A DRL-based RAQ-GERT dynamic resource allocation algorithm considering utility for multibeam satellite system

With the evolution and popularity of smart devices, the demand and requirement (e.g., communication, file transfer) of satellite users have increased rapidly. Moreover, users have different preferences for services and the quality of service (QoS), like delay and throughput, which leads to user hete...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer networks (Amsterdam, Netherlands : 1999) Ročník 257; s. 110940
Hlavní autoři: Wu, Shuang, Fang, Zhigeng, Hua, Chenchen, Tao, Liangyan, Zhang, Jingru
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.02.2025
Témata:
ISSN:1389-1286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the evolution and popularity of smart devices, the demand and requirement (e.g., communication, file transfer) of satellite users have increased rapidly. Moreover, users have different preferences for services and the quality of service (QoS), like delay and throughput, which leads to user heterogeneity. Facing numerous, time-varying, and heterogeneous users, how to dynamically allocate limited spectrum and on-board power while satisfying user requirements is the major challenge for the multibeam satellite system (MSS). Aiming to seek a solution, firstly, the resource allocation queue graphical evaluation and review technique (RAQ-GERT) network is constructed to describe the service process of the MSS, as well as to compute the channel condition parameters during the whole process. Next, appropriate QoS indicators are selected based on user requirements. Then, QoS indicators are calculated from the results of the RAQ-GERT network, which are combined to form the optimization objective of the MSS by drawing on the Cobb–Douglas utility function. After that, guided by the utility of the MSS, the proximal policy optimization (PPO) algorithm is applied to explore the optimal resource allocation scheme in this heterogeneous user scenario. Finally, the simulation comparisons show that the proposed scheme has enhancements in several performances, up to 42.19 % in service rate, 53.58 % in system capacity, and 3.42 % in throughput with minimal increase in latency.
AbstractList With the evolution and popularity of smart devices, the demand and requirement (e.g., communication, file transfer) of satellite users have increased rapidly. Moreover, users have different preferences for services and the quality of service (QoS), like delay and throughput, which leads to user heterogeneity. Facing numerous, time-varying, and heterogeneous users, how to dynamically allocate limited spectrum and on-board power while satisfying user requirements is the major challenge for the multibeam satellite system (MSS). Aiming to seek a solution, firstly, the resource allocation queue graphical evaluation and review technique (RAQ-GERT) network is constructed to describe the service process of the MSS, as well as to compute the channel condition parameters during the whole process. Next, appropriate QoS indicators are selected based on user requirements. Then, QoS indicators are calculated from the results of the RAQ-GERT network, which are combined to form the optimization objective of the MSS by drawing on the Cobb–Douglas utility function. After that, guided by the utility of the MSS, the proximal policy optimization (PPO) algorithm is applied to explore the optimal resource allocation scheme in this heterogeneous user scenario. Finally, the simulation comparisons show that the proposed scheme has enhancements in several performances, up to 42.19 % in service rate, 53.58 % in system capacity, and 3.42 % in throughput with minimal increase in latency.
ArticleNumber 110940
Author Hua, Chenchen
Fang, Zhigeng
Zhang, Jingru
Wu, Shuang
Tao, Liangyan
Author_xml – sequence: 1
  givenname: Shuang
  surname: Wu
  fullname: Wu, Shuang
– sequence: 2
  givenname: Zhigeng
  surname: Fang
  fullname: Fang, Zhigeng
– sequence: 3
  givenname: Chenchen
  orcidid: 0000-0002-1528-3010
