High order symmetric algorithms for nonlinear dynamical systems with non-holonomic constraints
Based on the Lagrange–d’Alembert principle and a modified Lagrange–d’Alembert principle, two kinds of symmetric algorithms with arbitrary high order are proposed for non-holonomic systems. The modified Lagrange–d’Alembert principle is constructed by adding an augment term to the Lagrange–d’Alembert...
Uloženo v:
| Vydáno v: | Mathematics and computers in simulation Ročník 212; s. 524 - 547 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.10.2023
|
| Témata: | |
| ISSN: | 0378-4754, 1872-7166 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Based on the Lagrange–d’Alembert principle and a modified Lagrange–d’Alembert principle, two kinds of symmetric algorithms with arbitrary high order are proposed for non-holonomic systems. The modified Lagrange–d’Alembert principle is constructed by adding an augment term to the Lagrange–d’Alembert principle, so that the non-holonomic constraints can be directly derived from variation. The high order algorithms are constructed by: (1) choosing control points to approximate generalized coordinates and Lagrange multipliers; (2) performing quadrature rules to approximate integrals; (3) choosing constraint points to satisfy non-holonomic constraints. The order of the presented algorithms is investigated numerically. The main factors to affect the accuracy of proposed algorithm were analyzed. Furthermore, the numerical algorithms are proven to be symmetric and can satisfy non-holonomic constraints with high precision. |
|---|---|
| AbstractList | Based on the Lagrange–d’Alembert principle and a modified Lagrange–d’Alembert principle, two kinds of symmetric algorithms with arbitrary high order are proposed for non-holonomic systems. The modified Lagrange–d’Alembert principle is constructed by adding an augment term to the Lagrange–d’Alembert principle, so that the non-holonomic constraints can be directly derived from variation. The high order algorithms are constructed by: (1) choosing control points to approximate generalized coordinates and Lagrange multipliers; (2) performing quadrature rules to approximate integrals; (3) choosing constraint points to satisfy non-holonomic constraints. The order of the presented algorithms is investigated numerically. The main factors to affect the accuracy of proposed algorithm were analyzed. Furthermore, the numerical algorithms are proven to be symmetric and can satisfy non-holonomic constraints with high precision. |
| Author | Zhong, Wanxie Man, Shumin Gao, Qiang |
| Author_xml | – sequence: 1 givenname: Shumin surname: Man fullname: Man, Shumin email: shumin.man@intesim.com – sequence: 2 givenname: Qiang surname: Gao fullname: Gao, Qiang email: qgao@dlut.edu.cn – sequence: 3 givenname: Wanxie surname: Zhong fullname: Zhong, Wanxie email: zwoffice@dlut.edu.cn |
| BookMark | eNp9UM1KAzEQDlLBWn0DD3mBXfO32d2LIEWtUPCiV0OSnW1TdhNJgtK3N6WePc3w_c3wXaOFDx4QuqOkpoTK-0M962zDXDPCeE2auoAXaEm7llUtlXKBloS3XSXaRlyh65QOhJCyN0v0uXG7PQ5xgIjTcZ4hR2exnnYhuryfEx5DxOXc5DzoiIej17OzeirilKHwP0V2ElT7MAUfColt8ClH7XxON-hy1FOC27-5Qh_PT-_rTbV9e3ldP24ry5omV0br3vQSrDAjNXzsoW94N7ac6bbvhKGcDb0eJYAUbQ-cWmoMI9LKThpBKF8hcc61MaQUYVRf0c06HhUl6tSROqhzR-rUkSKNKmCxPZxtUH77dhBVsg68hcFFsFkNwf0f8AuMtXaR |
| Cites_doi | 10.1016/S0167-2789(97)00051-1 10.1109/ROBOT.1994.351153 10.1088/0305-4470/39/19/S01 10.1088/0951-7715/21/8/009 10.1007/s11071-011-0134-z 10.3934/jgm.2012.4.137 10.1093/imanum/drq027 10.1016/j.cma.2005.01.027 10.1002/nme.361 10.1007/s00211-022-01283-2 10.1017/S096249290100006X 10.1109/ICSMC.2004.1401053 10.1063/1.4820817 10.1080/00207177008905922 10.1287/opre.15.1.139 10.1002/1097-0207(20001210)49:10<1295::AID-NME993>3.0.CO;2-W 10.1016/S0393-0440(00)00018-8 10.1080/14689360802609344 10.1016/S0377-0427(00)00393-9 10.1134/S1560354717040062 10.1109/CDC.1993.325681 10.1063/1.532892 10.1063/1.3067728 10.1007/s00205-002-0212-y 10.1088/0305-4470/39/19/S02 10.1007/BF03322542 10.1007/s10444-017-9520-5 10.3166/ejc.10.515-521 10.1088/0951-7715/18/5/017 10.1088/0951-7715/14/5/322 10.1016/0167-2789(94)90046-9 10.1007/s00332-005-0698-1 10.1063/1.3241222 10.1109/CICA.2009.4982776 10.1007/s00211-020-01126-y 10.1137/S1064827595293223 10.1088/0951-7715/12/6/314 |
