Masked graph autoencoder-based multi-agent dynamic relational inference model for trajectory prediction

Dynamic relational inference models uncover potential complex system interactions, enabling trajectory prediction and improving the interpretability of underlying system dynamics. However, the existing models cannot accurately infer the structural evolution trends and complete dynamic processes of t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neurocomputing (Amsterdam) Ročník 634; s. 129922
Hlavní autori: Zhao, Fuyuan, Cao, Xiangang, Zhao, Jiangbin, Duan, Yong, Yang, Xin, Zhang, Xinyuan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 14.06.2025
Predmet:
ISSN:0925-2312
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Dynamic relational inference models uncover potential complex system interactions, enabling trajectory prediction and improving the interpretability of underlying system dynamics. However, the existing models cannot accurately infer the structural evolution trends and complete dynamic processes of temporal networks. Additionally, when uncertain noisy data are input, more serious graph noise problems, including redundant and noisy edges, occur, undermining the stability of interaction inference and reducing the accuracy of trajectory prediction. Therefore, a masked graph autoencoder-based multi-agent dynamic relational inference (MGAE-MDRI) trajectory prediction model is proposed herein. The mask reconstruction module is integrated into MDRI, where the partial edges of the interaction graph, representing multi-agent dynamic evolution, are masked through sampling. The reconstruction strategy leverages path and degree considerations to mitigate the impact of graph noise on the network topology. Furthermore, a graph attention network-based path sampler with a preference random walk is introduced, effectively combining network topology and node attribute features to construct a topologically weighted degree matrix and assign optimal mask sampling weights to neighboring nodes. Experiments conducted on four standard public datasets demonstrate that MGAE-MDRI outperforms the state-of-the-art models, achieving better trajectory prediction robustness and for complex multi-agent systems.
AbstractList Dynamic relational inference models uncover potential complex system interactions, enabling trajectory prediction and improving the interpretability of underlying system dynamics. However, the existing models cannot accurately infer the structural evolution trends and complete dynamic processes of temporal networks. Additionally, when uncertain noisy data are input, more serious graph noise problems, including redundant and noisy edges, occur, undermining the stability of interaction inference and reducing the accuracy of trajectory prediction. Therefore, a masked graph autoencoder-based multi-agent dynamic relational inference (MGAE-MDRI) trajectory prediction model is proposed herein. The mask reconstruction module is integrated into MDRI, where the partial edges of the interaction graph, representing multi-agent dynamic evolution, are masked through sampling. The reconstruction strategy leverages path and degree considerations to mitigate the impact of graph noise on the network topology. Furthermore, a graph attention network-based path sampler with a preference random walk is introduced, effectively combining network topology and node attribute features to construct a topologically weighted degree matrix and assign optimal mask sampling weights to neighboring nodes. Experiments conducted on four standard public datasets demonstrate that MGAE-MDRI outperforms the state-of-the-art models, achieving better trajectory prediction robustness and for complex multi-agent systems.
ArticleNumber 129922
Author Yang, Xin
Zhang, Xinyuan
Duan, Yong
Zhao, Fuyuan
Cao, Xiangang
Zhao, Jiangbin
Author_xml – sequence: 1
  givenname: Fuyuan
  surname: Zhao
  fullname: Zhao, Fuyuan
  organization: School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
– sequence: 2
  givenname: Xiangang
  orcidid: 0000-0002-4799-9654
  surname: Cao
  fullname: Cao, Xiangang
  email: cao_xust@sina.com
  organization: School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
– sequence: 3
  givenname: Jiangbin
  surname: Zhao
  fullname: Zhao, Jiangbin
  organization: School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
– sequence: 4
  givenname: Yong
  surname: Duan
  fullname: Duan, Yong
  organization: School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
– sequence: 5
  givenname: Xin
  surname: Yang
  fullname: Yang, Xin
  organization: School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
– sequence: 6
  givenname: Xinyuan
  surname: Zhang
  fullname: Zhang, Xinyuan
  organization: School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
BookMark eNp9kE1OwzAQhb0oEi1wAxa-QILt1EmzQUIVf1IRG1hbE3tcHBK7slOk3h5XYc1qRjPznuZ9K7LwwSMht5yVnPH6ri89HnUYS8GELLloWyEWZMlaIQtRcXFJVin1jPEm75Zk_wbpGw3dRzh8UThOAb0OBmPRQcrz8ThMroA9-omak4fRaRpxgMkFDwN13mLMCqRjFg3UhkinCD3qKcQTPUQ0Tp9vr8mFhSHhzV-9Ip9Pjx_bl2L3_vy6fdgVWkg5FdBIW3W2tgC8rhsturUxFtumwa7Ljax0JVvU603bGMHRdIbzTdUxibaqgVdXZD376hhSimjVIboR4klxps6AVK9mQOoMSM2Asux-lmH-7cdhVEm7cy7jYs6iTHD_G_wChH54kA