  surname: Hua
  fullname: Hua, Chenchen
– sequence: 4
  givenname: Liangyan
  surname: Tao
  fullname: Tao, Liangyan
  email: lytao@nuaa.edu.cn
– sequence: 5
  givenname: Jingru
  surname: Zhang
  fullname: Zhang, Jingru
BookMark eNp9kE1qwzAUhLVIoUnaG3ShC9iVZNmxN4WQpj8QKA3ZC_npKVWwrSIpBd--Dum6qxkGZhi-BZkNfkBCHjjLOePV4ykH3w-YcsGEzDlnjWQzMudF3WRc1NUtWcR4YoxJKeo56df0eb_LWh3R0P36M3vd7g_UjIPuHdCA0Z8DINVd50En54fJHn1w6aun4IfoDAY3HOk5uc6lkVofaH_ukmtR9zTqhN2UI41jTNjfkRuru4j3f7okh5ftYfOW7T5e3zfrXQaiLFMGTNaGldxUnFVQimrVCCiBIdjGoOSV4KWoma0Ly7jVGtp6xaG0UsqmaNpiSeR1FoKPMaBV38H1OoyKM3WhpE7qSkldKKkrpan2dK3hdO3HYVARHA6AxgWEpIx3_w_8AnYFd2A
Cites_doi 10.1109/LWC.2019.2949277
10.1016/j.cie.2021.107228
10.1109/TWC.2005.858365
10.1109/TVT.2020.3002983
10.1016/j.cie.2022.108222
10.1109/TVT.2022.3145848
10.1016/j.ijpe.2016.04.016
10.1002/sat.1312
10.1016/j.aeue.2017.05.012
10.1016/j.cie.2020.106830
10.1109/ACCESS.2018.2886284
10.1109/TCCN.2021.3087586
10.1109/TWC.2017.2769644
10.1109/JSYST.2020.3020038
10.1109/LCOMM.2011.020111.102201
10.1109/JSAC.2018.2832820
10.1109/LCOMM.2013.080113.130615
10.1109/TVT.2017.2771770
10.4218/etrij.12.0211.0437
10.1109/TBC.2017.2755263
10.1016/j.actaastro.2022.12.018
10.1109/LCOMM.2020.3019437
10.1016/j.comnet.2020.107166
10.1109/LWC.2022.3217316
10.1109/ACCESS.2018.2809581
10.1109/TCOMM.2018.2859326
10.1016/j.comnet.2020.107213
10.1016/j.ejor.2022.03.010
10.1109/TWC.2015.2402682
10.1186/s13638-020-01749-7
10.1109/LCOMM.2018.2844243
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.comnet.2024.110940
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_comnet_2024_110940
S1389128624007722
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
77I
77K
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
PQQKQ
Q38
R2-
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
ZMT
ZY4
~G-
~HD
9DU
AAYXX
CITATION
ID FETCH-LOGICAL-c255t-c048d051d6106c526792c5c0ecf9de416215280f83f01faacb871c5f444939b3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001373606600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1389-1286
IngestDate Sat Nov 29 07:28:31 EST 2025
Sun Oct 19 01:37:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Multibeam satellite system (MSS)
Quality of service (QoS)
Queuing graphical evaluation and review technique (Q-GERT)
Deep reinforcement learning (DRL)
Dynamic resource management (DRM)
System utility
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c255t-c048d051d6106c526792c5c0ecf9de416215280f83f01faacb871c5f444939b3
ORCID 0000-0002-1528-3010
ParticipantIDs crossref_primary_10_1016_j_comnet_2024_110940
elsevier_sciencedirect_doi_10_1016_j_comnet_2024_110940
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationTitle Computer networks (Amsterdam, Netherlands : 1999)
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Luis, Guerster, del Portillo, Crawley, Cameron (b31) 2019
Wei, Yu, Song, Han (b30) 2018; 17
Paris, Del Portillo, Cameron, Crawley (b18) 2019
Chang, Park, Kim, Choi (b36) 2018; 66
Wang, Liu, Pan, Jia (b11) 2013
Zhong, Yin, He, Zhu (b43) 2019; 7
Lei, Vázquez-Castro (b12) 2010
Guidotti, Vanelli-Coralli (b20) 2020; 38
Tao, Su, Javed (b42) 2022; 169
Lin, Tang, Zhang, Yuan, Li, Lv (b1) 2022
J.-T. Camino, C. Artigues, L. Houssin, S. Mourgues, Milp formulation improvement with k-means clustering for the beam layout optimization in multibeam satellite systems, Comput. Ind. Eng. 158 (2021–08) 107228
Efrem, Panagopoulos (b9) 2020; 9
Ferreira, Paffenroth, Wyglinski, Hackett, Bilén, Reinhart, Mortensen (b22) 2018; 36
Li, Lam, Liu, Wang, Zhao, Wang (b7) 2018; 67
Geng, Liu, Fang (b40) 2022; 303
Pritsker (b37) 1966
Zhou, Xie, Gu, Lin, Ieromonachou, Zhang (b38) 2016; 181
Geng, Liu, Fang, Gao (b41) 2021
Park, Kim, Oh, Ku (b14) 2012
Aravanis, B.Shankar, Arapoglou, Danoy, Cottis, Ottersten (b17) 2015; 14
Song, Xing, Wang, Yi, Xiang, Zhang (b19) 2020; 150
Liu, Hu, Wang (b25) 2018; 6
Wang, Liu, Pan, Li (b4) 2014; 2014
Srivastava, Chaturvedi (b6) 2013; 17
Zhang, Jia, Wei, Guo (b21) 2020; 2020
Xu, Zhao, Wang, Zhang (b32) 2023; 204
.
