization: Department of Electrical Engineering National Institute of Technology Kurukshetra India |
| BookMark | eNplkM1KxDAUhYOM4PgDPkLAjZuOSdM2rTsRRwcEN7MvaXrTRtqkJlHRlY_g2sfzScw4s9LVvXC-e87lHKKZsQYQOqVkQQlJL6wUCxa3PTSnpKoSmtNshuaEZixJSckP0KH3j4QQTlk6R1-rcRIyYKuwEj5g2QvXadNhH0TQ1mBlHYYBZHBa4hfotRzA41cdetw53WJtAnTul73ES-vAeC2_Pz4b4WGjvoAPutt6CdPiKyd7PUIbTewU9Kjfd9rQWRddRyymyVkh-2O0r8Tg4WQ3j9B6ebO-vkvuH25X11f3iUzzPCSSipRUjWpLWqqsBF6UHGQhCSMcGGc8V1Wh8ryhRdUCK6HkmWgbJTmv8iJlR-hsaxtTn57jt_WjfXYmJtaM5JTzjPEqUudbSjrrvQNVT06Pwr3VlNSb4utYfL0pPqKLP6jU2zKDE3r4f_ADIPWMMQ |
| CitedBy_id | crossref_primary_10_1007_s00202_025_03213_5 crossref_primary_10_1002_est2_70127 |
| Cites_doi | 10.1109/TTE.2020.2974179 10.3390/app11178231 10.1016/j.apenergy.2017.05.133 10.1007/s10489-020-01893-z 10.1016/j.energy.2020.117680 10.1016/j.ijepes.2018.06.012 10.1016/j.ijepes.2019.05.078 10.1016/j.ijepes.2019.105741 10.1016/j.etran.2020.100066 10.1007/s11036-017-0957-z 10.1002/er.7601 10.1109/ACCESS.2020.3046536 10.1016/j.enconman.2018.07.025 10.1016/j.est.2023.108646 10.1007/s00500-022-07266-7 10.1016/j.compeleceng.2020.106673 10.1109/TSTE.2018.2820696 10.1016/j.ress.2018.12.018 10.3390/math11153305 10.1109/TPWRS.2012.2230195 10.1080/23080477.2017.1417005 10.1016/j.jclepro.2018.03.058 10.1016/j.rser.2018.03.084 10.1007/s10098-022-02334-w 10.1016/j.est.2022.105084 10.1080/23080477.2017.1419054 10.1049/iet-rpg.2018.5317 10.1016/j.apenergy.2016.10.087 10.1016/j.seta.2019.100577 10.1016/j.ijepes.2018.08.001 |
| ContentType | Journal Article |
| Copyright | 2024 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2024 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SP 8FD JQ2 L7M |
| DOI | 10.1002/oca.3100 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts ProQuest Computer Science Collection |
| DatabaseTitleList | Technology Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1099-1514 |
| EndPage | 1326 |
| ExternalDocumentID | 10_1002_oca_3100 |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O8X O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT 7SP 8FD ALUQN JQ2 L7M |
| ID | FETCH-LOGICAL-c255t-c1a209bfd818f48e7687ec6c0307e37375f96f55b169de38e874adbfc7795623 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001155253300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0143-2087 |
| IngestDate | Fri Jul 25 21:53:01 EDT 2025 Tue Nov 18 22:01:40 EST 2025 Sat Nov 29 04:09:58 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c255t-c1a209bfd818f48e7687ec6c0307e37375f96f55b169de38e874adbfc7795623 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5677-6498 |
| PQID | 3051774379 |
| PQPubID | 1036362 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_3051774379 crossref_primary_10_1002_oca_3100 crossref_citationtrail_10_1002_oca_3100 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-00 20240501 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Glasgow |
| PublicationPlace_xml | – name: Glasgow |
| PublicationTitle | Optimal control applications & methods |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | e_1_2_12_4_1 e_1_2_12_3_1 e_1_2_12_6_1 e_1_2_12_5_1 e_1_2_12_19_1 e_1_2_12_18_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_16_1 e_1_2_12_20_1 e_1_2_12_21_1 e_1_2_12_22_1 e_1_2_12_23_1 e_1_2_12_24_1 e_1_2_12_25_1 e_1_2_12_26_1 Sahay KB (e_1_2_12_10_1) 2022; 53 e_1_2_12_27_1 e_1_2_12_28_1 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_31_1 e_1_2_12_32_1 e_1_2_12_15_1 e_1_2_12_14_1 e_1_2_12_13_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_9_1 |