Cites_doi 10.1093/nargab/lqac068
10.1109/CVPR42600.2020.00854
10.1016/j.neucom.2023.127117
10.1109/JSEN.2023.3264853
10.1109/TPAMI.2022.3178914
10.1109/TSMC.2020.3043192
10.1093/bib/bbad400
10.1145/3580305.3599546
10.1016/j.trc.2022.103946
10.1016/j.jksuci.2021.05.006
10.18576/amis/160304
10.1145/3539597.3570404
10.1093/bib/bbad406
10.1109/TKDE.2023.3335222
10.1109/TVT.2023.3273230
10.1016/j.eswa.2023.122499
10.1145/3583780.3614894
10.1016/j.inffus.2023.102024
10.1142/S0129183123500572
10.1016/j.compbiomed.2024.108073
10.1145/3534678.3539321
10.1016/j.neucom.2024.128631
10.12785/jsap/010202
10.1016/j.neucom.2022.03.051
10.1007/s11465-022-0736-9
10.1038/s41467-022-29331-3
10.1016/j.neunet.2023.11.005
10.1007/s41109-019-0194-4
10.18576/amis/160418
10.1145/3539618.3591692
10.1016/j.neucom.2023.127029
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2025.129922
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_neucom_2025_129922
S0925231225005946
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
WUQ
XPP
~HD
ID FETCH-LOGICAL-c255t-a75f3bf6faa1667c2b4ddfe977ebbdfe53c359ec4897d21edbd1183b05ef36a13
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001446308500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 08:00:55 EST 2025
Sat Apr 19 16:01:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Multi-agent
Masked graph autoencoder
Trajectory prediction
Dynamic relational inference
Graph attention network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c255t-a75f3bf6faa1667c2b4ddfe977ebbdfe53c359ec4897d21edbd1183b05ef36a13
ORCID 0000-0002-4799-9654
ParticipantIDs crossref_primary_10_1016_j_neucom_2025_129922
elsevier_sciencedirect_doi_10_1016_j_neucom_2025_129922
PublicationCentury 2000
PublicationDate 2025-06-14
PublicationDateYYYYMMDD 2025-06-14
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-14
  day: 14
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References N. Watters, D. Zoran, T. Weber, P. Battaglia, R. Pascanu, A. Tacchetti, Visual interaction networks: learning a physics simulator from video, in: Proceedings of the 31st Conference on Neural Information Processing Systems, 2017, pp. 4540-4548. 〈http://doi.org/abs/1706.01433〉.
S.V. Steenkiste, M. Chang, K. Greff, J. Schmidhuber, Relational neural expectation maximization: Unsupervised discovery of objects and their interactions, in: Proceedings of the International Conference on Learning Representations, 2018, pp.1-15. 〈http://doi.org/1802.10353〉.
[dataset] Carnegie Mellon University Graphics Lab, CMU, Carnegie-Mellon Motion Capture Database, 2003, http://mocap.cs.cmu.edu.
Bryan, Rami, Steven (bib21) 2014
Mi, Zhang, Zeng, Lin (bib6) 2024; 569
Q.Y. Tan, N.H. Liu, X. Huang, S.H. Choi, L. Li, R. Chen, X. Hu, S2GAE: Self-supervised graph autoencoders are generalizable learners with graph masking, in: Proceedings of the the 16th ACM International Conference on Web Search and Data Mining, 2023, pp. 787-795.
J.R. Sun, Y.J. Fan, C.C. Yeh, W. Zhang, G. Chowdhary, Revealing the power of spatial-temporal masked graph autoencoders in multivariate time series forecasting, 2023, arXiv preprint arXiv: 2309. 15169.
Song, Li, Dun, Zhang, Cao, Ye (bib2) 2025; 611
F. Alet, E. Weng, T.L. Pérez, L.P. Kaelbling, Neural relational inference with fast modular meta-learning, in: Proceedings of the 33rd Conference on Neural Information Processing Systems, 2019, pp. 1-12. 〈http://doi.org/2310.07015〉.
Sun, Deng, Yang, Wang (bib22) 2022
Zhu, Wang, Han, Xu (bib29) 2022; 13
J.T. Li, R.F. Wu, W.B. Sun, L. Chen, S. Tian, L. Zhu, What's behind the mask: understanding masked graph modeling for graph autoencoders, in: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023, pp. 1268–1279. 〈http://doi.org/2205.10053〉.
C. Graber, A. Schwing, Dynamic neural relational inference, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020, pp. 8513-8522.
Tunstel, Cobo, Viedma, Rudas, Filev, Trajkovic, Chen, Pedrycz, Smith, Kozma (bib10) 2021; 51
Y. Hoshen, Vain: attentional multi-agent predictive modeling, in: Proceedings of the 31st Conference on Neural Information Processing Systems, 2017, pp. 2702-2712. 〈http://doi.org/abs/1706.06122〉.
J.C. Li, C.B. Hua, J. Park, H.B. Ma, V. Dax, M.J. Kochenderfer, Evolvehypergraph: Group-aware dynamic relational reasoning for trajectory prediction, 2022, arXiv preprint arXiv: 2208. 05470.
S. Ha, H. Jeong, Learning heterogeneous interaction strengths by trajectory prediction with graph neural network, 2022, arXiv preprint arXiv: 2208. 13179.
Wang, Feng, Li, Li, Wang, Sha, He, Li (bib45) 2024; 25
El-Sayed, Refaay, Ali, El-Melegy (bib53) 2022; 16
A. Santoro, D. Raposo, D.G. Barrett, M. Malinowski, R. Pascanu, P. Battaglia, T. Lillicrap, A simple neural network module for relational reasoning, in: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 1-10.
J.C. Li, F. Yang, M. Tomizuka, C. Choi, Evolvegraph: multi-agent trajectory prediction with dynamic relational reasoning, in: Proceedings of the 34th Conference on Neural Information Processing Systems, 2020, pp. 19783-19794.
M.Y. Chen, J. Zhang, Z. Zhang, L. Du, Q. Hu, S. Wang, J.Q. Zhu, Inference for network structure and dynamics from time series data via graph neural network, 2020, arXiv preprint arXiv: 2001. 06576.
