A DRL-based RAQ-GERT dynamic resource allocation algorithm considering utility for multibeam satellite system
With the evolution and popularity of smart devices, the demand and requirement (e.g., communication, file transfer) of satellite users have increased rapidly. Moreover, users have different preferences for services and the quality of service (QoS), like delay and throughput, which leads to user hete...
Uloženo v:
| Vydáno v: | Computer networks (Amsterdam, Netherlands : 1999) Ročník 257; s. 110940 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.02.2025
|
| Témata: | |
| ISSN: | 1389-1286 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | With the evolution and popularity of smart devices, the demand and requirement (e.g., communication, file transfer) of satellite users have increased rapidly. Moreover, users have different preferences for services and the quality of service (QoS), like delay and throughput, which leads to user heterogeneity. Facing numerous, time-varying, and heterogeneous users, how to dynamically allocate limited spectrum and on-board power while satisfying user requirements is the major challenge for the multibeam satellite system (MSS). Aiming to seek a solution, firstly, the resource allocation queue graphical evaluation and review technique (RAQ-GERT) network is constructed to describe the service process of the MSS, as well as to compute the channel condition parameters during the whole process. Next, appropriate QoS indicators are selected based on user requirements. Then, QoS indicators are calculated from the results of the RAQ-GERT network, which are combined to form the optimization objective of the MSS by drawing on the Cobb–Douglas utility function. After that, guided by the utility of the MSS, the proximal policy optimization (PPO) algorithm is applied to explore the optimal resource allocation scheme in this heterogeneous user scenario. Finally, the simulation comparisons show that the proposed scheme has enhancements in several performances, up to 42.19 % in service rate, 53.58 % in system capacity, and 3.42 % in throughput with minimal increase in latency. |
|---|---|
| AbstractList | With the evolution and popularity of smart devices, the demand and requirement (e.g., communication, file transfer) of satellite users have increased rapidly. Moreover, users have different preferences for services and the quality of service (QoS), like delay and throughput, which leads to user heterogeneity. Facing numerous, time-varying, and heterogeneous users, how to dynamically allocate limited spectrum and on-board power while satisfying user requirements is the major challenge for the multibeam satellite system (MSS). Aiming to seek a solution, firstly, the resource allocation queue graphical evaluation and review technique (RAQ-GERT) network is constructed to describe the service process of the MSS, as well as to compute the channel condition parameters during the whole process. Next, appropriate QoS indicators are selected based on user requirements. Then, QoS indicators are calculated from the results of the RAQ-GERT network, which are combined to form the optimization objective of the MSS by drawing on the Cobb–Douglas utility function. After that, guided by the utility of the MSS, the proximal policy optimization (PPO) algorithm is applied to explore the optimal resource allocation scheme in this heterogeneous user scenario. Finally, the simulation comparisons show that the proposed scheme has enhancements in several performances, up to 42.19 % in service rate, 53.58 % in system capacity, and 3.42 % in throughput with minimal increase in latency. |
| ArticleNumber | 110940 |
| Author | Hua, Chenchen Fang, Zhigeng Zhang, Jingru Wu, Shuang Tao, Liangyan |
| Author_xml | – sequence: 1 givenname: Shuang surname: Wu fullname: Wu, Shuang – sequence: 2 givenname: Zhigeng surname: Fang fullname: Fang, Zhigeng – sequence: 3 givenname: Chenchen orcidid: 0000-0002-1528-3010 surname: Hua fullname: Hua, Chenchen – sequence: 4 givenname: Liangyan surname: Tao fullname: Tao, Liangyan email: lytao@nuaa.edu.cn – sequence: 5 givenname: Jingru surname: Zhang fullname: Zhang, Jingru |