Choi, Chan (b3) 2005; 4
Zhang, Liu, Ma, Wang, Song (b33) 2020; 41
Pacheco, Exposito, Gineste (b35) 2020; 173
Ortiz-Gomez, Tarchi, Martínez, Vanelli-Coralli, Salas-Natera, Landeros-Ayala (b29) 2022; 8
Geng, Liu, Fang, Gao (b39) 2020; 173
Cocco, de Cola, Angelone, Katona, Erl (b16) 2018; 64
Ortiz-Gomez, Tarchi, Martínez, Vanelli-Coralli, Salas-Natera, Landeros-Ayala (b23) 2021; 15
Lin, Ni, Kuang, Jiang, Huang (b34) 2022; 71
Hu, Liu, Chen, Wang, Wang (b24) 2018; 22
Liao, Hu, Liu, Ma, Xu, Li, Wang, Ghannouchi (b27) 2020; 24
Chen, Hu, Li, Wang (b28) 2020
Deng, Wang, Pang, Wang (b13) 2023; 12
Park (b15) 2012; 34
Durand, Abrão (b2) 2017; 78
Seyoum, Shahid, Cho, Kwon (b8) 2023
Destounis, Panagopoulos (b5) 2011; 15
Hu, Liao, Liu, Liu, Ding, Helaoui, Wang, Ghannouchi (b26) 2020; 69
V. Mnih, A.P. Badia, M. Mirza, A. Graves, T.P. Lillicrap, T. Harley, D. Silver, K. Kavukcuoglu, Asynchronous methods for deep reinforcement learning, in: 33rd International Conference on Machine Learning, Vol. 2016, No. 4, ICML, 2016, pp. 2850–2869.
Srivastava (10.1016/j.comnet.2024.110940_b6) 2013; 17
Aravanis (10.1016/j.comnet.2024.110940_b17) 2015; 14
Hu (10.1016/j.comnet.2024.110940_b26) 2020; 69
Ortiz-Gomez (10.1016/j.comnet.2024.110940_b29) 2022; 8
Park (10.1016/j.comnet.2024.110940_b14) 2012
Geng (10.1016/j.comnet.2024.110940_b40) 2022; 303
Zhang (10.1016/j.comnet.2024.110940_b33) 2020; 41
Li (10.1016/j.comnet.2024.110940_b7) 2018; 67
Song (10.1016/j.comnet.2024.110940_b19) 2020; 150
Tao (10.1016/j.comnet.2024.110940_b42) 2022; 169
Park (10.1016/j.comnet.2024.110940_b15) 2012; 34
Zhou (10.1016/j.comnet.2024.110940_b38) 2016; 181
Lin (10.1016/j.comnet.2024.110940_b1) 2022
Xu (10.1016/j.comnet.2024.110940_b32) 2023; 204
Destounis (10.1016/j.comnet.2024.110940_b5) 2011; 15
Liao (10.1016/j.comnet.2024.110940_b27) 2020; 24
Zhong (10.1016/j.comnet.2024.110940_b43) 2019; 7
10.1016/j.comnet.2024.110940_b44
Pritsker (10.1016/j.comnet.2024.110940_b37) 1966
Efrem (10.1016/j.comnet.2024.110940_b9) 2020; 9
Ortiz-Gomez (10.1016/j.comnet.2024.110940_b23) 2021; 15
Zhang (10.1016/j.comnet.2024.110940_b21) 2020; 2020
Seyoum (10.1016/j.comnet.2024.110940_b8) 2023
Wang (10.1016/j.comnet.2024.110940_b11) 2013
Deng (10.1016/j.comnet.2024.110940_b13) 2023; 12
Wei (10.1016/j.comnet.2024.110940_b30) 2018; 17
Cocco (10.1016/j.comnet.2024.110940_b16) 2018; 64
Paris (10.1016/j.comnet.2024.110940_b18) 2019
Geng (10.1016/j.comnet.2024.110940_b39) 2020; 173
Ferreira (10.1016/j.comnet.2024.110940_b22) 2018; 36
Lei (10.1016/j.comnet.2024.110940_b12) 2010
Luis (10.1016/j.comnet.2024.110940_b31) 2019
Liu (10.1016/j.comnet.2024.110940_b25) 2018; 6
Geng (10.1016/j.comnet.2024.110940_b41) 2021
Pacheco (10.1016/j.comnet.2024.110940_b35) 2020; 173
Wang (10.1016/j.comnet.2024.110940_b4) 2014; 2014
10.1016/j.comnet.2024.110940_b10
Lin (10.1016/j.comnet.2024.110940_b34) 2022; 71
Hu (10.1016/j.comnet.2024.110940_b24) 2018; 22
Guidotti (10.1016/j.comnet.2024.110940_b20) 2020; 38
Durand (10.1016/j.comnet.2024.110940_b2) 2017; 78
Chen (10.1016/j.comnet.2024.110940_b28) 2020
Choi (10.1016/j.comnet.2024.110940_b3) 2005; 4
Chang (10.1016/j.comnet.2024.110940_b36) 2018; 66
References_xml – volume: 15
  start-page: 380
  year: 2011
  end-page: 382
  ident: b5
  article-title: Dynamic power allocation for broadband multi-beam satellite communication networks
  publication-title: IEEE Commun. Lett.