Hou, He, Cen, Liu, Dong, Kharlamov, Tang (bib40) 2023
.
Wang, Jiang, Wu, Wang (bib31) 2023; 34
X.C. Yuan, C.H. Zhang, Y.J. Tian, C.X. Zhang, Navigating graph robust learning against all-intensity attacks, in: Proceedings of the 2nd AdvML Frontiers workshop at 40th International Conference on Machine Learning, 2023, pp. 1–1.
Y.W. Ye, L.H. Xia, C. Huang, Graph masked graph autoencoder for sequential recommendation, in: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2023, pp. 321–330.
S. Sukhbaatar, A. Szlam, R. Fergus, Learning multia gent communication with backpropagation, in: Proceedings of the 29th Conference on Neural Information Processing Systems, 2016, pp. 2252-2260. 〈http://doi.org/abs/1605.07736〉.
Berahmand, Nasiri, Forouzandeh, Forouzandeh, Li (bib23) 2022; 34
Chen, Hu, Nikdel, Mori, Savva (bib25) 2020
Z.Y. Hou, X. Liu, Y.K. Cen, Y.X. Dong, H.X. Yang, C.J. Wang, J. Tang, Graphmae: Self-supervised masked graph autoencoders, in: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022, pp. 594-604.
Tang, Wei, Li, Zhang (bib50) 2022; 491
Tu, Liao, Zhou, Peng, Ma, Liu, Liu, Cai, He (bib38) 2023; 36
Peng, Cheng, Tang, Zhang, Tu (bib41) 2024; 102
Liu, Ren, Tao, Ren (bib44) 2024; 171
W. Ai, Y.T. Shou, T. Meng, K.Q. Li, Der-gcn: Dialogue and event relation-aware graph convolutional neural network for multimodal dialogue emotion recognition, 2023, arXiv preprint arXiv: 2312. 10579.
Y.C. Shi, Y.S. Dong, Q.Y. Tan, J.D. Li, N.H. Liu, Gigamae: Generalizable graph masked graph autoencoder via collaborative latent space reconstruction, in: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, 2023, pp. 2259-2269.
Cen, Yang, Wu, Hu, Jiang, Chen, Si (bib48) 2023; 23
E. Zhan, S. Zheng, Y. Yue, L. Sha, P. Lucey, Generating multi-agent trajectories using programmatic weak supervision, 2018, arXiv preprint arXiv: 1803. 07612.
Q.Y. Tan, N.H. Liu, X. Huang, R. Chen, S.H. Choi, X. Hu, MGAE: Masked graph autoencoders for self-supervised learning on graphs, 2022, arXiv preprint arXiv: 2201. 02534.
Cui, Wang, Wang, Zhang, Zhang, Pan, Zhang, Li, Guo, Akutsu, Song (bib46) 2023; 24
Yang, Lu, Wan, Hu, Yang, Ni (bib12) 2024; 240
Wang, Lei, Lu, Li, Yang (bib30) 2023; 18
Tygesen, Pereira, Rodrigues (bib32) 2023; 146
J.C. Li, C.B. Hua, H.B. Ma, J. k Park, V. Dax, M.J. Kochenderfer, Multi-agent dynamic relational reasoning for social robot navigation, 2024, arXiv preprint arXiv: 2401. 12275.
Xu, Wei, Tang, Yin, Zhang, Chen (bib3) 2024; 170
Zhou, Chen, Yang (bib13) 2024
Zhang, Zhao, Liu, Wang, Tao, Xin, Zhang (bib18) 2019; 4
Liu, Gao, Wang, Li (bib1) 2024; 568
T. Kipf, E. Fetaya, K.C. Wang, M. Welling, R. Zemel, Neural relational inference for interacting systems, in: Proceedings of the 35th International conference on machine learning, 2018, pp. 2688-2697.