| BookMark | eNp9kE1qwzAUhLVIoUnaG3ShC9iVZNmxN4WQpj8QKA3ZC_npKVWwrSIpBd--Dum6qxkGZhi-BZkNfkBCHjjLOePV4ykH3w-YcsGEzDlnjWQzMudF3WRc1NUtWcR4YoxJKeo56df0eb_LWh3R0P36M3vd7g_UjIPuHdCA0Z8DINVd50En54fJHn1w6aun4IfoDAY3HOk5uc6lkVofaH_ukmtR9zTqhN2UI41jTNjfkRuru4j3f7okh5ftYfOW7T5e3zfrXQaiLFMGTNaGldxUnFVQimrVCCiBIdjGoOSV4KWoma0Ly7jVGtp6xaG0UsqmaNpiSeR1FoKPMaBV38H1OoyKM3WhpE7qSkldKKkrpan2dK3hdO3HYVARHA6AxgWEpIx3_w_8AnYFd2A |
| Cites_doi | 10.1109/LWC.2019.2949277 10.1016/j.cie.2021.107228 10.1109/TWC.2005.858365 10.1109/TVT.2020.3002983 10.1016/j.cie.2022.108222 10.1109/TVT.2022.3145848 10.1016/j.ijpe.2016.04.016 10.1002/sat.1312 10.1016/j.aeue.2017.05.012 10.1016/j.cie.2020.106830 10.1109/ACCESS.2018.2886284 10.1109/TCCN.2021.3087586 10.1109/TWC.2017.2769644 10.1109/JSYST.2020.3020038 10.1109/LCOMM.2011.020111.102201 10.1109/JSAC.2018.2832820 10.1109/LCOMM.2013.080113.130615 10.1109/TVT.2017.2771770 10.4218/etrij.12.0211.0437 10.1109/TBC.2017.2755263 10.1016/j.actaastro.2022.12.018 10.1109/LCOMM.2020.3019437 10.1016/j.comnet.2020.107166 10.1109/LWC.2022.3217316 10.1109/ACCESS.2018.2809581 10.1109/TCOMM.2018.2859326 10.1016/j.comnet.2020.107213 10.1016/j.ejor.2022.03.010 10.1109/TWC.2015.2402682 10.1186/s13638-020-01749-7 10.1109/LCOMM.2018.2844243 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.comnet.2024.110940 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_comnet_2024_110940 S1389128624007722 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 77I 77K 8P~ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABXDB ACDAQ ACGFS ACLOT ACNNM ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F0J FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 PC. PQQKQ Q38 R2- ROL RPZ RXW SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 ZMT ZY4 ~G- ~HD 9DU AAYXX CITATION |
| ID | FETCH-LOGICAL-c255t-c048d051d6106c526792c5c0ecf9de416215280f83f01faacb871c5f444939b3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001373606600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1389-1286 |
| IngestDate | Sat Nov 29 07:28:31 EST 2025 Sun Oct 19 01:37:39 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multibeam satellite system (MSS) Quality of service (QoS) Queuing graphical evaluation and review technique (Q-GERT) Deep reinforcement learning (DRL) Dynamic resource management (DRM) System utility |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c255t-c048d051d6106c526792c5c0ecf9de416215280f83f01faacb871c5f444939b3 |
| ORCID | 0000-0002-1528-3010 |
| ParticipantIDs | crossref_primary_10_1016_j_comnet_2024_110940 elsevier_sciencedirect_doi_10_1016_j_comnet_2024_110940 |
| PublicationCentury | 2000 |
| PublicationDate | February 2025 2025-02-00 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Computer networks (Amsterdam, Netherlands : 1999) |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Luis, Guerster, del Portillo, Crawley, Cameron (b31) 2019 Wei, Yu, Song, Han (b30) 2018; 17 Paris, Del Portillo, Cameron, Crawley (b18) 2019 Chang, Park, Kim, Choi (b36) 2018; 66 Wang, Liu, Pan, Jia (b11) 2013 Zhong, Yin, He, Zhu (b43) 2019; 7 Lei, Vázquez-Castro (b12) 2010 Guidotti, Vanelli-Coralli (b20) 2020; 38 Tao, Su, Javed (b42) 2022; 169 Lin, Tang, Zhang, Yuan, Li, Lv (b1) 2022 J.-T. Camino, C. Artigues, L. Houssin, S. Mourgues, Milp formulation improvement with k-means clustering for the beam layout optimization in multibeam satellite systems, Comput. Ind. Eng. 158 (2021–08) 107228 Efrem, Panagopoulos (b9) 2020; 9 Ferreira, Paffenroth, Wyglinski, Hackett, Bilén, Reinhart, Mortensen (b22) 2018; 36 Li, Lam, Liu, Wang, Zhao, Wang (b7) 2018; 67 Geng, Liu, Fang (b40) 2022; 303 Pritsker (b37) 1966 Zhou, Xie, Gu, Lin, Ieromonachou, Zhang (b38) 2016; 181 Geng, Liu, Fang, Gao (b41) 2021 Park, Kim, Oh, Ku (b14) 2012 Aravanis, B.Shankar, Arapoglou, Danoy, Cottis, Ottersten (b17) 2015; 14 Song, Xing, Wang, Yi, Xiang, Zhang (b19) 2020; 150 Liu, Hu, Wang (b25) 2018; 6 Wang, Liu, Pan, Li (b4) 2014; 2014 Srivastava, Chaturvedi (b6) 2013; 17 Zhang, Jia, Wei, Guo (b21) 2020; 2020 Xu, Zhao, Wang, Zhang (b32) 2023; 204 . Choi, Chan (b3) 2005; 4 Zhang, Liu, Ma, Wang, Song (b33) 2020; 41 Pacheco, Exposito, Gineste (b35) 2020; 173 Ortiz-Gomez, Tarchi, Martínez, Vanelli-Coralli, Salas-Natera, Landeros-Ayala (b29) 2022; 8 Geng, Liu, Fang, Gao (b39) 2020; 173 Cocco, de Cola, Angelone, Katona, Erl (b16) 2018; 64 Ortiz-Gomez, Tarchi, Martínez, Vanelli-Coralli, Salas-Natera, Landeros-Ayala (b23) 2021; 15 Lin, Ni, Kuang, Jiang, Huang (b34) 2022; 71 Hu, Liu, Chen, Wang, Wang (b24) 2018; 22 Liao, Hu, Liu, Ma, Xu, Li, Wang, Ghannouchi (b27) 2020; 24 Chen, Hu, Li, Wang (b28) 2020 Deng, Wang, Pang, Wang (b13) 2023; 12 Park (b15) 2012; 34 Durand, Abrão (b2) 2017; 78 Seyoum, Shahid, Cho, Kwon (b8) 2023 Destounis, Panagopoulos (b5) 2011; 15 Hu, Liao, Liu, Liu, Ding, Helaoui, Wang, Ghannouchi (b26) 2020; 69 V. Mnih, A.P. Badia, M. Mirza, A. Graves, T.P. Lillicrap, T. Harley, D. Silver, K. Kavukcuoglu, Asynchronous methods for deep reinforcement learning, in: 33rd International Conference on Machine Learning, Vol. 2016, No. 4, ICML, 2016, pp. 2850–2869. Srivastava (10.1016/j.comnet.2024.110940_b6) 2013; 17 Aravanis (10.1016/j.comnet.2024.110940_b17) 2015; 14 Hu (10.1016/j.comnet.2024.110940_b26) 2020; 69 Ortiz-Gomez (10.1016/j.comnet.2024.110940_b29) 2022; 8 Park (10.1016/j.comnet.2024.110940_b14) 2012 Geng (10.1016/j.comnet.2024.110940_b40) 2022; 303 Zhang (10.1016/j.comnet.2024.110940_b33) 2020; 41 Li (10.1016/j.comnet.2024.110940_b7) 2018; 67 Song (10.1016/j.comnet.2024.110940_b19) 2020; 150 Tao (10.1016/j.comnet.2024.110940_b42) 2022; 169 Park (10.1016/j.comnet.2024.110940_b15) 2012; 34 Zhou (10.1016/j.comnet.2024.110940_b38) 2016; 181 Lin (10.1016/j.comnet.2024.110940_b1) 2022 Xu (10.1016/j.comnet.2024.110940_b32) 2023; 204 Destounis (10.1016/j.comnet.2024.110940_b5) 2011; 15 Liao (10.1016/j.comnet.2024.110940_b27) 2020; 24 Zhong (10.1016/j.comnet.2024.110940_b43) 2019; 7 10.1016/j.comnet.2024.110940_b44 Pritsker (10.1016/j.comnet.2024.110940_b37) 1966 Efrem (10.1016/j.comnet.2024.110940_b9) 2020; 9 Ortiz-Gomez (10.1016/j.comnet.2024.110940_b23) 2021; 15 Zhang (10.1016/j.comnet.2024.110940_b21) 2020; 2020 Seyoum (10.1016/j.comnet.2024.110940_b8) 2023 Wang (10.1016/j.comnet.2024.110940_b11) 2013 Deng (10.1016/j.comnet.2024.110940_b13) 2023; 12 Wei (10.1016/j.comnet.2024.110940_b30) 2018; 17 Cocco (10.1016/j.comnet.2024.110940_b16) 2018; 64 Paris (10.1016/j.comnet.2024.110940_b18) 2019 Geng (10.1016/j.comnet.2024.110940_b39) 2020; 173 Ferreira (10.1016/j.comnet.2024.110940_b22) 2018; 36 Lei (10.1016/j.comnet.2024.110940_b12) 2010 Luis (10.1016/j.comnet.2024.110940_b31) 2019 Liu (10.1016/j.comnet.2024.110940_b25) 2018; 6 Geng (10.1016/j.comnet.2024.110940_b41) 2021 Pacheco (10.1016/j.comnet.2024.110940_b35) 2020; 173 Wang (10.1016/j.comnet.2024.110940_b4) 2014; 2014 10.1016/j.comnet.2024.110940_b10 Lin (10.1016/j.comnet.2024.110940_b34) 2022; 71 Hu (10.1016/j.comnet.2024.110940_b24) 2018; 22 Guidotti (10.1016/j.comnet.2024.110940_b20) 2020; 38 Durand (10.1016/j.comnet.2024.110940_b2) 2017; 78 Chen (10.1016/j.comnet.2024.110940_b28) 2020 Choi (10.1016/j.comnet.2024.110940_b3) 2005; 4 Chang (10.1016/j.comnet.2024.110940_b36) 2018; 66 |
| References_xml | – volume: 15 start-page: 380 year: 2011 end-page: 382 ident: b5 article-title: Dynamic power allocation for broadband multi-beam satellite communication networks publication-title: IEEE Commun. Lett. – volume: 17 start-page: 1722 year: 2013 end-page: 1725 ident: b6 article-title: Flexible and dynamic power allocation in broadband multi-beam satellites publication-title: IEEE Commun. Lett. – volume: 71 start-page: 3917 year: 2022 end-page: 3930 ident: b34 article-title: Dynamic beam pattern and bandwidth allocation based on multi-agent deep reinforcement learning for beam hopping satellite systems publication-title: IEEE Trans. Veh. Technol. – volume: 14 start-page: 3171 year: 2015 end-page: 3182 ident: b17 article-title: Power allocation in multibeam satellite systems: A two-stage multi-objective optimization publication-title: IEEE Trans. Wireless Commun. – volume: 4 start-page: 2983 year: 2005 end-page: 2993 ident: b3 article-title: Optimum power and beam allocation based on traffic demands and channel conditions over