High order symmetric algorithms for nonlinear dynamical systems with non-holonomic constraints

Based on the Lagrange–d’Alembert principle and a modified Lagrange–d’Alembert principle, two kinds of symmetric algorithms with arbitrary high order are proposed for non-holonomic systems. The modified Lagrange–d’Alembert principle is constructed by adding an augment term to the Lagrange–d’Alembert...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics and computers in simulation Ročník 212; s. 524 - 547
Hlavní autoři: Man, Shumin, Gao, Qiang, Zhong, Wanxie
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.10.2023
Témata:
ISSN:0378-4754, 1872-7166
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Based on the Lagrange–d’Alembert principle and a modified Lagrange–d’Alembert principle, two kinds of symmetric algorithms with arbitrary high order are proposed for non-holonomic systems. The modified Lagrange–d’Alembert principle is constructed by adding an augment term to the Lagrange–d’Alembert principle, so that the non-holonomic constraints can be directly derived from variation. The high order algorithms are constructed by: (1) choosing control points to approximate generalized coordinates and Lagrange multipliers; (2) performing quadrature rules to approximate integrals; (3) choosing constraint points to satisfy non-holonomic constraints. The order of the presented algorithms is investigated numerically. The main factors to affect the accuracy of proposed algorithm were analyzed. Furthermore, the numerical algorithms are proven to be symmetric and can satisfy non-holonomic constraints with high precision.
AbstractList Based on the Lagrange–d’Alembert principle and a modified Lagrange–d’Alembert principle, two kinds of symmetric algorithms with arbitrary high order are proposed for non-holonomic systems. The modified Lagrange–d’Alembert principle is constructed by adding an augment term to the Lagrange–d’Alembert principle, so that the non-holonomic constraints can be directly derived from variation. The high order algorithms are constructed by: (1) choosing control points to approximate generalized coordinates and Lagrange multipliers; (2) performing quadrature rules to approximate integrals; (3) choosing constraint points to satisfy non-holonomic constraints. The order of the presented algorithms is investigated numerically. The main factors to affect the accuracy of proposed algorithm were analyzed. Furthermore, the numerical algorithms are proven to be symmetric and can satisfy non-holonomic constraints with high precision.
Author Zhong, Wanxie
Man, Shumin
Gao, Qiang
Author_xml – sequence: 1
  givenname: Shumin
  surname: Man
  fullname: Man, Shumin
  email: shumin.man@intesim.com
– sequence: 2
  givenname: Qiang
  surname: Gao
  fullname: Gao, Qiang
  email: qgao@dlut.edu.cn
– sequence: 3
  givenname: Wanxie
  surname: Zhong
  fullname: Zhong, Wanxie
  email: zwoffice@dlut.edu.cn
BookMark eNp9UM1KAzEQDlLBWn0DD3mBXfO32d2LIEWtUPCiV0OSnW1TdhNJgtK3N6WePc3w_c3wXaOFDx4QuqOkpoTK-0M962zDXDPCeE2auoAXaEm7llUtlXKBloS3XSXaRlyh65QOhJCyN0v0uXG7PQ5xgIjTcZ4hR2exnnYhuryfEx5DxOXc5DzoiIej17OzeirilKHwP0V2ElT7MAUfColt8ClH7XxON-hy1FOC27-5Qh_PT-_rTbV9e3ldP24ry5omV0br3vQSrDAjNXzsoW94N7ac6bbvhKGcDb0eJYAUbQ-cWmoMI9LKThpBKF8hcc61MaQUYVRf0c06HhUl6tSROqhzR-rUkSKNKmCxPZxtUH77dhBVsg68hcFFsFkNwf0f8AuMtXaR
Cites_doi 10.1016/S0167-2789(97)00051-1
10.1109/ROBOT.1994.351153
10.1088/0305-4470/39/19/S01
10.1088/0951-7715/21/8/009
10.1007/s11071-011-0134-z
10.3934/jgm.2012.4.137
10.1093/imanum/drq027
10.1016/j.cma.2005.01.027
10.1002/nme.361
10.1007/s00211-022-01283-2
10.1017/S096249290100006X
10.1109/ICSMC.2004.1401053
10.1063/1.4820817
10.1080/00207177008905922
10.1287/opre.15.1.139