Chen, Zhang, Hu, Jun, Wang (bib14) 2023; 72
Chen, Li (bib33) 2022; 4
Wang, Jing, Lyu, Guo, Wang, Liu, Yu, Zeng (bib20) 2022; 45
Ashwini, Sellam (bib55) 2022; 16
Pan, Shi, Dokmanic (bib28) 2024
Shahwan, Said (bib54) 2012; 1
Wang (10.1016/j.neucom.2025.129922_bib45) 2024; 25
Hou (10.1016/j.neucom.2025.129922_bib40) 2023
Zhou (10.1016/j.neucom.2025.129922_bib13) 2024
Cen (10.1016/j.neucom.2025.129922_bib48) 2023; 23
Tang (10.1016/j.neucom.2025.129922_bib50) 2022; 491
Zhang (10.1016/j.neucom.2025.129922_bib18) 2019; 4
Liu (10.1016/j.neucom.2025.129922_bib44) 2024; 171
Shahwan (10.1016/j.neucom.2025.129922_bib54) 2012; 1
Berahmand (10.1016/j.neucom.2025.129922_bib23) 2022; 34
Tygesen (10.1016/j.neucom.2025.129922_bib32) 2023; 146
10.1016/j.neucom.2025.129922_bib27
10.1016/j.neucom.2025.129922_bib26
Wang (10.1016/j.neucom.2025.129922_bib30) 2023; 18
10.1016/j.neucom.2025.129922_bib24
Song (10.1016/j.neucom.2025.129922_bib2) 2025; 611
Chen (10.1016/j.neucom.2025.129922_bib25) 2020
Chen (10.1016/j.neucom.2025.129922_bib14) 2023; 72
Tunstel (10.1016/j.neucom.2025.129922_bib10) 2021; 51
Sun (10.1016/j.neucom.2025.129922_bib22) 2022
10.1016/j.neucom.2025.129922_bib19
10.1016/j.neucom.2025.129922_bib17
10.1016/j.neucom.2025.129922_bib16
10.1016/j.neucom.2025.129922_bib15
Wang (10.1016/j.neucom.2025.129922_bib31) 2023; 34
10.1016/j.neucom.2025.129922_bib11
Tu (10.1016/j.neucom.2025.129922_bib38) 2023; 36
10.1016/j.neucom.2025.129922_bib52
10.1016/j.neucom.2025.129922_bib51
Liu (10.1016/j.neucom.2025.129922_bib1) 2024; 568
10.1016/j.neucom.2025.129922_bib9
10.1016/j.neucom.2025.129922_bib8
10.1016/j.neucom.2025.129922_bib7
10.1016/j.neucom.2025.129922_bib5
10.1016/j.neucom.2025.129922_bib4
Bryan (10.1016/j.neucom.2025.129922_bib21) 2014
Zhu (10.1016/j.neucom.2025.129922_bib29) 2022; 13
Wang (10.1016/j.neucom.2025.129922_bib20) 2022; 45
Yang (10.1016/j.neucom.2025.129922_bib12) 2024; 240
Ashwini (10.1016/j.neucom.2025.129922_bib55) 2022; 16
10.1016/j.neucom.2025.129922_bib49
Peng (10.1016/j.neucom.2025.129922_bib41) 2024; 102
10.1016/j.neucom.2025.129922_bib47
Xu (10.1016/j.neucom.2025.129922_bib3) 2024; 170
10.1016/j.neucom.2025.129922_bib43
10.1016/j.neucom.2025.129922_bib42
El-Sayed (10.1016/j.neucom.2025.129922_bib53) 2022; 16
Cui (10.1016/j.neucom.2025.129922_bib46) 2023; 24
Pan (10.1016/j.neucom.2025.129922_bib28) 2024
Mi (10.1016/j.neucom.2025.129922_bib6) 2024; 569
Chen (10.1016/j.neucom.2025.129922_bib33) 2022; 4
10.1016/j.neucom.2025.129922_bib39
10.1016/j.neucom.2025.129922_bib37
10.1016/j.neucom.2025.129922_bib36
10.1016/j.neucom.2025.129922_bib35
10.1016/j.neucom.2025.129922_bib34
References_xml – volume: 1
  start-page: 89
  year: 2012
  end-page: 100
  ident: bib54
  article-title: A comparison of bayesian methods and artificial neural networks for forecasting chaotic financial time series
  publication-title: J. Stat. Appl. Probab.
– start-page: 737
  year: 2023
  end-page: 746
  ident: bib40
  article-title: Graphmae2: a decoding-enhanced masked self-supervised graph learner
  publication-title: Proc. ACM web Conf.
– reference: A. Santoro, D. Raposo, D.G. Barrett, M. Malinowski, R. Pascanu, P. Battaglia, T. Lillicrap, A simple neural network module for relational reasoning, in: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 1-10. 〈
– volume: 34
  start-page: 5375
  year: 2022
  end-page: 5387
  ident: bib23
  article-title: A preference random walk algorithm for link prediction through mutual influence nodes in complex networks
  publication-title: J. King Sand Univ. -Com.
– reference: E. Zhan, S. Zheng, Y. Yue, L. Sha, P. Lucey, Generating multi-agent trajectories using programmatic weak supervision, 2018, arXiv preprint arXiv: 1803. 07612.
– start-page: 2233
  year: 2022
  end-page: 2240
  ident: bib22
  article-title: Beyond homophily: structure-aware path aggregation graph neural network
  publication-title: Proc. Int. Jt. Conf. Artif. Intell.
– volume: 45
  start-page: 2897
  year: 2022
  end-page: 2912
  ident: bib20
  article-title: Deep generative mixture model for robust imbalance classification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1
  year: 2024
  end-page: 16
  ident: bib13
  article-title: Edge-enhanced heterogeneous graph transformer with priority-based feature aggregation for multi-agent trajectory prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 240
  year: 2024
  ident: bib12
  article-title: Meta-IRLSOT+ +: a meta-inverse reinforcement learning method for fast adaptation of trajectory prediction networks
  publication-title: Expert Syst. Appl.
– reference: W. Ai, Y.T. Shou, T. Meng, K.Q. Li, Der-gcn: Dialogue and event relation-aware graph convolutional neural network for multimodal dialogue emotion recognition, 2023, arXiv preprint arXiv: 2312. 10579.
– volume: 16
  start-page: 423
  year: 2022
  end-page: 433
  ident: bib55
  article-title: Corn disease detection based on deep neural network for substantiating the crop yield
  publication-title: Appl. Math. Inf. Sci.
– volume: 170
  start-page: 564
  year: 2024
  end-page: 577
  ident: bib3
  article-title: Dynamic-group-aware networks for multi-agent trajectory prediction with relational reasoning
  publication-title: Neural Netw.
– reference: 〉.
– reference: S. Sukhbaatar, A. Szlam, R. Fergus, Learning multia gent communication with backpropagation, in: Proceedings of the 29th Conference on Neural Information Processing Systems, 2016, pp. 2252-2260. 〈http://doi.org/abs/1605.07736〉.