| ContentType | Journal Article |
| Copyright | 2023 International Association for Mathematics and Computers in Simulation (IMACS) |
| Copyright_xml | – notice: 2023 International Association for Mathematics and Computers in Simulation (IMACS) |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.matcom.2023.05.016 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7166 |
| EndPage | 547 |
| ExternalDocumentID | 10_1016_j_matcom_2023_05_016 S0378475423002215 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 63O 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SES SEW SME SPC SPCBC SSB SSD SST SSW SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c255t-baa9b96ec4bf1b3f9e9538f732a7984b132d9af6ee6479e31c1bb206c686b4013 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001011956300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0378-4754 |
| IngestDate | Sat Nov 29 07:14:04 EST 2025 Fri Feb 23 02:37:25 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Variational integrator High-order methods Symmetric Lagrange–d’Alembert principle Non-holonomic systems |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c255t-baa9b96ec4bf1b3f9e9538f732a7984b132d9af6ee6479e31c1bb206c686b4013 |
| PageCount | 24 |
| ParticipantIDs | crossref_primary_10_1016_j_matcom_2023_05_016 elsevier_sciencedirect_doi_10_1016_j_matcom_2023_05_016 |
| PublicationCentury | 2000 |
| PublicationDate | October 2023 2023-10-00 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Mathematics and computers in simulation |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Alber, Hu, Rosenthal (b1) 1997 Pandolfi, Kane, Marsden, Ortiz (b45) 2010; 53 de Diego, de Almagro (b17) 2018 Kane, Marsden, Ortiz, West (b32) 2000; 49 Modin, Verdier (b43) 2020; 145 Reich (b46) 1994; 76 N. Sarkar, X. Yun, V. Kumar, Dynamic path following: a new control algorithm for mobile robots, in: Proceedings of the IEEE Conference on Decision and Control, 1993, pp. 2670–2675. C.F. Chang, C.I. Huang, L.C. Fu, Nonlinear control of a wheeled mobile robot with nonholonomic constraints, in: IEEE International Conference on Systems, Man and Cybernetics, 2004, pp. 5404–5410. Goldstein, Poole, Safko (b24) 2002 Fernandez, Bloch, Olver (b20) 2013; 4 Marsden, Ratiu (b39) 1994 Bridges, Reich (b9) 2006; 39 Y. Tian, N. Sidek, N. Sarkar, Modeling and control of a nonholonomic Wheeled Mobile Robot with wheel slip dynamics, in: IEEE Symposium on Computational Intelligence in Control & Automation, 2009, pp. 7–14. Schultz, Flaßkamp, Murphey (b48) 2017; 12 Bloch, Marsden, Zenkov (b7) 2009; 24 Betsch (b4) 2006; 195 Ferraro, Iglesias, Martín de Diego (b21) 2008; 21 Wenger, Ober-Blöbaum, Leyendecker (b52) 2017; 43 Cortes (b15) 2012; 9 J. Ostrowski, A. Lewis, R. Murray, J. Burdick, Nonholonomic mechanics and locomotion: the snakeboard example, in: IEEE International Conference on Robotics and Automation, 2002, pp. 2391–2397. Kane, Marsden, Ortiz (b31) 1999; 40 Lew, Marsden, Ortiz, West (b35) 2003; 167 Cadzow (b10) 1970; 11 De Leon, Martín, Santamaría-Merino (b18) 2004; 10 Hairer, Lubich, Wanner (b25) 2006 Jordan, Polak (b30) 1964; 17 Loan (b36) 2000; 123 L.O. Jay, T.E. Simos, On Modified Newton Iterations for SPARK Methods Applied to Constrained Systems in Mechanics, in: AIP Numerical Analysis and Applied Mathematics: International Conference on Numerical Analysis and Applied Mathematics, 2009. Cortes, Martinez (b16) 2001; 14 Marsden, West (b40) 2001; 10 Simoes, Marrero, Diego (b49) 2022; 151 Marsden, Pekarsky, Shkoller (b38) 2000; 36 Goldstein, Poole, Safko (b23) 1952; 5 Betsch, Hesch, SäNger, Uhlar (b5) 2010; 5 Kobilarov, Diego, Ferraro (b33) 2010; 50 