satellite downlinks publication-title: IEEE Trans. Wireless Commun. – volume: 150 year: 2020 ident: b19 article-title: A knowledge-based evolutionary algorithm for relay satellite system mission scheduling problem publication-title: Comput. Ind. Eng. – volume: 9 start-page: 228 year: 2020 end-page: 231 ident: b9 article-title: Dynamic energy-efficient power allocation in multibeam satellite systems publication-title: IEEE Wirel. Commun. Lett. – start-page: 2794 year: 2013 end-page: 2798 ident: b11 article-title: Optimal bandwidth allocation for multi-spot-beam satellite communication systems publication-title: Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer – volume: 38 start-page: 85 year: 2020 end-page: 104 ident: b20 article-title: Clustering strategies for multicast precoding in multibeam satellite systems publication-title: Int. J. Satellite Commun. Network. – volume: 12 start-page: 75 year: 2023 end-page: 79 ident: b13 article-title: Dynamic resource allocation with deep reinforcement learning in multibeam satellite communication publication-title: IEEE Wirel. Commun. Lett. – volume: 64 start-page: 266 year: 2018 end-page: 280 ident: b16 article-title: Radio resource management optimization of flexible satellite payloads for dvb-s2 systems publication-title: IEEE Trans. Broadcast. – start-page: 1 year: 2010 end-page: 5 ident: b12 article-title: Joint power and carrier allocation for the multibeam satellite downlink with individual sinr constraints publication-title: 2010 IEEE International Conference on Communications – volume: 8 start-page: 335 year: 2022 end-page: 349 ident: b29 article-title: Cooperative multi-agent deep reinforcement learning for resource management in full flexible vhts systems publication-title: IEEE Trans. Cognitive Commun. Netw. – volume: 41 start-page: 51 year: 2020 end-page: 60 ident: b33 article-title: Improved satellite resource allocation algorithm based on drl and mop publication-title: J. Commun. – volume: 2020 start-page: 133 year: 2020 ident: b21 article-title: User scheduling for multicast transmission in high throughput satellite systems publication-title: EURASIP J. Wireless Commun. Networking – start-page: 1 year: 2019 end-page: 15 ident: b18 article-title: A genetic algorithm for joint power and bandwidth allocation in multibeam satellite systems publication-title: 2019 IEEE Aerospace Conference – volume: 22 start-page: 1612 year: 2018 end-page: 1615 ident: b24 article-title: A deep reinforcement learning-based framework for dynamic resource allocation in multibeam satellite systems publication-title: IEEE Commun. Lett. – volume: 181 start-page: 315 year: 2016 end-page: 324 ident: b38 article-title: Forecasting return of used products for remanufacturing using graphical evaluation and review technique (gert) publication-title: Int. J. Prod. Econ. – volume: 173 year: 2020 ident: b39 article-title: An optimal delay routing algorithm considering delay variation in the leo satellite communication network publication-title: Comput. Netw. – reference: J.-T. Camino, C. Artigues, L. Houssin, S. Mourgues, Milp formulation improvement with k-means clustering for the beam layout optimization in multibeam satellite systems, Comput. Ind. Eng. 158 (2021–08) 107228, – volume: 204 start-page: 73 year: 2023 end-page: 82 ident: b32 article-title: A novel deep reinforcement learning architecture for dynamic power and bandwidth allocation in multibeam satellites publication-title: Acta Astronaut. – start-page: 1 year: 2019 end-page: 4 ident: b31 article-title: Deep reinforcement learning for continuous power allocation in flexible high throughput satellites publication-title: 2019 IEEE Cognitive Communications for Aerospace Applications Workshop – volume: 2014 start-page: 1 year: 2014 end-page: 8 ident: b4 article-title: Optimization of power allocation for a multibeam satellite communication system with interbeam interference publication-title: J. Appl. Math. – volume: 7 start-page: 6435 year: 2019 end-page: 6449 ident: b43 article-title: Joint transmit power and bandwidth allocation for cognitive satellite network based on bargaining game theory