– volume: 25
  start-page: bbad400
  year: 2024
  ident: bib45
  article-title: BatmanNet: bi-branch masked graph transformer autoencoder for molecular representation
  publication-title: Brief. Bioinf.
– reference: M.Y. Chen, J. Zhang, Z. Zhang, L. Du, Q. Hu, S. Wang, J.Q. Zhu, Inference for network structure and dynamics from time series data via graph neural network, 2020, arXiv preprint arXiv: 2001. 06576.
– reference: S.V. Steenkiste, M. Chang, K. Greff, J. Schmidhuber, Relational neural expectation maximization: Unsupervised discovery of objects and their interactions, in: Proceedings of the International Conference on Learning Representations, 2018, pp.1-15. 〈http://doi.org/1802.10353〉.
– volume: 102
  year: 2024
  ident: bib41
  article-title: Multi-view graph imputation network
  publication-title: Inf. Fusion
– volume: 491
  start-page: 333
  year: 2022
  end-page: 342
  ident: bib50
  article-title: Evostgat: evolving spatiotemporal graph attention networks for pedestrian trajectory prediction
  publication-title: Neurocomputing
– reference: Q.Y. Tan, N.H. Liu, X. Huang, S.H. Choi, L. Li, R. Chen, X. Hu, S2GAE: Self-supervised graph autoencoders are generalizable learners with graph masking, in: Proceedings of the the 16th ACM International Conference on Web Search and Data Mining, 2023, pp. 787-795. 〈
– reference: J.R. Sun, Y.J. Fan, C.C. Yeh, W. Zhang, G. Chowdhary, Revealing the power of spatial-temporal masked graph autoencoders in multivariate time series forecasting, 2023, arXiv preprint arXiv: 2309. 15169.
– reference: [dataset] Carnegie Mellon University Graphics Lab, CMU, Carnegie-Mellon Motion Capture Database, 2003, http://mocap.cs.cmu.edu.
– volume: 568
  year: 2024
  ident: bib1
  article-title: Stabilization and synchronization control for discrete-time complex networks via the auxiliary role of edges subsystem
  publication-title: Neurocomputing
– volume: 171
  year: 2024
  ident: bib44
  article-title: Git-mol: a multi-modal large language model for molecular science with graph, image, and text
  publication-title: Comput. Biol. Med.
– volume: 4
  start-page: 1
  year: 2019
  end-page: 17
  ident: bib18
  article-title: A general deep learning framework for network reconstruction and dynamics learning
  publication-title: Appl. Netw. Sci.
– volume: 34
  start-page: 2350057
  year: 2023
  ident: bib31
  article-title: Reconstruction of complex network from time series data based on graph attention network and gumbel softmax
  publication-title: Int. J. Mod. Phys. C
– volume: 23
  start-page: 10359
  year: 2023
  end-page: 10369
  ident: bib48
  article-title: A mask self-supervised learning-based transformer for bearing fault diagnosis with limited labeled samples
  publication-title: IEEE Sens. J.
– volume: 51
  start-page: 5
  year: 2021
  end-page: 21
  ident: bib10
  article-title: Systems science and engineering research in the context of systems, man, and cybernetics: recollection, trends, and future directions
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
– reference: Q.Y. Tan, N.H. Liu, X. Huang, R. Chen, S.H. Choi, X. Hu, MGAE: Masked graph autoencoders for self-supervised learning on graphs, 2022, arXiv preprint arXiv: 2201. 02534.
– volume: 16
  start-page: 643
  year: 2022
  end-page: 653
  ident: bib53
  article-title: Chain based leader selection using neural network in wireless sensor networks protocols
  publication-title: Appl. Math. Inf. Sci.
– reference: T. Kipf, E. Fetaya, K.C. Wang, M. Welling, R. Zemel, Neural relational inference for interacting systems, in: Proceedings of the 35th International conference on machine learning, 2018, pp. 2688-2697.
– reference: Y.C. Shi, Y.S. Dong, Q.Y. Tan, J.D. Li, N.H. Liu, Gigamae: Generalizable graph masked graph autoencoder via collaborative latent space reconstruction, in: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, 2023, pp. 2259-2269. 〈
– reference: Y.W. Ye, L.H. Xia, C. Huang, Graph masked graph autoencoder for sequential recommendation, in: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2023, pp. 321–330. 〈
– volume: 4
  start-page: lqac068
  year: 2022
  ident: bib33
  article-title: Inferring structural and dynamical properties of gene networks from data with deep learning
  publication-title: NAR Genom. Bioinf.
– reference: N. Watters, D. Zoran, T. Weber, P. Battaglia, R. Pascanu, A. Tacchetti, Visual interaction networks: learning a physics simulator from video, in: Proceedings of the 31st Conference on Neural Information Processing Systems, 2017, pp. 4540-4548. 〈http://doi.org/abs/1706.01433〉.
– reference: Y. Hoshen, Vain: attentional multi-agent predictive modeling, in: Proceedings of the 31st Conference on Neural Information Processing Systems, 2017, pp. 2702-2712. 〈http://doi.org/abs/1706.06122〉.
– volume: 72
  start-page: 12540
  year: 2023
  end-page: 12552
  ident: bib14
  article-title: VNAGT: variational non-autoregressive graph transformer network for multi-agent trajectory prediction
  publication-title: IEEE Trans. Veh. Technol.