| References_xml | – ident: e_1_2_12_25_1 doi: 10.1109/TTE.2020.2974179 – ident: e_1_2_12_15_1 doi: 10.3390/app11178231 – ident: e_1_2_12_9_1 doi: 10.1016/j.apenergy.2017.05.133 – ident: e_1_2_12_31_1 doi: 10.1007/s10489-020-01893-z – ident: e_1_2_12_21_1 doi: 10.1016/j.energy.2020.117680 – ident: e_1_2_12_16_1 doi: 10.1016/j.ijepes.2018.06.012 – ident: e_1_2_12_22_1 doi: 10.1016/j.ijepes.2019.05.078 – volume: 53 year: 2022 ident: e_1_2_12_10_1 article-title: Computation of electrical vehicle charging station (EVCS) with coordinate computation based on meta‐heuristics optimization model with effective management strategy for optimal charging and energy saving publication-title: Sustain Energy Technol Assess – ident: e_1_2_12_23_1 doi: 10.1016/j.ijepes.2019.105741 – ident: e_1_2_12_20_1 doi: 10.1016/j.etran.2020.100066 – ident: e_1_2_12_29_1 doi: 10.1007/s11036-017-0957-z – ident: e_1_2_12_12_1 doi: 10.1002/er.7601 – ident: e_1_2_12_32_1 doi: 10.1109/ACCESS.2020.3046536 – ident: e_1_2_12_2_1 doi: 10.1016/j.enconman.2018.07.025 – ident: e_1_2_12_14_1 doi: 10.1016/j.est.2023.108646 – ident: e_1_2_12_6_1 doi: 10.1007/s00500-022-07266-7 – ident: e_1_2_12_24_1 doi: 10.1016/j.compeleceng.2020.106673 – ident: e_1_2_12_7_1 doi: 10.1109/TSTE.2018.2820696 – ident: e_1_2_12_19_1 doi: 10.1016/j.ress.2018.12.018 – ident: e_1_2_12_11_1 doi: 10.3390/math11153305 – ident: e_1_2_12_5_1 doi: 10.1109/TPWRS.2012.2230195 – ident: e_1_2_12_28_1 doi: 10.1080/23080477.2017.1417005 – ident: e_1_2_12_4_1 doi: 10.1016/j.jclepro.2018.03.058 – ident: e_1_2_12_8_1 doi: 10.1016/j.rser.2018.03.084 – ident: e_1_2_12_13_1 doi: 10.1007/s10098-022-02334-w – ident: e_1_2_12_17_1 doi: 10.1016/j.est.2022.105084 – ident: e_1_2_12_27_1 doi: 10.1080/23080477.2017.1419054 – ident: e_1_2_12_18_1 doi: 10.1049/iet-rpg.2018.5317 – ident: e_1_2_12_3_1 doi: 10.1016/j.apenergy.2016.10.087 – ident: e_1_2_12_26_1 doi: 10.1016/j.seta.2019.100577 – ident: e_1_2_12_30_1 doi: 10.1016/j.ijepes.2018.08.001 |
| SSID | ssj0007132 |
| Score | 2.353728 |
| Snippet | This manuscript proposes a novel technique for the precise model of electric vehicles (EVs) in the reliability and adequacy model of smart grids (SG). The... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1305 |
| SubjectTerms | Electric vehicle charging Electric vehicles Genetic algorithms Optimization Optimization algorithms Photovoltaic cells Reliability Smart grid Storage systems |
| Title | Impact of fast charging station for electric vehicles with grid integration: Forensic‐based investigation and Archimedes optimization algorithm approach |
| URI | https://www.proquest.com/docview/3051774379 |
| Volume | 45 |
| WOSCitedRecordID | wos001155253300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-1514 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007132 issn: 0143-2087 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3Pb9MwFMet0nGAA-KnNhjISEgcqkATx7XDrQImkKaBoEi7RY5jrxVdOrWl7MifwJn_hn-Fv4Tnn0mnHcaBS1SlTqL0fer3bD9_H0LPSKpyyXmaCM2rJM9rnXCu80RQqhQFj0mkFXE9ZEdH_Pi4-Njr_Q57YTZz1jT8_Lw4-6-mhnNgbLN19h_MHW8KJ-AzGB2OYHY4Xsnw7-O-Ry1W64GVQvKTBjGv0BW_mcnBRk1tXpybjz1ZzuooIOGTPkztzgZMGbMijN8zraI-h89nthq24FuNii30Q6d-g-dAzE8WS7j7adQv7wbEH0xTq1HiUua7C-oWS1fiOkb-n-FV7EzQuJqadP6vA5sk3q5I-Yzx8Wr6XTSz7qRGlrcphHGek4BVvS9Wrm82YqIQoOTdzttpUXpISacnBt9MO14dBt2jSz2GU6CFuOGFWepovWLIBLjgLGMKo5N7zkq4sjRXXkM7GaMF76OdN58OvhzGcICltkpefKOggDzMXoanbsdE2yGBjXMmt9EtP0DBYwfWHdRTzV10syNbeQ_9cojhhcYGMRwQwx4xDIjhgBgOiGGDGDaI4Q5ir3AA7M-PnxYtvIUWBrRwixbuooUjWjigdR9NDt5OXr9LfI2PRMJgdp3IVGTDotI1BI465wpGv0zJkTS-RxFGGNXFSFNapaOiVoQrznJRV1oyVpjQ_QHqN4tG7SI8JBS-SxlRUuVCiIIzWTBa5WooM1apPfQ8_Mil9Pr3pgzLvLxoyj30NLY8c5ovl7TZD3Yq_Z9_VRIjeMeMwufDK9ziEbrRor-P-uvlN_UYXZeb9Wy1fOIx-guKp7Ux |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+fast+charging+station+for+electric+vehicles+with+grid+integration%3A+Forensic%E2%80%90based+investigation+and+Archimedes+optimization+algorithm+approach&rft.jtitle=Optimal+control+applications+%26+methods&rft.au=Singh%2C+Abhishek+Kumar&rft.au=Kumar%2C+Ashwani&rft.date=2024-05-01&rft.issn=0143-2087&rft.eissn=1099-1514&rft.volume=45&rft.issue=3&rft.spage=1305&rft.epage=1326&rft_id=info:doi/10.1002%2Foca.3100&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_oca_3100 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-2087&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-2087&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-2087&client=summon |