10.1002/1097-0207(20001210)49:10<1295::AID-NME993>3.0.CO;2-W
10.1016/S0393-0440(00)00018-8
10.1080/14689360802609344
10.1016/S0377-0427(00)00393-9
10.1134/S1560354717040062
10.1109/CDC.1993.325681
10.1063/1.532892
10.1063/1.3067728
10.1007/s00205-002-0212-y
10.1088/0305-4470/39/19/S02
10.1007/BF03322542
10.1007/s10444-017-9520-5
10.3166/ejc.10.515-521
10.1088/0951-7715/18/5/017
10.1088/0951-7715/14/5/322
10.1016/0167-2789(94)90046-9
10.1007/s00332-005-0698-1
10.1063/1.3241222
10.1109/CICA.2009.4982776
10.1007/s00211-020-01126-y
10.1137/S1064827595293223
10.1088/0951-7715/12/6/314
ContentType Journal Article
Copyright 2023 International Association for Mathematics and Computers in Simulation (IMACS)
Copyright_xml – notice: 2023 International Association for Mathematics and Computers in Simulation (IMACS)
DBID AAYXX
CITATION
DOI 10.1016/j.matcom.2023.05.016
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7166
EndPage 547
ExternalDocumentID 10_1016_j_matcom_2023_05_016
S0378475423002215
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
63O
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c255t-baa9b96ec4bf1b3f9e9538f732a7984b132d9af6ee6479e31c1bb206c686b4013
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001011956300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-4754
IngestDate Sat Nov 29 07:14:04 EST 2025
Fri Feb 23 02:37:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Variational integrator
High-order methods
Symmetric
Lagrange–d’Alembert principle
Non-holonomic systems
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c255t-baa9b96ec4bf1b3f9e9538f732a7984b132d9af6ee6479e31c1bb206c686b4013
PageCount 24
ParticipantIDs crossref_primary_10_1016_j_matcom_2023_05_016
elsevier_sciencedirect_doi_10_1016_j_matcom_2023_05_016
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationTitle Mathematics and computers in simulation
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Alber, Hu, Rosenthal (b1) 1997
Pandolfi, Kane, Marsden, Ortiz (b45) 2010; 53
de Diego, de Almagro (b17) 2018
Kane, Marsden, Ortiz, West (b32) 2000; 49
Modin, Verdier (b43) 2020; 145
Reich (b46) 1994; 76
N. Sarkar, X. Yun, V. Kumar, Dynamic path following: a new control algorithm for mobile robots, in: Proceedings of the IEEE Conference on Decision and Control, 1993, pp. 2670–2675.
C.F. Chang, C.I. Huang, L.C. Fu, Nonlinear control of a wheeled mobile robot with nonholonomic constraints, in: IEEE International Conference on Systems, Man and Cybernetics, 2004, pp. 5404–5410.
Goldstein, Poole, Safko (b24) 2002
Fernandez, Bloch, Olver (b20) 2013; 4
Marsden, Ratiu (b39) 1994
Bridges, Reich (b9) 2006; 39
Y. Tian, N. Sidek, N. Sarkar, Modeling and control of a nonholonomic Wheeled Mobile Robot with wheel slip dynamics, in: IEEE Symposium on Computational Intelligence in Control & Automation, 2009, pp. 7–14.
Schultz, Flaßkamp, Murphey (b48) 2017; 12
Bloch, Marsden, Zenkov (b7) 2009; 24
Betsch (b4) 2006; 195
Ferraro, Iglesias, Martín de Diego (b21) 2008; 21
Wenger, Ober-Blöbaum, Leyendecker (b52) 2017; 43
Cortes (b15) 2012; 9
J. Ostrowski, A. Lewis, R. Murray, J. Burdick, Nonholonomic mechanics and locomotion: the snakeboard example, in: IEEE International Conference on Robotics and Automation, 2002, pp. 2391–2397.
Kane, Marsden, Ortiz (b31) 1999; 40
Lew, Marsden, Ortiz, West (b35) 2003; 167
Cadzow (b10) 1970; 11
De Leon, Martín, Santamaría-Merino (b18) 2004; 10
Hairer, Lubich, Wanner (b25) 2006
Jordan, Polak (b30) 1964; 17
Loan (b36) 2000; 123
L.O. Jay, T.E. Simos, On Modified Newton Iterations for SPARK Methods Applied to Constrained Systems in Mechanics, in: AIP Numerical Analysis and Applied Mathematics: International Conference on Numerical Analysis and Applied Mathematics, 2009.