publication-title: IEEE Access – volume: 24 start-page: 2785 year: 2020 end-page: 2789 ident: b27 article-title: Distributed intelligence: A verification for multi-agent drl-based multibeam satellite resource allocation publication-title: IEEE Commun. Lett. – volume: 6 start-page: 15733 year: 2018 end-page: 15742 ident: b25 article-title: Deep reinforcement learning based dynamic channel allocation algorithm in multibeam satellite systems publication-title: IEEE Access – year: 2021 ident: b41 article-title: A reliable framework for satellite networks achieving energy requirements, 216 – year: 1966 ident: b37 article-title: GERT-graphical evaluation and review technique – volume: 169 year: 2022 ident: b42 article-title: Time-cost trade-off model in gert-type network with characteristic function for project management publication-title: Comput. Ind. Eng. – volume: 69 start-page: 9849 year: 2020 end-page: 9865 ident: b26 article-title: Multi-agent deep reinforcement learning-based flexible satellite payload for mobile terminals publication-title: IEEE Trans. Veh. Technol. – start-page: 655 year: 2020 end-page: 659 ident: b28 article-title: Optimum power allocation based on traffic matching service for multi-beam satellite system publication-title: 2020 5th International Conference on Computer and Communication Systems – volume: 173 year: 2020 ident: b35 article-title: A framework to classify heterogeneous internet traffic with machine learning and deep learning techniques for satellite communications publication-title: Comput. Netw. – reference: . – volume: 15 start-page: 4675 year: 2021 end-page: 4686 ident: b23 article-title: Convolutional neural networks for flexible payload management in vhts systems publication-title: IEEE Syst. J. – reference: V. Mnih, A.P. Badia, M. Mirza, A. Graves, T.P. Lillicrap, T. Harley, D. Silver, K. Kavukcuoglu, Asynchronous methods for deep reinforcement learning, in: 33rd International Conference on Machine Learning, Vol. 2016, No. 4, ICML, 2016, pp. 2850–2869. – volume: 78 start-page: 124 year: 2017 end-page: 133 ident: b2 article-title: Power allocation in multibeam satellites based on particle swarm optimization publication-title: AEU - Int. J. Electron. Commun. – volume: 303 start-page: 719 year: 2022 end-page: 734 ident: b40 article-title: An agent-based algorithm for dynamic routing in service networks publication-title: European J. Oper. Res. – volume: 36 start-page: 1030 year: 2018 end-page: 1041 ident: b22 article-title: Multiobjective reinforcement learning for cognitive satellite communications using deep neural network ensembles publication-title: IEEE J. Sel. Areas Commun. – start-page: 604 year: 2022 end-page: 609 ident: b1 article-title: Multi-resource optimal scheduling method for satellite communication based on improved adaptive genetic algorithm publication-title: 2022 7th International Conference on Computer and Communication Systems – volume: 67 start-page: 2398 year: 2018 end-page: 2408 ident: b7 article-title: Joint pricing and power allocation for multibeam satellite systems with dynamic game model publication-title: IEEE Trans. Veh. Technol. – year: 2023 ident: b8 article-title: Distributed load balancing algorithm considering qos for next generation multi-rat hetnets 229 – volume: 34 start-page: 613 year: 2012 end-page: 616 ident: b15 article-title: A dynamic bandwidth allocation scheme for a multi-spot-beam satellite system publication-title: ETRI J. – volume: 66 start-page: 5828 year: 2018 end-page: 5843 ident: b36 article-title: Study on coverage of full frequency reuse in ffr systems based on outage probability publication-title: IEEE Trans. Commun. – start-page: 1 year: 2012 end-page: 5 ident: b14 article-title: Flexible bandwidth allocation scheme based on traffic demands and channel conditions for multi-beam satellite systems publication-title: 2012 IEEE Vehicular Technology Conference (VTC Fall) – volume: 17 start-page: 680 year: 2018 end-page: 692 ident: b30 article-title: User scheduling and resource allocation in hetnets with hybrid energy supply: An actor-critic reinforcement learning approach publication-title: IEEE Trans. Wireless Commun. – volume: 9 start-page: 228 issue: 2 year: 2020 ident: 10.1016/j.comnet.2024.110940_b9 article-title: Dynamic energy-efficient power allocation in multibeam satellite systems publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2019.2949277 – ident: 10.1016/j.comnet.2024.110940_b10 doi: 10.1016/j.cie.2021.107228 – volume: 4 start-page: 2983 issue: 6 year: 2005 ident: 10.1016/j.comnet.2024.110940_b3 article-title: Optimum power and beam allocation based on traffic demands and channel conditions over satellite downlinks publication-title: IEEE Trans. Wireless Commun. doi: 10.1109/TWC.2005.858365 – start-page: 1 year: 2012 ident: 10.1016/j.comnet.2024.110940_b14 article-title: Flexible bandwidth allocation scheme based on traffic demands and channel conditions for multi-beam satellite systems – ident: 10.1016/j.comnet.2024.110940_b44 – volume: 69 start-page: 9849 issue: 9 year: 2020 ident: 10.1016/j.comnet.2024.110940_b26 article-title: Multi-agent deep reinforcement learning-based flexible satellite payload for mobile terminals publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.3002983 – start-page: 1 year: 2010 ident: 10.1016/j.comnet.2024.110940_b12 article-title: Joint power and carrier allocation for the multibeam satellite downlink with individual sinr constraints – volume: 169 year: 2022 ident: 10.1016/j.comnet.2024.110940_b42 article-title: Time-cost trade-off model in gert-type network with characteristic function for project management publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2022.108222 – volume: 71 start-page: 3917 issue: 4 year: 2022 ident: 10.1016/j.comnet.2024.110940_b34 article-title: Dynamic beam pattern and bandwidth allocation based on multi-agent deep reinforcement learning for beam hopping satellite systems publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2022.3145848 – volume: 181 start-page: 315 year: 2016 ident: 10.1016/j.comnet.2024.110940_b38 article-title: Forecasting return of used products for remanufacturing using graphical evaluation and review technique (gert) publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2016.04.016 – volume: 41 start-page: 51 issue: 6 year: 2020 ident: 10.1016/j.comnet.2024.110940_b33 article-title: Improved satellite resource allocation algorithm based on drl and mop publication-title: J. Commun. – volume: 38 start-page: 85 issue: 2 year: 2020 ident: 10.1016/j.comnet.2024.110940_b20 article-title: Clustering strategies for multicast precoding in multibeam satellite systems publication-title: Int. J. Satellite Commun. Network. doi: 10.1002/sat.1312 – start-page: 1 year: 2019 ident: 10.1016/j.comnet.2024.110940_b31 article-title: Deep reinforcement learning for continuous power allocation in flexible high throughput satellites – volume: 78 start-page: 124 year: 2017 ident: 10.1016/j.comnet.2024.110940_b2 article-title: Power allocation in multibeam satellites based on particle swarm optimization publication-title: AEU - Int. J. Electron. Commun. doi: 10.1016/j.aeue.2017.05.012 – start-page: 604 year: 2022 ident: 10.1016/j.comnet.2024.110940_b1 article-title: Multi-resource optimal scheduling method for satellite communication based on improved adaptive genetic algorithm – volume: 150 year: 2020 ident: 10.1016/j.comnet.2024.110940_b19 article-title: A knowledge-based evolutionary algorithm for relay satellite system mission scheduling problem publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106830 – volume: 7 start-page: 6435 year: 2019 ident: 10.1016/j.comnet.2024.110940_b43 article-title: Joint transmit power and bandwidth allocation for cognitive satellite network based on bargaining game theory publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2886284 – start-page: 1 year: 2019 ident: 10.1016/j.comnet.2024.110940_b18 article-title: A genetic algorithm for joint power and bandwidth allocation in multibeam satellite systems – volume: 8 start-page: 335 issue: 1 year: 2022 ident: 10.1016/j.comnet.2024.110940_b29 article-title: Cooperative multi-agent deep reinforcement learning for resource management in full flexible vhts systems publication-title: IEEE Trans. Cognitive Commun. Netw. doi: 10.1109/TCCN.2021.3087586 – start-page: 655 year: 2020 ident: 10.1016/j.comnet.2024.110940_b28 article-title: Optimum power allocation based on traffic matching service for multi-beam satellite system – volume: 17 start-page: 680 issue: 1 year: 2018 ident: 10.1016/j.comnet.2024.110940_b30 article-title: User scheduling and resource allocation in hetnets with hybrid energy supply: An actor-critic reinforcement learning approach publication-title: IEEE Trans. Wireless Commun. doi: 10.1109/TWC.2017.2769644 – volume: 15 start-page: 4675 issue: 3 year: 2021 ident: 10.1016/j.comnet.2024.110940_b23 article-title: Convolutional neural networks for flexible payload management in vhts systems publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2020.3020038 – start-page: 2794 year: 2013 ident: 10.1016/j.comnet.2024.110940_b11 article-title: Optimal bandwidth allocation for multi-spot-beam satellite communication systems – volume: 15 start-page: 380 issue: 4 year: 2011 ident: 10.1016/j.comnet.2024.110940_b5 article-title: Dynamic power allocation for broadband multi-beam satellite communication networks publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2011.020111.102201 – year: 1966 ident: 10.1016/j.comnet.2024.110940_b37 – volume: 36 start-page: 1030 issue: 5 year: 2018 ident: 10.1016/j.comnet.2024.110940_b22 article-title: Multiobjective reinforcement learning for cognitive satellite communications using deep neural network ensembles publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2018.2832820 – volume: 2014 start-page: 1 year: 2014 ident: 10.1016/j.comnet.2024.110940_b4 article-title: Optimization of power allocation for a multibeam satellite communication system with interbeam interference publication-title: J. Appl. Math. – volume: 17 start-page: 1722 issue: 9 year: 2013 ident: 10.1016/j.comnet.2024.110940_b6 article-title: Flexible and dynamic power allocation in broadband multi-beam satellites publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2013.080113.130615 – volume: 67 start-page: 2398 issue: 3 year: 2018 ident: 10.1016/j.comnet.2024.110940_b7 article-title: Joint pricing and power allocation for multibeam satellite systems with dynamic game model publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2017.2771770 – volume: 34 start-page: 613 issue: 4 year: 2012 ident: 10.1016/j.comnet.2024.110940_b15 article-title: A dynamic bandwidth allocation scheme for a multi-spot-beam satellite system publication-title: ETRI J. doi: 10.4218/etrij.12.0211.0437 – volume: 64 start-page: 266 issue: 2 year: 2018 ident: 10.1016/j.comnet.2024.110940_b16 article-title: Radio resource management optimization of flexible satellite payloads for dvb-s2 systems publication-title: IEEE Trans. Broadcast. doi: 10.1109/TBC.2017.2755263 – volume: 204 start-page: 73 year: 2023 ident: 10.1016/j.comnet.2024.110940_b32 article-title: A novel deep reinforcement learning architecture for dynamic power and bandwidth allocation in multibeam satellites publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2022.12.018 – volume: 24 start-page: 2785 issue: 12 year: 2020 ident: 10.1016/j.comnet.2024.110940_b27 article-title: Distributed intelligence: A verification for multi-agent drl-based multibeam satellite resource allocation publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2020.3019437 – volume: 173 year: 2020 ident: 10.1016/j.comnet.2024.110940_b39 article-title: An optimal delay routing algorithm considering delay variation in the leo satellite communication network publication-title: Comput. Netw. doi: 10.1016/j.comnet.2020.107166 – volume: 12 start-page: 75 issue: 1 year: 2023 ident: 10.1016/j.comnet.2024.110940_b13 article-title: Dynamic resource allocation with deep reinforcement learning in multibeam satellite communication publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2022.3217316 – volume: 6 start-page: 15733 year: 2018 ident: 10.1016/j.comnet.2024.110940_b25 article-title: Deep reinforcement learning based dynamic channel allocation algorithm in multibeam satellite systems publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2809581 – volume: 66 start-page: 5828 issue: 11 year: 2018 ident: 10.1016/j.comnet.2024.110940_b36 article-title: Study on coverage of full frequency reuse in ffr systems based on outage probability publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2018.2859326 – volume: 173 year: 2020 ident: 10.1016/j.comnet.2024.110940_b35 article-title: A framework to classify heterogeneous internet traffic with machine learning and deep learning techniques for satellite communications publication-title: Comput. Netw. doi: 10.1016/j.comnet.2020.107213 – volume: 303 start-page: 719 issue: 2 year: 2022 ident: 10.1016/j.comnet.2024.110940_b40 article-title: An agent-based algorithm for dynamic routing in service networks publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2022.03.010 – volume: 14 start-page: 3171 issue: 6 year: 2015 ident: 10.1016/j.comnet.2024.110940_b17 article-title: Power allocation in multibeam satellite systems: A two-stage multi-objective optimization publication-title: IEEE Trans. Wireless Commun. doi: 10.1109/TWC.2015.2402682 – year: 2023 ident: 10.1016/j.comnet.2024.110940_b8 – volume: 2020 start-page: 133 issue: 1 year: 2020 ident: 10.1016/j.comnet.2024.110940_b21 article-title: User scheduling for multicast transmission in high throughput satellite systems publication-title: EURASIP J. Wireless Commun. Networking doi: 10.1186/s13638-020-01749-7 – volume: 22 start-page: 1612 issue: 8 year: 2018 ident: 10.1016/j.comnet.2024.110940_b24 article-title: A deep reinforcement learning-based framework for dynamic resource allocation in multibeam satellite systems publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2018.2844243 – year: 2021 ident: 10.1016/j.comnet.2024.110940_b41 |
| SSID | ssj0004428 |
| Score | 2.4410057 |
| Snippet | With the evolution and popularity of smart devices, the demand and requirement (e.g., communication, file transfer) of satellite users have increased rapidly.... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 110940 |
| SubjectTerms | Deep reinforcement learning (DRL) Dynamic resource management (DRM) Multibeam satellite system (MSS) Quality of service (QoS) Queuing graphical evaluation and review technique (Q-GERT) System utility |
| Title | A DRL-based RAQ-GERT dynamic resource allocation algorithm considering utility for multibeam satellite system |
| URI | https://dx.doi.org/10.1016/j.comnet.2024.110940 |
| Volume | 257 |
| WOSCitedRecordID | wos001373606600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1389-1286 databaseCode: AIEXJ dateStart: 19990114 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0004428 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb5wwELa2mx7aQ9Wnmr7kQ2_IEQsY4yNqty9VUbtC6qoXZBuTTZRlow0bpb-pf7JjbANtqqg59IIQAmM8n2bGw8w3CL0GoyZFFXGiJOewQUkFEYIxoqO0Tiif1WFsm02ww8NsueRfJpOfvhbm4pQ1TXZ5yc_-q6jhGgjblM7eQNz9oHABzkHocASxw_GfBJ8HbxefibFOVbDIv5L380URVLbxfLB10frA_G-30To4Pdpsj9vV2qSgd907TfgAZth56CYNscs6lFqsg3PRMXi22lFAj31b3yAiaGxqeRfPzdeGiaFysBuqi10ogvNRKOLbrovFrnbCmdOOJNIqo-8rQxt6NKBQ2GQBWPnVUM1WiI0NNMBTPxzuXUgjoj4LutfC4EURMJzpWE1HlsjaKVpDlGp5nq7YABuOODEihO89gBckB8Ptv1Nu_2EK-wRFn_t2UtpRSjNKaUe5hfYiRnk2RXv5x_ny01CGm3StfPvZ-0rNLp3w6mz-7gmNvJviPrrntiU4t3B6gCa6eYjujsgqH6F1jntgYQ8s7ICFPbDwACzcAwuPgIUdsDAAC_fAwj2wsAXWY1S8mxdvPhDXrIMo2JW2RIEpqEDDV-CPp4pGKeORoirUquaVBrffNFDOwjqL63BWC6EkbNUVrZMk4TGX8RM0bTaNfoqwpGFNE8MkV7EkklLqWlcRVTOlmIqZ3EfEr1t5ZilZyuvktY-YX9zSuZXWXSwBMdc--eyGb3qO7gxwfoGm7XanX6Lb6qI9Pt--cnD5BcOanAA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+DRL-based+RAQ-GERT+dynamic+resource+allocation+algorithm+considering+utility+for+multibeam+satellite+system&rft.jtitle=Computer+networks+%28Amsterdam%2C+Netherlands+%3A+1999%29&rft.au=Wu%2C+Shuang&rft.au=Fang%2C+Zhigeng&rft.au=Hua%2C+Chenchen&rft.au=Tao%2C+Liangyan&rft.date=2025-02-01&rft.issn=1389-1286&rft.volume=257&rft.spage=110940&rft_id=info:doi/10.1016%2Fj.comnet.2024.110940&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_comnet_2024_110940 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-1286&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-1286&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-1286&client=summon |