Wendlandt, Marsden (b51) 1997; 106 Campion, Bastin, D’Andrea-Novel (b12) 1996; 12 Hwang, Fan (b27) 1967; 15 Arnold (b2) 1989 Marsden, Pekarsky, Shkoller (b37) 1999; 12 He, Wu, Mei (b26) 2016; 87 Borisov, Mamaev (b8) 2017; 22 Colombo, Diego, Zuccalli (b14) 2013; 54 Cai (b11) 2011; 69 Fedorov, Yuri, Zenkov, Dmitry (b19) 2004; 18 Mclachlan, Quispel (b42) 2006; 39 Jay (b28) 1998; 20 Ferraro, Iglesias, Diego (b22) 2009 Mclachlan, Perlmutter (b41) 2006; 16 Balasubramanian (b3) 2012; 67 Bloch, Baillieul, Crouch, Marsden (b6) 2003 Leok, Zhang (b34) 2010; 31 Marsden (10.1016/j.matcom.2023.05.016_b40) 2001; 10 Modin (10.1016/j.matcom.2023.05.016_b43) 2020; 145 de Diego (10.1016/j.matcom.2023.05.016_b17) 2018 Kobilarov (10.1016/j.matcom.2023.05.016_b33) 2010; 50 Ferraro (10.1016/j.matcom.2023.05.016_b22) 2009 Mclachlan (10.1016/j.matcom.2023.05.016_b41) 2006; 16 Hairer (10.1016/j.matcom.2023.05.016_b25) 2006 Cortes (10.1016/j.matcom.2023.05.016_b16) 2001; 14 Bridges (10.1016/j.matcom.2023.05.016_b9) 2006; 39 Balasubramanian (10.1016/j.matcom.2023.05.016_b3) 2012; 67 Cadzow (10.1016/j.matcom.2023.05.016_b10) 1970; 11 Hwang (10.1016/j.matcom.2023.05.016_b27) 1967; 15 10.1016/j.matcom.2023.05.016_b29 Fedorov (10.1016/j.matcom.2023.05.016_b19) 2004; 18 Goldstein (10.1016/j.matcom.2023.05.016_b23) 1952; 5 Wenger (10.1016/j.matcom.2023.05.016_b52) 2017; 43 Pandolfi (10.1016/j.matcom.2023.05.016_b45) 2010; 53 Marsden (10.1016/j.matcom.2023.05.016_b38) 2000; 36 Campion (10.1016/j.matcom.2023.05.016_b12) 1996; 12 Fernandez (10.1016/j.matcom.2023.05.016_b20) 2013; 4 Loan (10.1016/j.matcom.2023.05.016_b36) 2000; 123 10.1016/j.matcom.2023.05.016_b50 Marsden (10.1016/j.matcom.2023.05.016_b37) 1999; 12 Ferraro (10.1016/j.matcom.2023.05.016_b21) 2008; 21 Betsch (10.1016/j.matcom.2023.05.016_b5) 2010; 5 Colombo (10.1016/j.matcom.2023.05.016_b14) 2013; 54 Jay (10.1016/j.matcom.2023.05.016_b28) 1998; 20 Borisov (10.1016/j.matcom.2023.05.016_b8) 2017; 22 Arnold (10.1016/j.matcom.2023.05.016_b2) 1989 Cai (10.1016/j.matcom.2023.05.016_b11) 2011; 69 10.1016/j.matcom.2023.05.016_b13 Betsch (10.1016/j.matcom.2023.05.016_b4) 2006; 195 Alber (10.1016/j.matcom.2023.05.016_b1) 1997 Leok (10.1016/j.matcom.2023.05.016_b34) 2010; 31 Bloch (10.1016/j.matcom.2023.05.016_b7) 2009; 24 Kane (10.1016/j.matcom.2023.05.016_b31) 1999; 40 Schultz (10.1016/j.matcom.2023.05.016_b48) 2017; 12 De Leon (10.1016/j.matcom.2023.05.016_b18) 2004; 10 Reich (10.1016/j.matcom.2023.05.016_b46) 1994; 76 Goldstein (10.1016/j.matcom.2023.05.016_b24) 2002 10.1016/j.matcom.2023.05.016_b47 Kane (10.1016/j.matcom.2023.05.016_b32) 2000; 49 He (10.1016/j.matcom.2023.05.016_b26) 2016; 87 10.1016/j.matcom.2023.05.016_b44 Simoes (10.1016/j.matcom.2023.05.016_b49) 2022; 151 Mclachlan (10.1016/j.matcom.2023.05.016_b42) 2006; 39 Cortes (10.1016/j.matcom.2023.05.016_b15) 2012; 9 Lew (10.1016/j.matcom.2023.05.016_b35) 2003; 167 Jordan (10.1016/j.matcom.2023.05.016_b30) 1964; 17 Marsden (10.1016/j.matcom.2023.05.016_b39) 1994 Bloch (10.1016/j.matcom.2023.05.016_b6) 2003 Wendlandt (10.1016/j.matcom.2023.05.016_b51) 1997; 106 |
| References_xml | – volume: 106 start-page: 223 year: 1997 end-page: 246 ident: b51 article-title: Mechanical integrators derived from a discrete variational principle publication-title: Physica D – year: 1994 ident: b39 article-title: Introduction to Mechanics and Symmetry – volume: 43 start-page: 1 year: 2017 end-page: 33 ident: b52 article-title: Construction and analysis of higher order variational integrators for dynamical systems with holonomic constraints publication-title: Adv. Comput. Math. – volume: 5 start-page: 470 year: 2010 end-page: 478 ident: b5 article-title: Variational integrators and energy-momentum schemes for flexible multibody dynamics publication-title: J. Comput. Nonlinear Dyn. – year: 2003 ident: b6 article-title: Nonholonomic Mechanics and Control – volume: 31 start-page: 1497 year: 2010 end-page: 1532 ident: b34 article-title: Discrete Hamiltonian variational integrators publication-title: Ima J. Numer. Anal. – year: 1997 ident: b1 article-title: Current and Future Directions in Applied Mathematics – volume: 12 start-page: 733 year: 1996 end-page: 769 ident: b12 article-title: Structural properties and classification of kinematic and dynamic models of wheeled mobile robots publication-title: Cent. Autom. Syst. – volume: 50 start-page: 61 year: 2010 end-page: 81 ident: b33 article-title: Simulating nonholonomic dynamics publication-title: Sema J. – volume: 167 start-page: 85 year: 2003 end-page: 146 ident: b35 article-title: Asynchronous variational integrators publication-title: Arch. Ration. Mech. Anal. – volume: 76 start-page: 375 year: 1994 end-page: 383 ident: b46 article-title: Momentum conserving symplectic integrators publication-title: Physica D – volume: 69 start-page: 487 year: 2011 end-page: 493 ident: b11 article-title: Conformal invariance of mei symmetry for the non-holonomic systems of non-Chetaev’s type publication-title: Nonlinear Dynam. – reference: L.O. Jay, T.E. Simos, On Modified Newton Iterations for SPARK Methods Applied to Constrained Systems in Mechanics, in: AIP Numerical Analysis and Applied Mathematics: International Conference on Numerical Analysis and Applied Mathematics, 2009. – reference: C.F. Chang, C.I. Huang, L.C. Fu, Nonlinear control of a wheeled mobile robot with nonholonomic constraints, in: IEEE International Conference on Systems, Man and Cybernetics, 2004, pp. 5404–5410. – volume: 4 start-page: 137 year: 2013 end-page: 163 ident: b20 article-title: Variational integrators from hamiltonizable nonholonomic systems publication-title: J. Geom. Mech. – volume: 15 start-page: 139 year: 1967 end-page: 146 ident: b27 article-title: A discrete version of pontryagin’s maximum principle publication-title: Oper. Res. – volume: 54 start-page: 322 year: 2013 end-page: 354 ident: b14 article-title: Higher-order discrete variational problems with constraints publication-title: J. Math. Phys. – volume: 20 start-page: 416 year: 1998 end-page: 446 ident: b28 article-title: Structure preservation for constrained dynamics with super partitioned additive Runge–Kutta methods publication-title: SIAM J. Sci. Comput. – volume: 53 start-page: 1801 year: 2010 end-page: 1829 ident: b45 article-title: Time-discretized variational formulation of non-smooth frictional contact publication-title: Internat. J. Numer. Methods Engrg. – volume: 17 start-page: 697 year: 1964 end-page: 711 ident: b30 article-title: Theory of a class of discrete optimal control systems publication-title: Int. J. Electron. – year: 1989 ident: b2 article-title: Mathematical Methods of Classical Mechanics – volume: 49 start-page: 1295 year: 2000 end-page: 1325 ident: b32 article-title: Variational integrators and the newmark algorithm for conservative and dissipative mechanical systems publication-title: Internat. J. Numer. Methods Engrg. – volume: 16 start-page: 283 year: 2006 end-page: 328 ident: b41 article-title: Integrators for nonholonomic mechanical systems publication-title: J. Nonlinear Sci. – volume: 12 start-page: 1647 year: 1999 end-page: 1662 ident: b37 article-title: Discrete Euler-poincare and Lie-Poisson equations publication-title: Nonlinearity – reference: Y. Tian, N. Sidek, N. Sarkar, Modeling and control of a nonholonomic Wheeled Mobile Robot with wheel slip dynamics, in: IEEE Symposium on Computational Intelligence in Control & Automation, 2009, pp. 7–14. – volume: 14 start-page: 1365 year: 2001 end-page: 1392 ident: b16 article-title: Non-holonomic integrators publication-title: Nonlinearity – volume: 24 start-page: 187 year: 2009 end-page: 222 ident: b7 article-title: Quasivelocities and symmetries in non-holonomic systems publication-title: Dyn. Stab. Syst. – volume: 12 year: 2017 ident: b48 article-title: Variational integrators for structure-preserving filtering publication-title: J. Comput. Nonlinear