– volume: 17
  start-page: 1722
  year: 2013
  end-page: 1725
  ident: b6
  article-title: Flexible and dynamic power allocation in broadband multi-beam satellites
  publication-title: IEEE Commun. Lett.
– volume: 71
  start-page: 3917
  year: 2022
  end-page: 3930
  ident: b34
  article-title: Dynamic beam pattern and bandwidth allocation based on multi-agent deep reinforcement learning for beam hopping satellite systems
  publication-title: IEEE Trans. Veh. Technol.
– volume: 14
  start-page: 3171
  year: 2015
  end-page: 3182
  ident: b17
  article-title: Power allocation in multibeam satellite systems: A two-stage multi-objective optimization
  publication-title: IEEE Trans. Wireless Commun.
– volume: 4
  start-page: 2983
  year: 2005
  end-page: 2993
  ident: b3
  article-title: Optimum power and beam allocation based on traffic demands and channel conditions over satellite downlinks
  publication-title: IEEE Trans. Wireless Commun.
– volume: 150
  year: 2020
  ident: b19
  article-title: A knowledge-based evolutionary algorithm for relay satellite system mission scheduling problem
  publication-title: Comput. Ind. Eng.
– volume: 9
  start-page: 228
  year: 2020
  end-page: 231
  ident: b9
  article-title: Dynamic energy-efficient power allocation in multibeam satellite systems
  publication-title: IEEE Wirel. Commun. Lett.
– start-page: 2794
  year: 2013
  end-page: 2798
  ident: b11
  article-title: Optimal bandwidth allocation for multi-spot-beam satellite communication systems
  publication-title: Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer
– volume: 38
  start-page: 85
  year: 2020
  end-page: 104
  ident: b20
  article-title: Clustering strategies for multicast precoding in multibeam satellite systems
  publication-title: Int. J. Satellite Commun. Network.
– volume: 12
  start-page: 75
  year: 2023
  end-page: 79
  ident: b13
  article-title: Dynamic resource allocation with deep reinforcement learning in multibeam satellite communication
  publication-title: IEEE Wirel. Commun. Lett.
– volume: 64
  start-page: 266
  year: 2018
  end-page: 280
  ident: b16
  article-title: Radio resource management optimization of flexible satellite payloads for dvb-s2 systems
  publication-title: IEEE Trans. Broadcast.
– start-page: 1
  year: 2010
  end-page: 5
  ident: b12
  article-title: Joint power and carrier allocation for the multibeam satellite downlink with individual sinr constraints
  publication-title: 2010 IEEE International Conference on Communications
– volume: 8
  start-page: 335
  year: 2022
  end-page: 349
  ident: b29
  article-title: Cooperative multi-agent deep reinforcement learning for resource management in full flexible vhts systems
  publication-title: IEEE Trans. Cognitive Commun. Netw.
– volume: 41
  start-page: 51
  year: 2020
  end-page: 60
  ident: b33
  article-title: Improved satellite resource allocation algorithm based on drl and mop
  publication-title: J. Commun.
– volume: 2020
  start-page: 133
  year: 2020
  ident: b21
  article-title: User scheduling for multicast transmission in high throughput satellite systems
  publication-title: EURASIP J. Wireless Commun. Networking
– start-page: 1
  year: 2019
  end-page: 15
  ident: b18
  article-title: A genetic algorithm for joint power and bandwidth allocation in multibeam satellite systems
  publication-title: 2019 IEEE Aerospace Conference
– volume: 22
  start-page: 1612
  year: 2018
  end-page: 1615
  ident: b24
  article-title: A deep reinforcement learning-based framework for dynamic resource allocation in multibeam satellite systems
  publication-title: IEEE Commun. Lett.
– volume: 181
  start-page: 315
  year: 2016
  end-page: 324
  ident: b38
  article-title: Forecasting return of used products for remanufacturing using graphical evaluation and review technique (gert)
  publication-title: Int. J. Prod. Econ.
– volume: 173
  year: 2020
  ident: b39
  article-title: An optimal delay routing algorithm considering delay variation in the leo satellite communication network
  publication-title: Comput. Netw.