Cortes, Martinez (b16) 2001; 14
Marsden, West (b40) 2001; 10
Simoes, Marrero, Diego (b49) 2022; 151
Marsden, Pekarsky, Shkoller (b38) 2000; 36
Goldstein, Poole, Safko (b23) 1952; 5
Betsch, Hesch, SäNger, Uhlar (b5) 2010; 5
Kobilarov, Diego, Ferraro (b33) 2010; 50
Wendlandt, Marsden (b51) 1997; 106
Campion, Bastin, D’Andrea-Novel (b12) 1996; 12
Hwang, Fan (b27) 1967; 15
Arnold (b2) 1989
Marsden, Pekarsky, Shkoller (b37) 1999; 12
He, Wu, Mei (b26) 2016; 87
Borisov, Mamaev (b8) 2017; 22
Colombo, Diego, Zuccalli (b14) 2013; 54
Cai (b11) 2011; 69
Fedorov, Yuri, Zenkov, Dmitry (b19) 2004; 18
Mclachlan, Quispel (b42) 2006; 39
Jay (b28) 1998; 20
Ferraro, Iglesias, Diego (b22) 2009
Mclachlan, Perlmutter (b41) 2006; 16
Balasubramanian (b3) 2012; 67
Bloch, Baillieul, Crouch, Marsden (b6) 2003
Leok, Zhang (b34) 2010; 31
Marsden (10.1016/j.matcom.2023.05.016_b40) 2001; 10
Modin (10.1016/j.matcom.2023.05.016_b43) 2020; 145
de Diego (10.1016/j.matcom.2023.05.016_b17) 2018
Kobilarov (10.1016/j.matcom.2023.05.016_b33) 2010; 50
Ferraro (10.1016/j.matcom.2023.05.016_b22) 2009
Mclachlan (10.1016/j.matcom.2023.05.016_b41) 2006; 16
Hairer (10.1016/j.matcom.2023.05.016_b25) 2006
Cortes (10.1016/j.matcom.2023.05.016_b16) 2001; 14
Bridges (10.1016/j.matcom.2023.05.016_b9) 2006; 39
Balasubramanian (10.1016/j.matcom.2023.05.016_b3) 2012; 67
Cadzow (10.1016/j.matcom.2023.05.016_b10) 1970; 11
Hwang (10.1016/j.matcom.2023.05.016_b27) 1967; 15
10.1016/j.matcom.2023.05.016_b29
Fedorov (10.1016/j.matcom.2023.05.016_b19) 2004; 18
Goldstein (10.1016/j.matcom.2023.05.016_b23) 1952; 5
Wenger (10.1016/j.matcom.2023.05.016_b52) 2017; 43
Pandolfi (10.1016/j.matcom.2023.05.016_b45) 2010; 53
Marsden (10.1016/j.matcom.2023.05.016_b38) 2000; 36
Campion (10.1016/j.matcom.2023.05.016_b12) 1996; 12
Fernandez (10.1016/j.matcom.2023.05.016_b20) 2013; 4
Loan (10.1016/j.matcom.2023.05.016_b36) 2000; 123
10.1016/j.matcom.2023.05.016_b50
Marsden (10.1016/j.matcom.2023.05.016_b37) 1999; 12
Ferraro (10.1016/j.matcom.2023.05.016_b21) 2008; 21
Betsch (10.1016/j.matcom.2023.05.016_b5) 2010; 5
Colombo (10.1016/j.matcom.2023.05.016_b14) 2013; 54
Jay (10.1016/j.matcom.2023.05.016_b28) 1998; 20
Borisov (10.1016/j.matcom.2023.05.016_b8) 2017; 22
Arnold (10.1016/j.matcom.2023.05.016_b2) 1989
Cai (10.1016/j.matcom.2023.05.016_b11) 2011; 69
10.1016/j.matcom.2023.05.016_b13
Betsch (10.1016/j.matcom.2023.05.016_b4) 2006; 195
Alber (10.1016/j.matcom.2023.05.016_b1) 1997
Leok (10.1016/j.matcom.2023.05.016_b34) 2010; 31
Bloch (10.1016/j.matcom.2023.05.016_b7) 2009; 24
Kane (10.1016/j.matcom.2023.05.016_b31) 1999; 40
Schultz (10.1016/j.matcom.2023.05.016_b48) 2017; 12
De Leon (10.1016/j.matcom.2023.05.016_b18) 2004; 10
Reich (10.1016/j.matcom.2023.05.016_b46) 1994; 76
Goldstein (10.1016/j.matcom.2023.05.016_b24) 2002
10.1016/j.matcom.2023.05.016_b47
Kane (10.1016/j.matcom.2023.05.016_b32) 2000; 49
He (10.1016/j.matcom.2023.05.016_b26) 2016; 87
10.1016/j.matcom.2023.05.016_b44
Simoes (10.1016/j.matcom.2023.05.016_b49) 2022; 151
Mclachlan (10.1016/j.matcom.2023.05.016_b42) 2006; 39
Cortes (10.1016/j.matcom.2023.05.016_b15) 2012; 9
Lew (10.1016/j.matcom.2023.05.016_b35) 2003; 167
Jordan (10.1016/j.matcom.2023.05.016_b30) 1964; 17
Marsden (10.1016/j.matcom.2023.05.016_b39) 1994
Bloch (10.1016/j.matcom.2023.05.016_b6) 2003
Wendlandt (10.1016/j.matcom.2023.05.016_b51) 1997; 106
References_xml – volume: 106
  start-page: 223
  year: 1997
  end-page: 246
  ident: b51
  article-title: Mechanical integrators derived from a discrete variational principle
  publication-title: Physica D
– year: 1994
  ident: b39
  article-title: Introduction to Mechanics and Symmetry
– volume: 43
  start-page: 1
  year: 2017
  end-page: 33
  ident: b52
  article-title: Construction and analysis of higher order variational integrators for dynamical systems with holonomic constraints
  publication-title: Adv. Comput. Math.