Dyn. – volume: 10 start-page: 515 year: 2004 end-page: 521 ident: b18 article-title: Geometric numerical integration of nonholonomic systems and optimal control problems publication-title: Eur. J. Control – volume: 21 start-page: 1911 year: 2008 end-page: 1928 ident: b21 article-title: Momentum and energy preserving integrators for nonholonomic dynamics publication-title: Nonlinearity – volume: 195 start-page: 7020 year: 2006 end-page: 7035 ident: b4 article-title: Energy-consistent numerical integration of mechanical systems with mixed holonomic and nonholonomic constraints publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 145 start-page: 405 year: 2020 end-page: 435 ident: b43 article-title: What makes nonholonomic integrators work? publication-title: Numer. Math. – volume: 22 start-page: 435 year: 2017 end-page: 447 ident: b8 article-title: An inhomogeneous Chaplygin sleigh publication-title: Regul. Chaotic Dyn. – volume: 151 start-page: 49 year: 2022 end-page: 98 ident: b49 article-title: Exact discrete Lagrangian mechanics for nonholonomic mechanics publication-title: Numer. Math. – volume: 39 start-page: 5251 year: 2006 end-page: 5285 ident: b42 article-title: Geometric integrators for ODEs publication-title: J. Phys. A – volume: 5 start-page: 19 year: 1952 end-page: 20 ident: b23 article-title: Classical mechanics publication-title: Phys. Today – volume: 87 start-page: 1 year: 2016 end-page: 10 ident: b26 article-title: Variational integrators for fractional birkhoffian systems publication-title: Nonlinear Dynam. – reference: J. Ostrowski, A. Lewis, R. Murray, J. Burdick, Nonholonomic mechanics and locomotion: the snakeboard example, in: IEEE International Conference on Robotics and Automation, 2002, pp. 2391–2397. – volume: 9 start-page: 189 year: 2012 end-page: 199 ident: b15 article-title: Energy conserving nonholonomic integrators publication-title: Discrete Contin. Dyn. Syst. - A – year: 2018 ident: b17 article-title: High-order geometric methods for nonholonomic mechanical systems – volume: 11 start-page: 393 year: 1970 end-page: 407 ident: b10 article-title: Discrete calculus of variations publication-title: Internat. J. Control – volume: 18 start-page: 2211 year: 2004 end-page: 2241 ident: b19 article-title: Discrete nonholonomic LL systems on Lie groups publication-title: Nonlinearity – year: 2006 ident: b25 article-title: Geometric Numerical Integration : Structure-Preserving Algorithms for Ordinary Differential Equations – volume: 123 start-page: 85 year: 2000 end-page: 100 ident: b36 article-title: The ubiquitous kronecker product publication-title: J. Comput. Appl. Math. – volume: 36 start-page: 140 year: 2000 end-page: 151 ident: b38 article-title: Symmetry reduction of discrete Lagrangian mechanics on Lie groups publication-title: J. Geom. Phys. – volume: 10 start-page: 357 year: 2001 end-page: 514 ident: b40 article-title: Discrete mechanics and variational integrators publication-title: Acta Numer. – year: 2002 ident: b24 article-title: Classical Mechanics – volume: 67 start-page: 2123 year: 2012 end-page: 2138 ident: b3 article-title: An approximate decoupled dynamics and kinematics analysis of legless locomotion publication-title: Nonlinear Dynam. – reference: N. Sarkar, X. Yun, V. Kumar, Dynamic path following: a new control algorithm for mobile robots, in: Proceedings of the IEEE Conference on Decision and Control, 1993, pp. 2670–2675. – volume: 39 start-page: 5287 year: 2006 ident: b9 article-title: Numerical methods for Hamiltonian PDEs publication-title: J. Phys. A – volume: 40 start-page: 3353 year: 1999 end-page: 3371 ident: b31 article-title: Symplectic-energy–momentum preserving variational integrators publication-title: J. Math. Phys. – start-page: 220 year: 2009 end-page: 229 ident: b22 article-title: Numerical and geometric aspects of the nonholonomic shake and rattle methods publication-title: Discrete Contin. Dyn. Syst. – volume: 106 