– reference: C. Graber, A. Schwing, Dynamic neural relational inference, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020, pp. 8513-8522. 〈
– reference: J.C. Li, C.B. Hua, H.B. Ma, J. k Park, V. Dax, M.J. Kochenderfer, Multi-agent dynamic relational reasoning for social robot navigation, 2024, arXiv preprint arXiv: 2401. 12275.
– volume: 13
  start-page: 1661
  year: 2022
  ident: bib29
  article-title: Neural relational inference to learn long-range allosteric interactions in proteins from molecular dynamics simulations
  publication-title: Nat. Commun.
– start-page: 10007
  year: 2020
  end-page: 10013
  ident: bib25
  article-title: Relational graph learning for crowd navigation
  publication-title: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
– start-page: 14508
  year: 2024
  end-page: 14516
  ident: bib28
  article-title: A graph dynamics prior for relational inference
  publication-title: Proc. AAAI Conf. Artif. Intell.
– start-page: 701
  year: 2014
  end-page: 710
  ident: bib21
  article-title: DeepWalk: online learning of social representations
  publication-title: Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.
– reference: F. Alet, E. Weng, T.L. Pérez, L.P. Kaelbling, Neural relational inference with fast modular meta-learning, in: Proceedings of the 33rd Conference on Neural Information Processing Systems, 2019, pp. 1-12. 〈http://doi.org/2310.07015〉.
– volume: 24
  start-page: bbad406
  year: 2023
  ident: bib46
  article-title: SMG: self-supervised masked graph learning for cancer gene identification
  publication-title: Brief. Bioinf.
– reference: J.T. Li, R.F. Wu, W.B. Sun, L. Chen, S. Tian, L. Zhu, What's behind the mask: understanding masked graph modeling for graph autoencoders, in: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023, pp. 1268–1279. 〈http://doi.org/2205.10053〉.
– volume: 36
  start-page: 5340
  year: 2023
  end-page: 5353
  ident: bib38
  article-title: RARE: Robust masked graph autoencode
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: X.C. Yuan, C.H. Zhang, Y.J. Tian, C.X. Zhang, Navigating graph robust learning against all-intensity attacks, in: Proceedings of the 2nd AdvML Frontiers workshop at 40th International Conference on Machine Learning, 2023, pp. 1–1.
– volume: 18
  start-page: 20
  year: 2023
  ident: bib30
  article-title: A multi-sensor relation model for recognizing and localizing faults of machines based on network analysis
  publication-title: Front. Mech. Eng.
– volume: 146
  year: 2023
  ident: bib32
  article-title: Unboxing the graph: towards interpretable graph neural networks for transport prediction through neural relational inference
  publication-title: Transp. Res. C: Emer.
– reference: J.C. Li, C.B. Hua, J. Park, H.B. Ma, V. Dax, M.J. Kochenderfer, Evolvehypergraph: Group-aware dynamic relational reasoning for trajectory prediction, 2022, arXiv preprint arXiv: 2208. 05470.
– volume: 611
  year: 2025
  ident: bib2
  article-title: SPMGAE: self-purified masked graph autoencoders release robust expression power
  publication-title: Neurocomputing
– reference: S. Ha, H. Jeong, Learning heterogeneous interaction strengths by trajectory prediction with graph neural network, 2022, arXiv preprint arXiv: 2208. 13179.
– reference: Z.Y. Hou, X. Liu, Y.K. Cen, Y.X. Dong, H.X. Yang, C.J. Wang, J. Tang, Graphmae: Self-supervised masked graph autoencoders, in: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022, pp. 594-604. 〈
– reference: J.C. Li, F. Yang, M. Tomizuka, C. Choi, Evolvegraph: multi-agent trajectory prediction with dynamic relational reasoning, in: Proceedings of the 34th Conference on Neural Information Processing Systems, 2020, pp. 19783-19794. 〈
– volume: 569
  year: 2024
  ident: bib6
  article-title: DERGCN: dynamic-evolving graph convolutional networks for human trajectory prediction
  publication-title: Neurocomputing
– volume: 4
  start-page: lqac068
  issue: 3
  year: 2022
  ident: 10.1016/j.neucom.2025.129922_bib33
  article-title: Inferring structural and dynamical properties of gene networks from data with deep learning
  publication-title: NAR Genom. Bioinf.
  doi: 10.1093/nargab/lqac068
– start-page: 1
  year: 2024
  ident: 10.1016/j.neucom.2025.129922_bib13
  article-title: Edge-enhanced heterogeneous graph transformer with priority-based feature aggregation for multi-agent trajectory prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 737
  year: 2023
  ident: 10.1016/j.neucom.2025.129922_bib40
  article-title: Graphmae2: a decoding-enhanced masked self-supervised graph learner
  publication-title: Proc. ACM web Conf.
– ident: 10.1016/j.neucom.2025.129922_bib15
  doi: 10.1109/CVPR42600.2020.00854
– volume: 569
  year: 2024
  ident: 10.1016/j.neucom.2025.129922_bib6
  article-title: DERGCN: dynamic-evolving graph convolutional networks for human trajectory prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.127117
– ident: 10.1016/j.neucom.2025.129922_bib39
– ident: 10.1016/j.neucom.2025.129922_bib51
– ident: 10.1016/j.neucom.2025.129922_bib16
– volume: 23
  start-page: 10359
  issue: 10
  year: 2023
  ident: 10.1016/j.neucom.2025.129922_bib48
  article-title: A mask self-supervised learning-based transformer for bearing fault diagnosis with limited labeled samples
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3264853
– start-page: 14508
  year: 2024
  ident: 10.1016/j.neucom.2025.129922_bib28
  article-title: A graph dynamics prior for relational inference
  publication-title: Proc. AAAI Conf. Artif. Intell.