– reference: J.-T. Camino, C. Artigues, L. Houssin, S. Mourgues, Milp formulation improvement with k-means clustering for the beam layout optimization in multibeam satellite systems, Comput. Ind. Eng. 158 (2021–08) 107228,
– volume: 204
  start-page: 73
  year: 2023
  end-page: 82
  ident: b32
  article-title: A novel deep reinforcement learning architecture for dynamic power and bandwidth allocation in multibeam satellites
  publication-title: Acta Astronaut.
– start-page: 1
  year: 2019
  end-page: 4
  ident: b31
  article-title: Deep reinforcement learning for continuous power allocation in flexible high throughput satellites
  publication-title: 2019 IEEE Cognitive Communications for Aerospace Applications Workshop
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 8
  ident: b4
  article-title: Optimization of power allocation for a multibeam satellite communication system with interbeam interference
  publication-title: J. Appl. Math.
– volume: 7
  start-page: 6435
  year: 2019
  end-page: 6449
  ident: b43
  article-title: Joint transmit power and bandwidth allocation for cognitive satellite network based on bargaining game theory
  publication-title: IEEE Access
– volume: 24
  start-page: 2785
  year: 2020
  end-page: 2789
  ident: b27
  article-title: Distributed intelligence: A verification for multi-agent drl-based multibeam satellite resource allocation
  publication-title: IEEE Commun. Lett.
– volume: 6
  start-page: 15733
  year: 2018
  end-page: 15742
  ident: b25
  article-title: Deep reinforcement learning based dynamic channel allocation algorithm in multibeam satellite systems
  publication-title: IEEE Access
– year: 2021
  ident: b41
  article-title: A reliable framework for satellite networks achieving energy requirements, 216
– year: 1966
  ident: b37
  article-title: GERT-graphical evaluation and review technique
– volume: 169
  year: 2022
  ident: b42
  article-title: Time-cost trade-off model in gert-type network with characteristic function for project management
  publication-title: Comput. Ind. Eng.
– volume: 69
  start-page: 9849
  year: 2020
  end-page: 9865
  ident: b26
  article-title: Multi-agent deep reinforcement learning-based flexible satellite payload for mobile terminals
  publication-title: IEEE Trans. Veh. Technol.
– start-page: 655
  year: 2020
  end-page: 659
  ident: b28
  article-title: Optimum power allocation based on traffic matching service for multi-beam satellite system
  publication-title: 2020 5th International Conference on Computer and Communication Systems
– volume: 173
  year: 2020
  ident: b35
  article-title: A framework to classify heterogeneous internet traffic with machine learning and deep learning techniques for satellite communications
  publication-title: Comput. Netw.
– reference: .
– volume: 15
  start-page: 4675
  year: 2021
  end-page: 4686
  ident: b23
  article-title: Convolutional neural networks for flexible payload management in vhts systems
  publication-title: IEEE Syst. J.
– reference: V. Mnih, A.P. Badia, M. Mirza, A. Graves, T.P. Lillicrap, T. Harley, D. Silver, K. Kavukcuoglu, Asynchronous methods for deep reinforcement learning, in: 33rd International Conference on Machine Learning, Vol. 2016, No. 4, ICML, 2016, pp. 2850–2869.
– volume: 78
  start-page: 124
  year: 2017
  end-page: 133
  ident: b2
  article-title: Power allocation in multibeam satellites based on particle swarm optimization
  publication-title: AEU - Int. J. Electron. Commun.
– volume: 303
  start-page: 719
  year: 2022
  end-page: 734
  ident: b40
  article-title: An agent-based algorithm for dynamic routing in service networks
  publication-title: European J. Oper. Res.
– volume: 36
  start-page: 1030
  year: 2018
  end-page: 1041
  ident: b22
  article-title: Multiobjective reinforcement learning for cognitive satellite communications using deep neural network ensembles
  publication-title: IEEE J. Sel. Areas Commun.
– start-page: 604
  year: 2022
  end-page: 609
  ident: b1
  article-title: Multi-resource optimal scheduling method for satellite communication based on improved adaptive genetic algorithm
  publication-title: 2022 7th International Conference on Computer and Communication Systems
– volume: 67
  start-page: 2398
  year: 2018
  end-page: 2408
  ident: b7
  article-title: Joint pricing and power allocation for multibeam satellite systems with dynamic game model
  publication-title: IEEE Trans. Veh. Technol.
– year: 2023
  ident: b8
  article-title: Distributed load balancing algorithm considering qos for next generation multi-rat hetnets 229
– volume: 34
  start-page: 613
  year: 2012
  end-page: 616
  ident: b15
  article-title: A dynamic bandwidth allocation scheme for a multi-spot-beam satellite system
  publication-title: ETRI J.
– volume: 66
  start-page: 5828
  year: 2018
  end-page: 5843
  ident: b36
  article-title: Study on coverage of full frequency reuse in ffr systems based on outage probability
  publication-title: IEEE Trans. Commun.
– start-page: 1
  year: 2012
  end-page: 5
  ident: b14
  article-title: Flexible bandwidth allocation scheme based on traffic demands and channel conditions for multi-beam satellite systems
  publication-title: 2012 IEEE Vehicular Technology Conference (VTC Fall)
– volume: 17
  start-page: 680
  year: 2018
  end-page: 692
  ident: b30
  article-title: User scheduling and resource allocation in hetnets with hybrid energy supply: An actor-critic reinforcement learning approach
  publication-title: IEEE Trans. Wireless Commun.
– volume: 9
  start-page: 228
  issue: 2
  year: 2020
  ident: 10.1016/j.comnet.2024.110940_b9
  article-title: Dynamic energy-efficient power allocation in multibeam satellite systems
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2019.2949277
– ident: 10.1016/j.comnet.2024.110940_b10
  doi: 10.1016/j.cie.2021.107228
– volume: 4
  start-page: 2983
  issue: 6
  year: 2005
  ident: 10.1016/j.comnet.2024.110940_b3
  article-title: Optimum power and beam allocation based on traffic demands and channel conditions over satellite downlinks
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2005.858365
– start-page: 1
  year: 2012
  ident: 10.1016/j.comnet.2024.110940_b14
  article-title: Flexible bandwidth allocation scheme based on traffic demands and channel conditions for multi-beam satellite systems
– ident: 10.1016/j.comnet.2024.110940_b44
– volume: 69
  start-page: 9849
  issue: 9
  year: 2020
  ident: 10.1016/j.comnet.2024.110940_b26
  article-title: Multi-agent deep reinforcement learning-based flexible satellite payload for mobile terminals
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3002983
– start-page: 1
  year: 2010
  ident: 10.1016/j.comnet.2024.110940_b12
  article-title: Joint power and carrier allocation for the multibeam satellite downlink with individual sinr constraints
– volume: 169
  year: 2022
  ident: 10.1016/j.comnet.2024.110940_b42
  article-title: Time-cost trade-off model in gert-type network with characteristic function for project management
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2022.108222
– volume: 71
  start-page: 3917
  issue: 4
  year: 2022
  ident: 10.1016/j.comnet.2024.110940_b34
  article-title: Dynamic beam pattern and bandwidth allocation based on multi-agent deep reinforcement learning for beam hopping satellite systems
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2022.3145848
– volume: 181
  start-page: 315
  year: 2016
  ident: 10.1016/j.comnet.2024.110940_b38
  article-title: Forecasting return of used products for remanufacturing using graphical evaluation and review technique (gert)
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2016.04.016
– volume: 41
  start-page: 51
  issue: 6
  year: 2020
  ident: 10.1016/j.comnet.2024.110940_b33
  article-title: Improved satellite resource allocation algorithm based on drl and mop
  publication-title: J. Commun.
– volume: 38
  start-page: 85
  issue: 2
  year: 2020
  ident: 10.1016/j.comnet.2024.110940_b20
  article-title: Clustering strategies for multicast precoding in multibeam satellite systems
  publication-title: Int. J. Satellite Commun. Network.
  doi: 10.1002/sat.1312
– start-page: 1
  year: 2019
  ident: 10.1016/j.comnet.2024.110940_b31
  article-title: Deep reinforcement learning for continuous power allocation in flexible high throughput satellites
– volume: 78
  start-page: 124
  year: 2017
  ident: 10.1016/j.comnet.2024.110940_b2
  article-title: Power allocation in multibeam satellites based on particle swarm optimization
  publication-title: AEU - Int. J. Electron. Commun.
  doi: 10.1016/j.aeue.2017.05.012
– start-page: 604
  year: 2022
  ident: 10.1016/j.comnet.2024.110940_b1
  article-title: Multi-resource optimal scheduling method for satellite communication based on improved adaptive genetic algorithm
– volume: 150
  year: 2020
  ident: 10.1016/j.comnet.2024.110940_b19
  article-title: A knowledge-based evolutionary algorithm for relay satellite system mission scheduling problem
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106830
– volume: 7
  start-page: 6435
  year: 2019
  ident: 10.1016/j.comnet.2024.110940_b43
  article-title: Joint transmit power and bandwidth allocation for cognitive satellite network based on bargaining game theory
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2886284
– start-page: 1
  year: 2019
  ident: 10.1016/j.comnet.2024.110940_b18
  article-title: A genetic algorithm for joint power and bandwidth allocation in multibeam satellite systems
– volume: 8
  start-page: 335
  issue: 1
  year: 2022
  ident: 10.1016/j.comnet.2024.110940_b29
  article-title: Cooperative multi-agent deep reinforcement learning for resource management in full flexible vhts systems
  publication-title: IEEE Trans. Cognitive Commun. Netw.
  doi: 10.1109/TCCN.2021.3087586
– start-page: 655
  year: 2020
  ident: 10.1016/j.comnet.2024.110940_b28
  article-title: Optimum power allocation based on traffic matching service for multi-beam satellite system
– volume: 17
  start-page: 680
  issue: 1
  year: 2018
  ident: 10.1016/j.comnet.2024.110940_b30
  article-title: User scheduling and resource allocation in hetnets with hybrid energy supply: An actor-critic reinforcement learning approach
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2017.2769644
– volume: 15
  start-page: 4675
  issue: 3
  year: 2021
  ident: 10.1016/j.comnet.2024.110940_b23
  article-title: Convolutional neural networks for flexible payload management in vhts systems
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2020.3020038
– start-page: 2794
  year: 2013
  ident: 10.1016/j.comnet.2024.110940_b11
  article-title: Optimal bandwidth allocation for multi-spot-beam satellite communication systems
– volume: 15
  start-page: 380
  issue: 4
  year: 2011
  ident: 10.1016/j.comnet.2024.110940_b5
  article-title: Dynamic power allocation for broadband multi-beam satellite communication networks
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2011.020111.102201
– year: 1966
  ident: 10.1016/j.comnet.2024.110940_b37
– volume: 36
  start-page: 1030
  issue: 5
  year: 2018
  ident: 10.1016/j.comnet.2024.110940_b22
  article-title: Multiobjective reinforcement learning for cognitive satellite communications using deep neural network ensembles
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2018.2832820
– volume: 2014
  start-page: 1
  year: 2014
  ident: 10.1016/j.comnet.2024.110940_b4
  article-title: Optimization of power allocation for a multibeam satellite communication system with interbeam interference
  publication-title: J. Appl. Math.
– volume: 17
  start-page: 1722
  issue: 9
  year: 2013
  ident: 10.1016/j.comnet.2024.110940_b6
  article-title: Flexible and dynamic power allocation in broadband multi-beam satellites
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2013.080113.130615
– volume: 67
  start-page: 2398
  issue: 3
  year: 2018
  ident: 10.1016/j.comnet.2024.110940_b7
  article-title: Joint pricing and power allocation for multibeam satellite systems with dynamic game model
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2017.2771770
– volume: 34
  start-page: 613
  issue: 4
  year: 2012
  ident: 10.1016/j.comnet.2024.110940_b15
  article-title: A dynamic bandwidth allocation scheme for a multi-spot-beam satellite system
  publication-title: ETRI J.
  doi: 10.4218/etrij.12.0211.0437
– volume: 64
  start-page: 266
  issue: 2
  year: 2018
  ident: 10.1016/j.comnet.2024.110940_b16
  article-title: Radio resource management optimization of flexible satellite payloads for dvb-s2 systems
  publication-title: IEEE Trans. Broadcast.
  doi: 10.1109/TBC.2017.2755263
– volume: 204
  start-page: 73
  year: 2023
  ident: 10.1016/j.comnet.2024.110940_b32
  article-title: A novel deep reinforcement learning architecture for dynamic power and bandwidth allocation in multibeam satellites
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2022.12.018
– volume: 24
  start-page: 2785
  issue: 12
  year: 2020
  ident: 10.1016/j.comnet.2024.110940_b27
  article-title: Distributed intelligence: A verification for multi-agent drl-based multibeam satellite resource allocation
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2020.3019437
– volume: 173
  year: 2020
  ident: 10.1016/j.comnet.2024.110940_b39
  article-title: An optimal delay routing algorithm considering delay variation in the leo satellite communication network
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2020.107166
– volume: 12
  start-page: 75
  issue: 1
  year: 2023
  ident: 10.1016/j.comnet.2024.110940_b13
  article-title: Dynamic resource allocation with deep reinforcement learning in multibeam satellite communication
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2022.3217316
– volume: 6
  start-page: 15733
  year: 2018
  ident: 10.1016/j.comnet.2024.110940_b25
  article-title: Deep reinforcement learning based dynamic channel allocation algorithm in multibeam satellite systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2809581
– volume: 66
  start-page: 5828
  issue: 11
  year: 2018
  ident: 10.1016/j.comnet.2024.110940_b36
  article-title: Study on coverage of full frequency reuse in ffr systems based on outage probability
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2018.2859326
– volume: 173
  year: 2020
  ident: 10.1016/j.comnet.2024.110940_b35
  article-title: A framework to classify heterogeneous internet traffic with machine learning and deep learning techniques for satellite communications
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2020.107213
– volume: 303
  start-page: 719
  issue: 2
  year: 2022
  ident: 10.1016/j.comnet.2024.110940_b40
  article-title: An agent-based algorithm for dynamic routing in service networks
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2022.03.010
– volume: 14
  start-page: 3171
  issue: 6
  year: 2015
  ident: 10.1016/j.comnet.2024.110940_b17
  article-title: Power allocation in multibeam satellite systems: A two-stage multi-objective optimization
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2015.2402682
– year: 2023
  ident: 10.1016/j.comnet.2024.110940_b8
– volume: 2020
  start-page: 133
  issue: 1
  year: 2020
  ident: 10.1016/j.comnet.2024.110940_b21
  article-title: User scheduling for multicast transmission in high throughput satellite systems
  publication-title: EURASIP J. Wireless Commun. Networking
  doi: 10.1186/s13638-020-01749-7
– volume: 22
  start-page: 1612
  issue: 8
  year: 2018
  ident: 10.1016/j.comnet.2024.110940_b24
  article-title: A deep reinforcement learning-based framework for dynamic resource allocation in multibeam satellite systems
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2018.2844243
– year: 2021
  ident: 10.1016/j.comnet.2024.110940_b41
SSID ssj0004428
Score 2.4410057
Snippet With the evolution and popularity of smart devices, the demand and requirement (e.g., communication, file transfer) of satellite users have increased rapidly....
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 110940
SubjectTerms Deep reinforcement learning (DRL)
Dynamic resource management (DRM)
Multibeam satellite system (MSS)
Quality of service (QoS)
Queuing graphical evaluation and review technique (Q-GERT)
System utility
Title A DRL-based RAQ-GERT dynamic resource allocation algorithm considering utility for multibeam satellite system
URI https://dx.doi.org/10.1016/j.comnet.2024.110940
Volume 257
WOSCitedRecordID wos001373606600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1389-1286
  databaseCode: AIEXJ
  dateStart: 19990114
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004428
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb5wwELa2mx7aQ9Wnmr7kQ2_IEQsY4yNqty9VUbtC6qoXZBuTTZRlow0bpb-pf7JjbANtqqg59IIQAmM8n2bGw8w3CL0GoyZFFXGiJOewQUkFEYIxoqO0Tiif1WFsm02ww8NsueRfJpOfvhbm4pQ1TXZ5yc_-q6jhGgjblM7eQNz9oHABzkHocASxw_GfBJ8HbxefibFOVbDIv5L380URVLbxfLB10frA_G-30To4Pdpsj9vV2qSgd907TfgAZth56CYNscs6lFqsg3PRMXi22lFAj31b3yAiaGxqeRfPzdeGiaFysBuqi10ogvNRKOLbrovFrnbCmdOOJNIqo-8rQxt6NKBQ2GQBWPnVUM1WiI0NNMBTPxzuXUgjoj4LutfC4EURMJzpWE1HlsjaKVpDlGp5nq7YABuOODEihO89gBckB8Ptv1Nu_2EK-wRFn_t2UtpRSjNKaUe5hfYiRnk2RXv5x_ny01CGm3StfPvZ-0rNLp3w6mz-7gmNvJviPrrntiU4t3B6gCa6eYjujsgqH6F1jntgYQ8s7ICFPbDwACzcAwuPgIUdsDAAC_fAwj2wsAXWY1S8mxdvPhDXrIMo2JW2RIEpqEDDV-CPp4pGKeORoirUquaVBrffNFDOwjqL63BWC6EkbNUVrZMk4TGX8RM0bTaNfoqwpGFNE8MkV7EkklLqWlcRVTOlmIqZ3EfEr1t5ZilZyuvktY-YX9zSuZXWXSwBMdc--eyGb3qO7gxwfoGm7XanX6Lb6qI9Pt--cnD5BcOanAA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+DRL-based+RAQ-GERT+dynamic+resource+allocation+algorithm+considering+utility+for+multibeam+satellite+system&rft.jtitle=Computer+networks+%28Amsterdam%2C+Netherlands+%3A+1999%29&rft.au=Wu%2C+Shuang&rft.au=Fang%2C+Zhigeng&rft.au=Hua%2C+Chenchen&rft.au=Tao%2C+Liangyan&rft.date=2025-02-01&rft.issn=1389-1286&rft.volume=257&rft.spage=110940&rft_id=info:doi/10.1016%2Fj.comnet.2024.110940&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_comnet_2024_110940
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-1286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-1286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-1286&client=summon