start-page: 223 issue: 3–4 year: 1997 ident: 10.1016/j.matcom.2023.05.016_b51 article-title: Mechanical integrators derived from a discrete variational principle publication-title: Physica D doi: 10.1016/S0167-2789(97)00051-1 – ident: 10.1016/j.matcom.2023.05.016_b44 doi: 10.1109/ROBOT.1994.351153 – volume: 39 start-page: 5251 issue: 19 year: 2006 ident: 10.1016/j.matcom.2023.05.016_b42 article-title: Geometric integrators for ODEs publication-title: J. Phys. A doi: 10.1088/0305-4470/39/19/S01 – volume: 21 start-page: 1911 issue: 8 year: 2008 ident: 10.1016/j.matcom.2023.05.016_b21 article-title: Momentum and energy preserving integrators for nonholonomic dynamics publication-title: Nonlinearity doi: 10.1088/0951-7715/21/8/009 – volume: 17 start-page: 697 issue: 6 year: 1964 ident: 10.1016/j.matcom.2023.05.016_b30 article-title: Theory of a class of discrete optimal control systems publication-title: Int. J. Electron. – volume: 67 start-page: 2123 issue: 3 year: 2012 ident: 10.1016/j.matcom.2023.05.016_b3 article-title: An approximate decoupled dynamics and kinematics analysis of legless locomotion publication-title: Nonlinear Dynam. doi: 10.1007/s11071-011-0134-z – volume: 4 start-page: 137 issue: 2 year: 2013 ident: 10.1016/j.matcom.2023.05.016_b20 article-title: Variational integrators from hamiltonizable nonholonomic systems publication-title: J. Geom. Mech. doi: 10.3934/jgm.2012.4.137 – volume: 31 start-page: 1497 issue: 4 year: 2010 ident: 10.1016/j.matcom.2023.05.016_b34 article-title: Discrete Hamiltonian variational integrators publication-title: Ima J. Numer. Anal. doi: 10.1093/imanum/drq027 – volume: 5 start-page: 470 issue: 3 year: 2010 ident: 10.1016/j.matcom.2023.05.016_b5 article-title: Variational integrators and energy-momentum schemes for flexible multibody dynamics publication-title: J. Comput. Nonlinear Dyn. – volume: 87 start-page: 1 issue: 4 year: 2016 ident: 10.1016/j.matcom.2023.05.016_b26 article-title: Variational integrators for fractional birkhoffian systems publication-title: Nonlinear Dynam. – volume: 195 start-page: 7020 issue: 50–51 year: 2006 ident: 10.1016/j.matcom.2023.05.016_b4 article-title: Energy-consistent numerical integration of mechanical systems with mixed holonomic and nonholonomic constraints publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2005.01.027 – volume: 53 start-page: 1801 issue: 8 year: 2010 ident: 10.1016/j.matcom.2023.05.016_b45 article-title: Time-discretized variational formulation of non-smooth frictional contact publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.361 – volume: 151 start-page: 49 issue: 1 year: 2022 ident: 10.1016/j.matcom.2023.05.016_b49 article-title: Exact discrete Lagrangian mechanics for nonholonomic mechanics publication-title: Numer. Math. doi: 10.1007/s00211-022-01283-2 – volume: 10 start-page: 357 issue: 1 year: 2001 ident: 10.1016/j.matcom.2023.05.016_b40 article-title: Discrete mechanics and variational integrators publication-title: Acta Numer. doi: 10.1017/S096249290100006X – ident: 10.1016/j.matcom.2023.05.016_b13 doi: 10.1109/ICSMC.2004.1401053 – volume: 54 start-page: 322 issue: 9 year: 2013 ident: 10.1016/j.matcom.2023.05.016_b14 article-title: Higher-order discrete variational problems with constraints publication-title: J. Math. Phys. doi: 10.1063/1.4820817 – volume: 11 start-page: 393 issue: 3 year: 1970 ident: 10.1016/j.matcom.2023.05.016_b10 article-title: Discrete calculus of variations publication-title: Internat. J. Control doi: 10.1080/00207177008905922 – volume: 15 start-page: 139 issue: 1 year: 1967 ident: 10.1016/j.matcom.2023.05.016_b27 article-title: A discrete version of pontryagin’s maximum principle publication-title: Oper. Res. doi: 10.1287/opre.15.1.139 – year: 2006 ident: 10.1016/j.matcom.2023.05.016_b25 – volume: 49 start-page: 1295 issue: 10 year: 2000 ident: 10.1016/j.matcom.2023.05.016_b32 article-title: Variational integrators and the newmark algorithm for