– ident: 10.1016/j.neucom.2025.129922_bib8
– ident: 10.1016/j.neucom.2025.129922_bib26
– ident: 10.1016/j.neucom.2025.129922_bib4
– volume: 45
  start-page: 2897
  issue: 3
  year: 2022
  ident: 10.1016/j.neucom.2025.129922_bib20
  article-title: Deep generative mixture model for robust imbalance classification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3178914
– ident: 10.1016/j.neucom.2025.129922_bib34
– ident: 10.1016/j.neucom.2025.129922_bib17
– volume: 51
  start-page: 5
  issue: 1
  year: 2021
  ident: 10.1016/j.neucom.2025.129922_bib10
  article-title: Systems science and engineering research in the context of systems, man, and cybernetics: recollection, trends, and future directions
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
  doi: 10.1109/TSMC.2020.3043192
– volume: 25
  start-page: bbad400
  issue: 1
  year: 2024
  ident: 10.1016/j.neucom.2025.129922_bib45
  article-title: BatmanNet: bi-branch masked graph transformer autoencoder for molecular representation
  publication-title: Brief. Bioinf.
  doi: 10.1093/bib/bbad400
– ident: 10.1016/j.neucom.2025.129922_bib36
  doi: 10.1145/3580305.3599546
– volume: 146
  year: 2023
  ident: 10.1016/j.neucom.2025.129922_bib32
  article-title: Unboxing the graph: towards interpretable graph neural networks for transport prediction through neural relational inference
  publication-title: Transp. Res. C: Emer.
  doi: 10.1016/j.trc.2022.103946
– start-page: 2233
  year: 2022
  ident: 10.1016/j.neucom.2025.129922_bib22
  article-title: Beyond homophily: structure-aware path aggregation graph neural network
  publication-title: Proc. Int. Jt. Conf. Artif. Intell.
– volume: 34
  start-page: 5375
  issue: 8
  year: 2022
  ident: 10.1016/j.neucom.2025.129922_bib23
  article-title: A preference random walk algorithm for link prediction through mutual influence nodes in complex networks
  publication-title: J. King Sand Univ. -Com.
  doi: 10.1016/j.jksuci.2021.05.006
– start-page: 701
  year: 2014
  ident: 10.1016/j.neucom.2025.129922_bib21
  article-title: DeepWalk: online learning of social representations
  publication-title: Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.
– ident: 10.1016/j.neucom.2025.129922_bib7
– ident: 10.1016/j.neucom.2025.129922_bib27
– volume: 16
  start-page: 423
  issue: 3
  year: 2022
  ident: 10.1016/j.neucom.2025.129922_bib55
  article-title: Corn disease detection based on deep neural network for substantiating the crop yield
  publication-title: Appl. Math. Inf. Sci.
  doi: 10.18576/amis/160304
– ident: 10.1016/j.neucom.2025.129922_bib42
  doi: 10.1145/3539597.3570404
– ident: 10.1016/j.neucom.2025.129922_bib43
– volume: 24
  start-page: bbad406
  issue: 6
  year: 2023
  ident: 10.1016/j.neucom.2025.129922_bib46
  article-title: SMG: self-supervised masked graph learning for cancer gene identification
  publication-title: Brief. Bioinf.
  doi: 10.1093/bib/bbad406
– volume: 36
  start-page: 5340
  issue: 10
  year: 2023
  ident: 10.1016/j.neucom.2025.129922_bib38
  article-title: RARE: Robust masked graph autoencode
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2023.3335222
– volume: 72
  start-page: 12540
  issue: 10
  year: 2023
  ident: 10.1016/j.neucom.2025.129922_bib14
  article-title: VNAGT: variational non-autoregressive graph transformer network for multi-agent trajectory prediction
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2023.3273230
– volume: 240
  year: 2024
  ident: 10.1016/j.neucom.2025.129922_bib12
  article-title: Meta-IRLSOT+ +: a meta-inverse reinforcement learning method for fast adaptation of trajectory prediction networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122499
– ident: 10.1016/j.neucom.2025.129922_bib37
  doi: 10.1145/3583780.3614894
– volume: 102
  year: 2024
  ident: 10.1016/j.neucom.2025.129922_bib41
  article-title: Multi-view graph imputation network
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2023.102024
– ident: 10.1016/j.neucom.2025.129922_bib47
– ident: 10.1016/j.neucom.2025.129922_bib24
– volume: 34
  start-page: 2350057
  issue: 5
  year: 2023
  ident: 10.1016/j.neucom.2025.129922_bib31
  article-title: Reconstruction of complex network from time series data based on graph attention network and gumbel softmax
  publication-title: Int. J. Mod. Phys. C
  doi: 10.1142/S0129183123500572
– volume: 171
  year: 2024
  ident: 10.1016/j.neucom.2025.129922_bib44
  article-title: Git-mol: a multi-modal large language model for molecular science with graph, image, and text
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2024.108073
– ident: 10.1016/j.neucom.2025.129922_bib35
  doi: 10.1145/3534678.3539321
– ident: 10.1016/j.neucom.2025.129922_bib11
– volume: 611
  year: 2025
  ident: 10.1016/j.neucom.2025.129922_bib2
  article-title: SPMGAE: self-purified masked graph autoencoders release robust expression power
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2024.128631
– ident: 10.1016/j.neucom.2025.129922_bib52
– volume: 1
  start-page: 89
  issue: 2
  year: 2012
  ident: 10.1016/j.neucom.2025.129922_bib54
  article-title: A comparison of bayesian methods and artificial neural networks for forecasting chaotic financial time series
  publication-title: J. Stat. Appl. Probab.