– volume: 5
  start-page: 470
  year: 2010
  end-page: 478
  ident: b5
  article-title: Variational integrators and energy-momentum schemes for flexible multibody dynamics
  publication-title: J. Comput. Nonlinear Dyn.
– year: 2003
  ident: b6
  article-title: Nonholonomic Mechanics and Control
– volume: 31
  start-page: 1497
  year: 2010
  end-page: 1532
  ident: b34
  article-title: Discrete Hamiltonian variational integrators
  publication-title: Ima J. Numer. Anal.
– year: 1997
  ident: b1
  article-title: Current and Future Directions in Applied Mathematics
– volume: 12
  start-page: 733
  year: 1996
  end-page: 769
  ident: b12
  article-title: Structural properties and classification of kinematic and dynamic models of wheeled mobile robots
  publication-title: Cent. Autom. Syst.
– volume: 50
  start-page: 61
  year: 2010
  end-page: 81
  ident: b33
  article-title: Simulating nonholonomic dynamics
  publication-title: Sema J.
– volume: 167
  start-page: 85
  year: 2003
  end-page: 146
  ident: b35
  article-title: Asynchronous variational integrators
  publication-title: Arch. Ration. Mech. Anal.
– volume: 76
  start-page: 375
  year: 1994
  end-page: 383
  ident: b46
  article-title: Momentum conserving symplectic integrators
  publication-title: Physica D
– volume: 69
  start-page: 487
  year: 2011
  end-page: 493
  ident: b11
  article-title: Conformal invariance of mei symmetry for the non-holonomic systems of non-Chetaev’s type
  publication-title: Nonlinear Dynam.
– reference: L.O. Jay, T.E. Simos, On Modified Newton Iterations for SPARK Methods Applied to Constrained Systems in Mechanics, in: AIP Numerical Analysis and Applied Mathematics: International Conference on Numerical Analysis and Applied Mathematics, 2009.
– reference: C.F. Chang, C.I. Huang, L.C. Fu, Nonlinear control of a wheeled mobile robot with nonholonomic constraints, in: IEEE International Conference on Systems, Man and Cybernetics, 2004, pp. 5404–5410.
– volume: 4
  start-page: 137
  year: 2013
  end-page: 163
  ident: b20
  article-title: Variational integrators from hamiltonizable nonholonomic systems
  publication-title: J. Geom. Mech.
– volume: 15
  start-page: 139
  year: 1967
  end-page: 146
  ident: b27
  article-title: A discrete version of pontryagin’s maximum principle
  publication-title: Oper. Res.
– volume: 54
  start-page: 322
  year: 2013
  end-page: 354
  ident: b14
  article-title: Higher-order discrete variational problems with constraints
  publication-title: J. Math. Phys.
– volume: 20
  start-page: 416
  year: 1998
  end-page: 446
  ident: b28
  article-title: Structure preservation for constrained dynamics with super partitioned additive Runge–Kutta methods
  publication-title: SIAM J. Sci. Comput.
– volume: 53
  start-page: 1801
  year: 2010
  end-page: 1829
  ident: b45
  article-title: Time-discretized variational formulation of non-smooth frictional contact
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 17
  start-page: 697
  year: 1964
  end-page: 711
  ident: b30
  article-title: Theory of a class of discrete optimal control systems
  publication-title: Int. J. Electron.
– year: 1989
  ident: b2
  article-title: Mathematical Methods of Classical Mechanics
– volume: 49
  start-page: 1295
  year: 2000
  end-page: 1325
  ident: b32
  article-title: Variational integrators and the newmark algorithm for conservative and dissipative mechanical systems
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 16
  start-page: 283
  year: 2006
  end-page: 328
  ident: b41
  article-title: Integrators for nonholonomic mechanical systems
  publication-title: J. Nonlinear Sci.
– volume: 12
  start-page: 1647
  year: 1999
  end-page: 1662
  ident: b37
  article-title: Discrete Euler-poincare and Lie-Poisson equations
  publication-title: Nonlinearity
– reference: Y. Tian, N. Sidek, N. Sarkar, Modeling and control of a nonholonomic Wheeled Mobile Robot with wheel slip dynamics, in: IEEE Symposium on Computational Intelligence in Control & Automation, 2009, pp. 7–14.
– volume: 14
  start-page: 1365
  year: 2001
  end-page: 1392
  ident: b16
  article-title: Non-holonomic integrators
  publication-title: Nonlinearity
– volume: 24
  start-page: 187
  year: 2009
  end-page: 222
  ident: b7
  article-title: Quasivelocities and symmetries in non-holonomic systems
  publication-title: Dyn. Stab. Syst.
– volume: 12
  year: 2017
  ident: b48
  article-title: Variational integrators for structure-preserving filtering
  publication-title: J. Comput. Nonlinear Dyn.
– volume: 10
  start-page: 515
  year: 2004
  end-page: 521
  ident: b18
  article-title: Geometric numerical integration of nonholonomic systems and optimal control problems
  publication-title: Eur. J. Control
– volume: 21
  start-page: 1911
  year: 2008
  end-page: 1928
  ident: b21
  article-title: Momentum and energy preserving integrators for nonholonomic dynamics
  publication-title: Nonlinearity
– volume: 195
  start-page: 7020
  year: 2006
  end-page: 7035
  ident: b4
  article-title: Energy-consistent numerical integration of mechanical systems with mixed holonomic and nonholonomic constraints
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 145
  start-page: 405
  year: 2020
  end-page: 435
  ident: b43
  article-title: What makes nonholonomic integrators work?
  publication-title: Numer. Math.
– volume: 22
  start-page: 435
  year: 2017
  end-page: 447
  ident: b8
  article-title: An inhomogeneous Chaplygin sleigh
  publication-title: Regul. Chaotic Dyn.
– volume: 151
  start-page: 49
  year: 2022
  end-page: 98
  ident: b49
  article-title: Exact discrete Lagrangian mechanics for nonholonomic mechanics
  publication-title: Numer. Math.
– volume: 39
  start-page: 5251
  year: 2006
  end-page: 5285
  ident: b42
  article-title: Geometric integrators for ODEs
  publication-title: J. Phys. A
– volume: 5
  start-page: 19
  year: 1952
  end-page: 20
  ident: b23
  article-title: Classical mechanics
  publication-title: Phys. Today
– volume: 87
  start-page: 1
  year: 2016
  end-page: 10
  ident: b26
  article-title: Variational integrators for fractional birkhoffian systems
  publication-title: Nonlinear Dynam.
– reference: J. Ostrowski, A. Lewis, R. Murray, J. Burdick, Nonholonomic mechanics and locomotion: the snakeboard example, in: IEEE International Conference on Robotics and Automation, 2002, pp. 2391–2397.
– volume: 9
  start-page: 189
  year: 2012
  end-page: 199
  ident: b15
  article-title: Energy conserving nonholonomic integrators
  publication-title: Discrete Contin. Dyn. Syst. - A
– year: 2018
  ident: b17
  article-title: High-order geometric methods for nonholonomic mechanical systems
– volume: 11
  start-page: 393
  year: 1970
  end-page: 407
  ident: b10
  article-title: Discrete calculus of variations
  publication-title: Internat. J. Control
– volume: 18
  start-page: 2211
  year: 2004
  end-page: 2241
  ident: b19
  article-title: Discrete nonholonomic LL systems on Lie groups
  publication-title: Nonlinearity
– year: 2006
  ident: b25
  article-title: Geometric Numerical Integration : Structure-Preserving Algorithms for Ordinary Differential Equations
– volume: 123
  start-page: 85
  year: 2000
  end-page: 100
  ident: b36
  article-title: The ubiquitous kronecker product
  publication-title: J. Comput. Appl. Math.
– volume: 36
  start-page: 140
  year: 2000
  end-page: 151
  ident: b38
  article-title: Symmetry reduction of discrete Lagrangian mechanics on Lie groups
  publication-title: J. Geom. Phys.
– volume: 10
  start-page: 357
  year: 2001
  end-page: 514
  ident: b40
  article-title: Discrete mechanics and variational integrators
  publication-title: Acta Numer.
– year: 2002
  ident: b24
  article-title: Classical Mechanics
– volume: 67
  start-page: 2123
  year: 2012
  end-page: 2138
  ident: b3
  article-title: An approximate decoupled dynamics and kinematics analysis of legless locomotion
  publication-title: Nonlinear Dynam.
– reference: N. Sarkar, X. Yun, V. Kumar, Dynamic path following: a new control algorithm for mobile robots, in: Proceedings of the IEEE Conference on Decision and Control, 1993, pp. 2670–2675.
– volume: 39
  start-page: 5287
  year: 2006
  ident: b9
  article-title: Numerical methods for Hamiltonian PDEs
  publication-title: J. Phys. A
– volume: 40
  start-page: 3353
  year: 1999
  end-page: 3371
  ident: b31
  article-title: Symplectic-energy–momentum preserving variational integrators
  publication-title: J. Math. Phys.
– start-page: 220
  year: 2009
  end-page: 229
  ident: b22
  article-title: Numerical and geometric aspects of the nonholonomic shake and rattle methods
  publication-title: Discrete Contin. Dyn. Syst.
– volume: 106
  start-page: 223
  issue: 3–4
  year: 1997
  ident: 10.1016/j.matcom.2023.05.016_b51
  article-title: Mechanical integrators derived from a discrete variational principle
  publication-title: Physica D
  doi: 10.1016/S0167-2789(97)00051-1
– ident: 10.1016/j.matcom.2023.05.016_b44
  doi: 10.1109/ROBOT.1994.351153
– volume: 39
  start-page: 5251
  issue: 19
  year: 2006
  ident: 10.1016/j.matcom.2023.05.016_b42
  article-title: Geometric integrators for ODEs
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/39/19/S01
– volume: 21
  start-page: 1911
  issue: 8
  year: 2008
  ident: 10.1016/j.matcom.2023.05.016_b21
  article-title: Momentum and energy preserving integrators for nonholonomic dynamics
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/21/8/009
– volume: 17
  start-page: 697
  issue: 6
  year: 1964
  ident: 10.1016/j.matcom.2023.05.016_b30
  article-title: Theory of a class of discrete optimal control systems
  publication-title: Int. J. Electron.
– volume: 67
  start-page: 2123
  issue: 3
  year: 2012
  ident: 10.1016/j.matcom.2023.05.016_b3
  article-title: An approximate decoupled dynamics and kinematics analysis of legless locomotion
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-011-0134-z
– volume: 4
  start-page: 137
  issue: 2
  year: 2013
  ident: 10.1016/j.matcom.2023.05.016_b20
  article-title: Variational integrators from hamiltonizable nonholonomic systems
  publication-title: J. Geom. Mech.
  doi: 10.3934/jgm.2012.4.137
– volume: 31
  start-page: 1497
  issue: 4
  year: 2010
  ident: 10.1016/j.matcom.2023.05.016_b34
  article-title: Discrete Hamiltonian variational integrators
  publication-title: Ima J. Numer. Anal.
  doi: 10.1093/imanum/drq027
– volume: 5
  start-page: 470
  issue: 3
  year: 2010
  ident: 10.1016/j.matcom.2023.05.016_b5
  article-title: Variational integrators and energy-momentum schemes for flexible multibody dynamics
  publication-title: J. Comput. Nonlinear Dyn.
– volume: 87
  start-page: 1
  issue: 4
  year: 2016
  ident: 10.1016/j.matcom.2023.05.016_b26
  article-title: Variational integrators for fractional birkhoffian systems
  publication-title: Nonlinear Dynam.
– volume: 195
  start-page: 7020
  issue: 50–51
  year: 2006
  ident: 10.1016/j.matcom.2023.05.016_b4
  article-title: Energy-consistent numerical integration of mechanical systems with mixed holonomic and nonholonomic constraints
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2005.01.027
– volume: 53
  start-page: 1801
  issue: 8
  year: 2010
  ident: 10.1016/j.matcom.2023.05.016_b45
  article-title: Time-discretized variational formulation of non-smooth frictional contact
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.361
– volume: 151
  start-page: 49
  issue: 1
  year: 2022
  ident: 10.1016/j.matcom.2023.05.016_b49
  article-title: Exact discrete Lagrangian mechanics for nonholonomic mechanics
  publication-title: Numer. Math.
  doi: 10.1007/s00211-022-01283-2
– volume: 10
  start-page: 357
  issue: 1
  year: 2001
  ident: 10.1016/j.matcom.2023.05.016_b40
  article-title: Discrete mechanics and variational integrators
  publication-title: Acta Numer.
  doi: 10.1017/S096249290100006X
– ident: 10.1016/j.matcom.2023.05.016_b13
  doi: 10.1109/ICSMC.2004.1401053
– volume: 54
  start-page: 322
  issue: 9
  year: 2013
  ident: 10.1016/j.matcom.2023.05.016_b14
  article-title: Higher-order discrete variational problems with constraints
  publication-title: J. Math. Phys.
  doi: 10.1063/1.4820817
– volume: 11
  start-page: 393
  issue: 3
  year: 1970
  ident: 10.1016/j.matcom.2023.05.016_b10
  article-title: Discrete calculus of variations
  publication-title: Internat. J. Control
  doi: 10.1080/00207177008905922
– volume: 15
  start-page: 139
  issue: 1
  year: 1967
  ident: 10.1016/j.matcom.2023.05.016_b27
  article-title: A discrete version of pontryagin’s maximum principle
  publication-title: Oper. Res.
  doi: 10.1287/opre.15.1.139
– year: 2006
  ident: 10.1016/j.matcom.2023.05.016_b25
– volume: 49
  start-page: 1295
  issue: 10
  year: 2000
  ident: 10.1016/j.matcom.2023.05.016_b32
  article-title: Variational integrators and the newmark algorithm for conservative and dissipative mechanical systems
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/1097-0207(20001210)49:10<1295::AID-NME993>3.0.CO;2-W
– volume: 12
  issue: 2
  year: 2017
  ident: 10.1016/j.matcom.2023.05.016_b48
  article-title: Variational integrators for structure-preserving filtering
  publication-title: J. Comput. Nonlinear Dyn.
– volume: 36
  start-page: 140
  issue: 1
  year: 2000
  ident: 10.1016/j.matcom.2023.05.016_b38
  article-title: Symmetry reduction of discrete Lagrangian mechanics on Lie groups
  publication-title: J. Geom. Phys.
  doi: 10.1016/S0393-0440(00)00018-8
– volume: 24
  start-page: 187
  issue: 2
  year: 2009
  ident: 10.1016/j.matcom.2023.05.016_b7
  article-title: Quasivelocities and symmetries in non-holonomic systems
  publication-title: Dyn. Stab. Syst.
  doi: 10.1080/14689360802609344
– volume: 123
  start-page: 85
  issue: 1
  year: 2000
  ident: 10.1016/j.matcom.2023.05.016_b36
  article-title: The ubiquitous kronecker product
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(00)00393-9
– volume: 22
  start-page: 435
  issue: 4
  year: 2017
  ident: 10.1016/j.matcom.2023.05.016_b8
  article-title: An inhomogeneous Chaplygin sleigh
  publication-title: Regul. Chaotic Dyn.
  doi: 10.1134/S1560354717040062
– volume: 69
  start-page: 487
  issue: 1–2
  year: 2011
  ident: 10.1016/j.matcom.2023.05.016_b11
  article-title: Conformal invariance of mei symmetry for the non-holonomic systems of non-Chetaev’s type
  publication-title: Nonlinear Dynam.
– year: 2002
  ident: 10.1016/j.matcom.2023.05.016_b24
– ident: 10.1016/j.matcom.2023.05.016_b47
  doi: 10.1109/CDC.1993.325681
– volume: 12
  start-page: 733
  issue: 1
  year: 1996
  ident: 10.1016/j.matcom.2023.05.016_b12
  article-title: Structural properties and classification of kinematic and dynamic models of wheeled mobile robots
  publication-title: Cent. Autom. Syst.
– year: 2018
  ident: 10.1016/j.matcom.2023.05.016_b17
– volume: 40
  start-page: 3353
  issue: 7
  year: 1999
  ident: 10.1016/j.matcom.2023.05.016_b31
  article-title: Symplectic-energy–momentum preserving variational integrators
  publication-title: J. Math. Phys.
  doi: 10.1063/1.532892
– volume: 5
  start-page: 19
  issue: 9
  year: 1952
  ident: 10.1016/j.matcom.2023.05.016_b23
  article-title: Classical mechanics
  publication-title: Phys. Today
  doi: 10.1063/1.3067728
– volume: 167
  start-page: 85
  issue: 2
  year: 2003
  ident: 10.1016/j.matcom.2023.05.016_b35
  article-title: Asynchronous variational integrators
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-002-0212-y
– volume: 39
  start-page: 5287
  issue: 19
  year: 2006
  ident: 10.1016/j.matcom.2023.05.016_b9
  article-title: Numerical methods for Hamiltonian PDEs
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/39/19/S02
– volume: 50
  start-page: 61
  issue: 1
  year: 2010
  ident: 10.1016/j.matcom.2023.05.016_b33
  article-title: Simulating nonholonomic dynamics
  publication-title: Sema J.
  doi: 10.1007/BF03322542
– year: 1989
  ident: 10.1016/j.matcom.2023.05.016_b2
– year: 1997
  ident: 10.1016/j.matcom.2023.05.016_b1
– volume: 43
  start-page: 1
  issue: 5
  year: 2017
  ident: 10.1016/j.matcom.2023.05.016_b52
  article-title: Construction and analysis of higher order variational integrators for dynamical systems with holonomic constraints
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-017-9520-5
– year: 2003
  ident: 10.1016/j.matcom.2023.05.016_b6
– volume: 10
  start-page: 515
  issue: 5
  year: 2004
  ident: 10.1016/j.matcom.2023.05.016_b18
  article-title: Geometric numerical integration of nonholonomic systems and optimal control problems
  publication-title: Eur. J. Control
  doi: 10.3166/ejc.10.515-521
– volume: 18
  start-page: 2211
  issue: 5
  year: 2004
  ident: 10.1016/j.matcom.2023.05.016_b19
  article-title: Discrete nonholonomic LL systems on Lie groups
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/18/5/017
– volume: 14
  start-page: 1365
  issue: 5
  year: 2001
  ident: 10.1016/j.matcom.2023.05.016_b16
  article-title: Non-holonomic integrators
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/14/5/322
– volume: 76
  start-page: 375
  issue: 4
  year: 1994
  ident: 10.1016/j.matcom.2023.05.016_b46
  article-title: Momentum conserving symplectic integrators
  publication-title: Physica D
  doi: 10.1016/0167-2789(94)90046-9
– volume: 16
  start-page: 283
  issue: 4
  year: 2006
  ident: 10.1016/j.matcom.2023.05.016_b41
  article-title: Integrators for nonholonomic mechanical systems
  publication-title: J. Nonlinear Sci.
  doi: 10.1007/s00332-005-0698-1
– ident: 10.1016/j.matcom.2023.05.016_b29
  doi: 10.1063/1.3241222
– ident: 10.1016/j.matcom.2023.05.016_b50
  doi: 10.1109/CICA.2009.4982776
– start-page: 220
  year: 2009
  ident: 10.1016/j.matcom.2023.05.016_b22
  article-title: Numerical and geometric aspects of the nonholonomic shake and rattle methods
  publication-title: Discrete Contin. Dyn. Syst.
– volume: 145
  start-page: 405
  year: 2020
  ident: 10.1016/j.matcom.2023.05.016_b43
  article-title: What makes nonholonomic integrators work?
  publication-title: Numer. Math.
  doi: 10.1007/s00211-020-01126-y
– volume: 20
  start-page: 416
  issue: 2
  year: 1998
  ident: 10.1016/j.matcom.2023.05.016_b28
  article-title: Structure preservation for constrained dynamics with super partitioned additive Runge–Kutta methods
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827595293223
– volume: 12
  start-page: 1647
  issue: 6
  year: 1999
  ident: 10.1016/j.matcom.2023.05.016_b37
  article-title: Discrete Euler-poincare and Lie-Poisson equations
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/12/6/314
– volume: 9
  start-page: 189
  issue: 1
  year: 2012
  ident: 10.1016/j.matcom.2023.05.016_b15
  article-title: Energy conserving nonholonomic integrators
  publication-title: Discrete Contin. Dyn. Syst. - A
– year: 1994
  ident: 10.1016/j.matcom.2023.05.016_b39
SSID ssj0007545
Score 2.3519769
Snippet Based on the Lagrange–d’Alembert principle and a modified Lagrange–d’Alembert principle, two kinds of symmetric algorithms with arbitrary high order are...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 524
SubjectTerms High-order methods
Lagrange–d’Alembert principle
Non-holonomic systems
Symmetric
Variational integrator
Title High order symmetric algorithms for nonlinear dynamical systems with non-holonomic constraints
URI https://dx.doi.org/10.1016/j.matcom.2023.05.016
Volume 212
WOSCitedRecordID wos001011956300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: AIEXJ
  dateStart: 19950501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbpIde-i5JX-jQm1Gx5aeOoaQvaGghpXuq0cuJQ9YN603YQn98R09vmxCaQy9mEWvJ9nzMSMM33yD0KpPKSJ5QUtCMkyLXinDFcgKxuUk7SpmSyjabqA8OmvmcfZ7NfoVamIvTehia9Zqd_VdTwxgY25TO3sDccVIYgN9gdLiC2eH6T4Y3zI3EKmom48_FwnTMkgk_Pfqx7FfHTn4hGZxABl8mynWkN1UjTrvcZWbhD8T4RVu0bKjpo-0l4WSfwmb2U5R8HUN5nO0QYSm2Y7_wncGmpLfLtR6fL_o4-I7bXO0XQOnRlMT2POFvfFj3ejMxQSeKWyzIqk3izmlEB2dLPWnaucvS1U_7yFs67c1LTt3lF05ewwsZho9Zy6mtXqGh_Vdsi4zDQGY7ad0srZmlTcsWBm-hbVqXDNz69t6H_fnHGMnh2S0FNrxIKL20_MDLT3P11mZju3J4H9315wy85_DxAM308BDdCz08sHfpj9B3Axds4YIjXPAEFwxwwREuOMIFe7hgAxf8B1zwBlweo69v9w_fvCe-5waRcLhcEcE5E6zSshBdJvKOaQYhsatzymvWFCLLqWK8q7SuiprpPJOZEDStZNVUwpzVn6AtWFPvIJwq0Widd1XK0qLgDeeyZmUnlUyFuW0XkfC52jMnrdJeZ6ZdVIdv2vrtodv2tQCUa-98esOVnqE7E6Cfo63V8ly_QLflxaofly89Sn4DqpePFg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+order+symmetric+algorithms+for+nonlinear+dynamical+systems+with+non-holonomic+constraints&rft.jtitle=Mathematics+and+computers+in+simulation&rft.au=Man%2C+Shumin&rft.au=Gao%2C+Qiang&rft.au=Zhong%2C+Wanxie&rft.date=2023-10-01&rft.issn=0378-4754&rft.volume=212&rft.spage=524&rft.epage=547&rft_id=info:doi/10.1016%2Fj.matcom.2023.05.016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matcom_2023_05_016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4754&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4754&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4754&client=summon