conservative and dissipative mechanical systems publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/1097-0207(20001210)49:10<1295::AID-NME993>3.0.CO;2-W – volume: 12 issue: 2 year: 2017 ident: 10.1016/j.matcom.2023.05.016_b48 article-title: Variational integrators for structure-preserving filtering publication-title: J. Comput. Nonlinear Dyn. – volume: 36 start-page: 140 issue: 1 year: 2000 ident: 10.1016/j.matcom.2023.05.016_b38 article-title: Symmetry reduction of discrete Lagrangian mechanics on Lie groups publication-title: J. Geom. Phys. doi: 10.1016/S0393-0440(00)00018-8 – volume: 24 start-page: 187 issue: 2 year: 2009 ident: 10.1016/j.matcom.2023.05.016_b7 article-title: Quasivelocities and symmetries in non-holonomic systems publication-title: Dyn. Stab. Syst. doi: 10.1080/14689360802609344 – volume: 123 start-page: 85 issue: 1 year: 2000 ident: 10.1016/j.matcom.2023.05.016_b36 article-title: The ubiquitous kronecker product publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(00)00393-9 – volume: 22 start-page: 435 issue: 4 year: 2017 ident: 10.1016/j.matcom.2023.05.016_b8 article-title: An inhomogeneous Chaplygin sleigh publication-title: Regul. Chaotic Dyn. doi: 10.1134/S1560354717040062 – volume: 69 start-page: 487 issue: 1–2 year: 2011 ident: 10.1016/j.matcom.2023.05.016_b11 article-title: Conformal invariance of mei symmetry for the non-holonomic systems of non-Chetaev’s type publication-title: Nonlinear Dynam. – year: 2002 ident: 10.1016/j.matcom.2023.05.016_b24 – ident: 10.1016/j.matcom.2023.05.016_b47 doi: 10.1109/CDC.1993.325681 – volume: 12 start-page: 733 issue: 1 year: 1996 ident: 10.1016/j.matcom.2023.05.016_b12 article-title: Structural properties and classification of kinematic and dynamic models of wheeled mobile robots publication-title: Cent. Autom. Syst. – year: 2018 ident: 10.1016/j.matcom.2023.05.016_b17 – volume: 40 start-page: 3353 issue: 7 year: 1999 ident: 10.1016/j.matcom.2023.05.016_b31 article-title: Symplectic-energy–momentum preserving variational integrators publication-title: J. Math. Phys. doi: 10.1063/1.532892 – volume: 5 start-page: 19 issue: 9 year: 1952 ident: 10.1016/j.matcom.2023.05.016_b23 article-title: Classical mechanics publication-title: Phys. Today doi: 10.1063/1.3067728 – volume: 167 start-page: 85 issue: 2 year: 2003 ident: 10.1016/j.matcom.2023.05.016_b35 article-title: Asynchronous variational integrators publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-002-0212-y – volume: 39 start-page: 5287 issue: 19 year: 2006 ident: 10.1016/j.matcom.2023.05.016_b9 article-title: Numerical methods for Hamiltonian PDEs publication-title: J. Phys. A doi: 10.1088/0305-4470/39/19/S02 – volume: 50 start-page: 61 issue: 1 year: 2010 ident: 10.1016/j.matcom.2023.05.016_b33 article-title: Simulating nonholonomic dynamics publication-title: Sema J. doi: 10.1007/BF03322542 – year: 1989 ident: 10.1016/j.matcom.2023.05.016_b2 – year: 1997 ident: 10.1016/j.matcom.2023.05.016_b1 – volume: 43 start-page: 1 issue: 5 year: 2017 ident: 10.1016/j.matcom.2023.05.016_b52 article-title: Construction and analysis of higher order variational integrators for dynamical systems with holonomic constraints publication-title: Adv. Comput. Math. doi: 10.1007/s10444-017-9520-5 – year: 2003 ident: 10.1016/j.matcom.2023.05.016_b6 – volume: 10 start-page: 515 issue: 5 year: 2004 ident: 10.1016/j.matcom.2023.05.016_b18 article-title: Geometric numerical integration of nonholonomic systems and optimal control problems publication-title: Eur. J. Control doi: 10.3166/ejc.10.515-521 – volume: 18 start-page: 2211 issue: 5 year: 2004 ident: 10.1016/j.matcom.2023.05.016_b19 article-title: Discrete nonholonomic LL systems on Lie groups publication-title: Nonlinearity doi: 10.1088/0951-7715/18/5/017 – volume: 14 start-page: 1365 issue: 5 year: 2001 ident: 10.1016/j.matcom.2023.05.016_b16 article-title: Non-holonomic integrators publication-title: Nonlinearity doi: 10.1088/0951-7715/14/5/322 – volume: 76 start-page: 375 issue: 4 year: 1994 ident: 10.1016/j.matcom.2023.05.016_b46 article-title: Momentum conserving symplectic integrators publication-title: Physica D doi: 10.1016/0167-2789(94)90046-9 – volume: 16 start-page: 283 issue: 4 year: 2006 ident: 10.1016/j.matcom.2023.05.016_b41 article-title: Integrators for nonholonomic mechanical systems publication-title: J. Nonlinear Sci. doi: 10.1007/s00332-005-0698-1 – ident: 10.1016/j.matcom.2023.05.016_b29 doi: 10.1063/1.3241222 – ident: 10.1016/j.matcom.2023.05.016_b50 doi: 10.1109/CICA.2009.4982776 – start-page: 220 year: 2009 ident: 10.1016/j.matcom.2023.05.016_b22 article-title: Numerical and geometric aspects of the nonholonomic shake and rattle methods publication-title: Discrete Contin. Dyn. Syst. – volume: 145 start-page: 405 year: 2020 ident: 10.1016/j.matcom.2023.05.016_b43 article-title: What makes nonholonomic integrators work? publication-title: Numer. Math. doi: 10.1007/s00211-020-01126-y – volume: 20 start-page: 416 issue: 2 year: 1998 ident: 10.1016/j.matcom.2023.05.016_b28 article-title: Structure preservation for constrained dynamics with super partitioned additive Runge–Kutta methods publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827595293223 – volume: 12 start-page: 1647 issue: 6 year: 1999 ident: 10.1016/j.matcom.2023.05.016_b37 article-title: Discrete Euler-poincare and Lie-Poisson equations publication-title: Nonlinearity doi: 10.1088/0951-7715/12/6/314 – volume: 9 start-page: 189 issue: 1 year: 2012 ident: 10.1016/j.matcom.2023.05.016_b15 article-title: Energy conserving nonholonomic integrators publication-title: Discrete Contin. Dyn. Syst. - A – year: 1994 ident: 10.1016/j.matcom.2023.05.016_b39 |
| SSID | ssj0007545 |
| Score | 2.3519769 |
| Snippet | Based on the Lagrange–d’Alembert principle and a modified Lagrange–d’Alembert principle, two kinds of symmetric algorithms with arbitrary high order are... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 524 |
| SubjectTerms | High-order methods Lagrange–d’Alembert principle Non-holonomic systems Symmetric Variational integrator |
| Title | High order symmetric algorithms for nonlinear dynamical systems with non-holonomic constraints |
| URI | https://dx.doi.org/10.1016/j.matcom.2023.05.016 |
| Volume | 212 |
| WOSCitedRecordID | wos001011956300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7166 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007545 issn: 0378-4754 databaseCode: AIEXJ dateStart: 19950501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbpIde-i5JX-jQm1Gx5aeOoaQvaGghpXuq0cuJQ9YN603YQn98R09vmxCaQy9mEWvJ9nzMSMM33yD0KpPKSJ5QUtCMkyLXinDFcgKxuUk7SpmSyjabqA8OmvmcfZ7NfoVamIvTehia9Zqd_VdTwxgY25TO3sDccVIYgN9gdLiC2eH6T4Y3zI3EKmom48_FwnTMkgk_Pfqx7FfHTn4hGZxABl8mynWkN1UjTrvcZWbhD8T4RVu0bKjpo-0l4WSfwmb2U5R8HUN5nO0QYSm2Y7_wncGmpLfLtR6fL_o4-I7bXO0XQOnRlMT2POFvfFj3ejMxQSeKWyzIqk3izmlEB2dLPWnaucvS1U_7yFs67c1LTt3lF05ewwsZho9Zy6mtXqGh_Vdsi4zDQGY7ad0srZmlTcsWBm-hbVqXDNz69t6H_fnHGMnh2S0FNrxIKL20_MDLT3P11mZju3J4H9315wy85_DxAM308BDdCz08sHfpj9B3Axds4YIjXPAEFwxwwREuOMIFe7hgAxf8B1zwBlweo69v9w_fvCe-5waRcLhcEcE5E6zSshBdJvKOaQYhsatzymvWFCLLqWK8q7SuiprpPJOZEDStZNVUwpzVn6AtWFPvIJwq0Widd1XK0qLgDeeyZmUnlUyFuW0XkfC52jMnrdJeZ6ZdVIdv2vrtodv2tQCUa-98esOVnqE7E6Cfo63V8ly_QLflxaofly89Sn4DqpePFg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+order+symmetric+algorithms+for+nonlinear+dynamical+systems+with+non-holonomic+constraints&rft.jtitle=Mathematics+and+computers+in+simulation&rft.au=Man%2C+Shumin&rft.au=Gao%2C+Qiang&rft.au=Zhong%2C+Wanxie&rft.date=2023-10-01&rft.issn=0378-4754&rft.volume=212&rft.spage=524&rft.epage=547&rft_id=info:doi/10.1016%2Fj.matcom.2023.05.016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matcom_2023_05_016 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4754&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4754&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4754&client=summon |