  doi: 10.12785/jsap/010202
– ident: 10.1016/j.neucom.2025.129922_bib19
– volume: 491
  start-page: 333
  year: 2022
  ident: 10.1016/j.neucom.2025.129922_bib50
  article-title: Evostgat: evolving spatiotemporal graph attention networks for pedestrian trajectory prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.03.051
– volume: 18
  start-page: 20
  issue: 2
  year: 2023
  ident: 10.1016/j.neucom.2025.129922_bib30
  article-title: A multi-sensor relation model for recognizing and localizing faults of machines based on network analysis
  publication-title: Front. Mech. Eng.
  doi: 10.1007/s11465-022-0736-9
– volume: 13
  start-page: 1661
  issue: 1
  year: 2022
  ident: 10.1016/j.neucom.2025.129922_bib29
  article-title: Neural relational inference to learn long-range allosteric interactions in proteins from molecular dynamics simulations
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29331-3
– volume: 170
  start-page: 564
  year: 2024
  ident: 10.1016/j.neucom.2025.129922_bib3
  article-title: Dynamic-group-aware networks for multi-agent trajectory prediction with relational reasoning
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2023.11.005
– ident: 10.1016/j.neucom.2025.129922_bib9
– volume: 4
  start-page: 1
  year: 2019
  ident: 10.1016/j.neucom.2025.129922_bib18
  article-title: A general deep learning framework for network reconstruction and dynamics learning
  publication-title: Appl. Netw. Sci.
  doi: 10.1007/s41109-019-0194-4
– start-page: 10007
  year: 2020
  ident: 10.1016/j.neucom.2025.129922_bib25
  article-title: Relational graph learning for crowd navigation
  publication-title: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
– volume: 16
  start-page: 643
  issue: 4
  year: 2022
  ident: 10.1016/j.neucom.2025.129922_bib53
  article-title: Chain based leader selection using neural network in wireless sensor networks protocols
  publication-title: Appl. Math. Inf. Sci.
  doi: 10.18576/amis/160418
– ident: 10.1016/j.neucom.2025.129922_bib49
  doi: 10.1145/3539618.3591692
– volume: 568
  year: 2024
  ident: 10.1016/j.neucom.2025.129922_bib1
  article-title: Stabilization and synchronization control for discrete-time complex networks via the auxiliary role of edges subsystem
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.127029
– ident: 10.1016/j.neucom.2025.129922_bib5
SSID ssj0017129
Score 2.4508026
Snippet Dynamic relational inference models uncover potential complex system interactions, enabling trajectory prediction and improving the interpretability of...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 129922
SubjectTerms Dynamic relational inference
Graph attention network
Masked graph autoencoder
Multi-agent
Trajectory prediction
Title Masked graph autoencoder-based multi-agent dynamic relational inference model for trajectory prediction
URI https://dx.doi.org/10.1016/j.neucom.2025.129922
Volume 634
WOSCitedRecordID wos001446308500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017129
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYo9NBLebRVgbbyoTdkRB624-OKggpSEVJBWrhETuzQXdQs2t1U8O8Ze5xk262qFqmXKPLayWrmkz3zZR6EfOTgUMMPnHEuLUsrmTKthGGqgtMdzAdbhWYT8uwsGw7VeQgrmvl2ArKus_t7dfdfVQ1joGyXOvsP6u4eCgNwD0qHK6gdrn-l-C96dgtWpK9Evaeb-cSVqjR2ytyBZTCCkGmXUbVnsB19SGjxnOCoTQDEHjkYhTjVY0_uP7iSAmZUdsoct7WfGjgHfX-IwDwMvrsCDMahrWMarr9pz8seNw9Nj8lDHBwCTG90OEYXJp-68WLUTf_UIGN7NQlzA2MRcxdZFfWM5XIqDfKRMBGMzZ-2ZoFE59I2j4zDeL-2jYv5cS_ZB8NFYYrzLwW0v7pHuyeDteeq04hnZC2WXME2vjY4ORqedl-dZBRjbcbwV9pUSx8PuPyu35syC-bJxQZ5GfwKOkA8bJIVW2-R9bZnBw1b-Ctyg_CgHh50CR50AR40wIP28KAdPKiHBwV40B4etIfHa3J5fHRx-JmFZhusBK9yzrTkVVJUotI6EkKWcZEaU1lwD2xRwA1PyoQrW6aZkiaOrCkM-KZJccBtlQgdJW_Iaj2p7VtCD6TQVqQygZVwDpssU6kCucFWL8EhiLYJa-WW32FNlbwNNhznKOfcyTlHOW8T2Qo3D3Yh2ns54OGPK3eevHKXvOih-46szqeNfU-elz_mo9n0QwDOI416jeo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Masked+graph+autoencoder-based+multi-agent+dynamic+relational+inference+model+for+trajectory+prediction&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Zhao%2C+Fuyuan&rft.au=Cao%2C+Xiangang&rft.au=Zhao%2C+Jiangbin&rft.au=Duan%2C+Yong&rft.date=2025-06-14&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.volume=634&rft_id=info:doi/10.1016%2Fj.neucom.2025.129922&rft.externalDocID=S0925231225005946
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon