Masked graph autoencoder-based multi-agent dynamic relational inference model for trajectory prediction
Dynamic relational inference models uncover potential complex system interactions, enabling trajectory prediction and improving the interpretability of underlying system dynamics. However, the existing models cannot accurately infer the structural evolution trends and complete dynamic processes of t...
Uložené v:
| Vydané v: | Neurocomputing (Amsterdam) Ročník 634; s. 129922 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
14.06.2025
|
| Predmet: | |
| ISSN: | 0925-2312 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Dynamic relational inference models uncover potential complex system interactions, enabling trajectory prediction and improving the interpretability of underlying system dynamics. However, the existing models cannot accurately infer the structural evolution trends and complete dynamic processes of temporal networks. Additionally, when uncertain noisy data are input, more serious graph noise problems, including redundant and noisy edges, occur, undermining the stability of interaction inference and reducing the accuracy of trajectory prediction. Therefore, a masked graph autoencoder-based multi-agent dynamic relational inference (MGAE-MDRI) trajectory prediction model is proposed herein. The mask reconstruction module is integrated into MDRI, where the partial edges of the interaction graph, representing multi-agent dynamic evolution, are masked through sampling. The reconstruction strategy leverages path and degree considerations to mitigate the impact of graph noise on the network topology. Furthermore, a graph attention network-based path sampler with a preference random walk is introduced, effectively combining network topology and node attribute features to construct a topologically weighted degree matrix and assign optimal mask sampling weights to neighboring nodes. Experiments conducted on four standard public datasets demonstrate that MGAE-MDRI outperforms the state-of-the-art models, achieving better trajectory prediction robustness and for complex multi-agent systems. |
|---|---|
| AbstractList | Dynamic relational inference models uncover potential complex system interactions, enabling trajectory prediction and improving the interpretability of underlying system dynamics. However, the existing models cannot accurately infer the structural evolution trends and complete dynamic processes of temporal networks. Additionally, when uncertain noisy data are input, more serious graph noise problems, including redundant and noisy edges, occur, undermining the stability of interaction inference and reducing the accuracy of trajectory prediction. Therefore, a masked graph autoencoder-based multi-agent dynamic relational inference (MGAE-MDRI) trajectory prediction model is proposed herein. The mask reconstruction module is integrated into MDRI, where the partial edges of the interaction graph, representing multi-agent dynamic evolution, are masked through sampling. The reconstruction strategy leverages path and degree considerations to mitigate the impact of graph noise on the network topology. Furthermore, a graph attention network-based path sampler with a preference random walk is introduced, effectively combining network topology and node attribute features to construct a topologically weighted degree matrix and assign optimal mask sampling weights to neighboring nodes. Experiments conducted on four standard public datasets demonstrate that MGAE-MDRI outperforms the state-of-the-art models, achieving better trajectory prediction robustness and for complex multi-agent systems. |
| ArticleNumber | 129922 |
| Author | Yang, Xin Zhang, Xinyuan Duan, Yong Zhao, Fuyuan Cao, Xiangang Zhao, Jiangbin |
| Author_xml | – sequence: 1 givenname: Fuyuan surname: Zhao fullname: Zhao, Fuyuan organization: School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China – sequence: 2 givenname: Xiangang orcidid: 0000-0002-4799-9654 surname: Cao fullname: Cao, Xiangang email: cao_xust@sina.com organization: School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China – sequence: 3 givenname: Jiangbin surname: Zhao fullname: Zhao, Jiangbin organization: School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China – sequence: 4 givenname: Yong surname: Duan fullname: Duan, Yong organization: School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China – sequence: 5 givenname: Xin surname: Yang fullname: Yang, Xin organization: School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China – sequence: 6 givenname: Xinyuan surname: Zhang fullname: Zhang, Xinyuan organization: School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China |
| BookMark | eNp9kE1OwzAQhb0oEi1wAxa-QILt1EmzQUIVf1IRG1hbE3tcHBK7slOk3h5XYc1qRjPznuZ9K7LwwSMht5yVnPH6ri89HnUYS8GELLloWyEWZMlaIQtRcXFJVin1jPEm75Zk_wbpGw3dRzh8UThOAb0OBmPRQcrz8ThMroA9-omak4fRaRpxgMkFDwN13mLMCqRjFg3UhkinCD3qKcQTPUQ0Tp9vr8mFhSHhzV-9Ip9Pjx_bl2L3_vy6fdgVWkg5FdBIW3W2tgC8rhsturUxFtumwa7Ljax0JVvU603bGMHRdIbzTdUxibaqgVdXZD376hhSimjVIboR4klxps6AVK9mQOoMSM2Asux-lmH-7cdhVEm7cy7jYs6iTHD_G_wChH54kA |
| Cites_doi | 10.1093/nargab/lqac068 10.1109/CVPR42600.2020.00854 10.1016/j.neucom.2023.127117 10.1109/JSEN.2023.3264853 10.1109/TPAMI.2022.3178914 10.1109/TSMC.2020.3043192 10.1093/bib/bbad400 10.1145/3580305.3599546 10.1016/j.trc.2022.103946 10.1016/j.jksuci.2021.05.006 10.18576/amis/160304 10.1145/3539597.3570404 10.1093/bib/bbad406 10.1109/TKDE.2023.3335222 10.1109/TVT.2023.3273230 10.1016/j.eswa.2023.122499 10.1145/3583780.3614894 10.1016/j.inffus.2023.102024 10.1142/S0129183123500572 10.1016/j.compbiomed.2024.108073 10.1145/3534678.3539321 10.1016/j.neucom.2024.128631 10.12785/jsap/010202 10.1016/j.neucom.2022.03.051 10.1007/s11465-022-0736-9 10.1038/s41467-022-29331-3 10.1016/j.neunet.2023.11.005 10.1007/s41109-019-0194-4 10.18576/amis/160418 10.1145/3539618.3591692 10.1016/j.neucom.2023.127029 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2025.129922 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_neucom_2025_129922 S0925231225005946 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c255t-a75f3bf6faa1667c2b4ddfe977ebbdfe53c359ec4897d21edbd1183b05ef36a13 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001446308500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Sat Nov 29 08:00:55 EST 2025 Sat Apr 19 16:01:28 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-agent Masked graph autoencoder Trajectory prediction Dynamic relational inference Graph attention network |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c255t-a75f3bf6faa1667c2b4ddfe977ebbdfe53c359ec4897d21edbd1183b05ef36a13 |
| ORCID | 0000-0002-4799-9654 |
| ParticipantIDs | crossref_primary_10_1016_j_neucom_2025_129922 elsevier_sciencedirect_doi_10_1016_j_neucom_2025_129922 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-14 |
| PublicationDateYYYYMMDD | 2025-06-14 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | N. Watters, D. Zoran, T. Weber, P. Battaglia, R. Pascanu, A. Tacchetti, Visual interaction networks: learning a physics simulator from video, in: Proceedings of the 31st Conference on Neural Information Processing Systems, 2017, pp. 4540-4548. 〈http://doi.org/abs/1706.01433〉. S.V. Steenkiste, M. Chang, K. Greff, J. Schmidhuber, Relational neural expectation maximization: Unsupervised discovery of objects and their interactions, in: Proceedings of the International Conference on Learning Representations, 2018, pp.1-15. 〈http://doi.org/1802.10353〉. [dataset] Carnegie Mellon University Graphics Lab, CMU, Carnegie-Mellon Motion Capture Database, 2003, http://mocap.cs.cmu.edu. Bryan, Rami, Steven (bib21) 2014 Mi, Zhang, Zeng, Lin (bib6) 2024; 569 Q.Y. Tan, N.H. Liu, X. Huang, S.H. Choi, L. Li, R. Chen, X. Hu, S2GAE: Self-supervised graph autoencoders are generalizable learners with graph masking, in: Proceedings of the the 16th ACM International Conference on Web Search and Data Mining, 2023, pp. 787-795. J.R. Sun, Y.J. Fan, C.C. Yeh, W. Zhang, G. Chowdhary, Revealing the power of spatial-temporal masked graph autoencoders in multivariate time series forecasting, 2023, arXiv preprint arXiv: 2309. 15169. Song, Li, Dun, Zhang, Cao, Ye (bib2) 2025; 611 F. Alet, E. Weng, T.L. Pérez, L.P. Kaelbling, Neural relational inference with fast modular meta-learning, in: Proceedings of the 33rd Conference on Neural Information Processing Systems, 2019, pp. 1-12. 〈http://doi.org/2310.07015〉. Sun, Deng, Yang, Wang (bib22) 2022 Zhu, Wang, Han, Xu (bib29) 2022; 13 J.T. Li, R.F. Wu, W.B. Sun, L. Chen, S. Tian, L. Zhu, What's behind the mask: understanding masked graph modeling for graph autoencoders, in: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023, pp. 1268–1279. 〈http://doi.org/2205.10053〉. C. Graber, A. Schwing, Dynamic neural relational inference, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020, pp. 8513-8522. Tunstel, Cobo, Viedma, Rudas, Filev, Trajkovic, Chen, Pedrycz, Smith, Kozma (bib10) 2021; 51 Y. Hoshen, Vain: attentional multi-agent predictive modeling, in: Proceedings of the 31st Conference on Neural Information Processing Systems, 2017, pp. 2702-2712. 〈http://doi.org/abs/1706.06122〉. J.C. Li, C.B. Hua, J. Park, H.B. Ma, V. Dax, M.J. Kochenderfer, Evolvehypergraph: Group-aware dynamic relational reasoning for trajectory prediction, 2022, arXiv preprint arXiv: 2208. 05470. S. Ha, H. Jeong, Learning heterogeneous interaction strengths by trajectory prediction with graph neural network, 2022, arXiv preprint arXiv: 2208. 13179. Wang, Feng, Li, Li, Wang, Sha, He, Li (bib45) 2024; 25 El-Sayed, Refaay, Ali, El-Melegy (bib53) 2022; 16 A. Santoro, D. Raposo, D.G. Barrett, M. Malinowski, R. Pascanu, P. Battaglia, T. Lillicrap, A simple neural network module for relational reasoning, in: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 1-10. J.C. Li, F. Yang, M. Tomizuka, C. Choi, Evolvegraph: multi-agent trajectory prediction with dynamic relational reasoning, in: Proceedings of the 34th Conference on Neural Information Processing Systems, 2020, pp. 19783-19794. M.Y. Chen, J. Zhang, Z. Zhang, L. Du, Q. Hu, S. Wang, J.Q. Zhu, Inference for network structure and dynamics from time series data via graph neural network, 2020, arXiv preprint arXiv: 2001. 06576. Hou, He, Cen, Liu, Dong, Kharlamov, Tang (bib40) 2023 . Wang, Jiang, Wu, Wang (bib31) 2023; 34 X.C. Yuan, C.H. Zhang, Y.J. Tian, C.X. Zhang, Navigating graph robust learning against all-intensity attacks, in: Proceedings of the 2nd AdvML Frontiers workshop at 40th International Conference on Machine Learning, 2023, pp. 1–1. Y.W. Ye, L.H. Xia, C. Huang, Graph masked graph autoencoder for sequential recommendation, in: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2023, pp. 321–330. S. Sukhbaatar, A. Szlam, R. Fergus, Learning multia gent communication with backpropagation, in: Proceedings of the 29th Conference on Neural Information Processing Systems, 2016, pp. 2252-2260. 〈http://doi.org/abs/1605.07736〉. Berahmand, Nasiri, Forouzandeh, Forouzandeh, Li (bib23) 2022; 34 Chen, Hu, Nikdel, Mori, Savva (bib25) 2020 Z.Y. Hou, X. Liu, Y.K. Cen, Y.X. Dong, H.X. Yang, C.J. Wang, J. Tang, Graphmae: Self-supervised masked graph autoencoders, in: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022, pp. 594-604. Tang, Wei, Li, Zhang (bib50) 2022; 491 Tu, Liao, Zhou, Peng, Ma, Liu, Liu, Cai, He (bib38) 2023; 36 Peng, Cheng, Tang, Zhang, Tu (bib41) 2024; 102 Liu, Ren, Tao, Ren (bib44) 2024; 171 W. Ai, Y.T. Shou, T. Meng, K.Q. Li, Der-gcn: Dialogue and event relation-aware graph convolutional neural network for multimodal dialogue emotion recognition, 2023, arXiv preprint arXiv: 2312. 10579. Y.C. Shi, Y.S. Dong, Q.Y. Tan, J.D. Li, N.H. Liu, Gigamae: Generalizable graph masked graph autoencoder via collaborative latent space reconstruction, in: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, 2023, pp. 2259-2269. Cen, Yang, Wu, Hu, Jiang, Chen, Si (bib48) 2023; 23 E. Zhan, S. Zheng, Y. Yue, L. Sha, P. Lucey, Generating multi-agent trajectories using programmatic weak supervision, 2018, arXiv preprint arXiv: 1803. 07612. Q.Y. Tan, N.H. Liu, X. Huang, R. Chen, S.H. Choi, X. Hu, MGAE: Masked graph autoencoders for self-supervised learning on graphs, 2022, arXiv preprint arXiv: 2201. 02534. Cui, Wang, Wang, Zhang, Zhang, Pan, Zhang, Li, Guo, Akutsu, Song (bib46) 2023; 24 Yang, Lu, Wan, Hu, Yang, Ni (bib12) 2024; 240 Wang, Lei, Lu, Li, Yang (bib30) 2023; 18 Tygesen, Pereira, Rodrigues (bib32) 2023; 146 J.C. Li, C.B. Hua, H.B. Ma, J. k Park, V. Dax, M.J. Kochenderfer, Multi-agent dynamic relational reasoning for social robot navigation, 2024, arXiv preprint arXiv: 2401. 12275. Xu, Wei, Tang, Yin, Zhang, Chen (bib3) 2024; 170 Zhou, Chen, Yang (bib13) 2024 Zhang, Zhao, Liu, Wang, Tao, Xin, Zhang (bib18) 2019; 4 Liu, Gao, Wang, Li (bib1) 2024; 568 T. Kipf, E. Fetaya, K.C. Wang, M. Welling, R. Zemel, Neural relational inference for interacting systems, in: Proceedings of the 35th International conference on machine learning, 2018, pp. 2688-2697. Chen, Zhang, Hu, Jun, Wang (bib14) 2023; 72 Chen, Li (bib33) 2022; 4 Wang, Jing, Lyu, Guo, Wang, Liu, Yu, Zeng (bib20) 2022; 45 Ashwini, Sellam (bib55) 2022; 16 Pan, Shi, Dokmanic (bib28) 2024 Shahwan, Said (bib54) 2012; 1 Wang (10.1016/j.neucom.2025.129922_bib45) 2024; 25 Hou (10.1016/j.neucom.2025.129922_bib40) 2023 Zhou (10.1016/j.neucom.2025.129922_bib13) 2024 Cen (10.1016/j.neucom.2025.129922_bib48) 2023; 23 Tang (10.1016/j.neucom.2025.129922_bib50) 2022; 491 Zhang (10.1016/j.neucom.2025.129922_bib18) 2019; 4 Liu (10.1016/j.neucom.2025.129922_bib44) 2024; 171 Shahwan (10.1016/j.neucom.2025.129922_bib54) 2012; 1 Berahmand (10.1016/j.neucom.2025.129922_bib23) 2022; 34 Tygesen (10.1016/j.neucom.2025.129922_bib32) 2023; 146 10.1016/j.neucom.2025.129922_bib27 10.1016/j.neucom.2025.129922_bib26 Wang (10.1016/j.neucom.2025.129922_bib30) 2023; 18 10.1016/j.neucom.2025.129922_bib24 Song (10.1016/j.neucom.2025.129922_bib2) 2025; 611 Chen (10.1016/j.neucom.2025.129922_bib25) 2020 Chen (10.1016/j.neucom.2025.129922_bib14) 2023; 72 Tunstel (10.1016/j.neucom.2025.129922_bib10) 2021; 51 Sun (10.1016/j.neucom.2025.129922_bib22) 2022 10.1016/j.neucom.2025.129922_bib19 10.1016/j.neucom.2025.129922_bib17 10.1016/j.neucom.2025.129922_bib16 10.1016/j.neucom.2025.129922_bib15 Wang (10.1016/j.neucom.2025.129922_bib31) 2023; 34 10.1016/j.neucom.2025.129922_bib11 Tu (10.1016/j.neucom.2025.129922_bib38) 2023; 36 10.1016/j.neucom.2025.129922_bib52 10.1016/j.neucom.2025.129922_bib51 Liu (10.1016/j.neucom.2025.129922_bib1) 2024; 568 10.1016/j.neucom.2025.129922_bib9 10.1016/j.neucom.2025.129922_bib8 10.1016/j.neucom.2025.129922_bib7 10.1016/j.neucom.2025.129922_bib5 10.1016/j.neucom.2025.129922_bib4 Bryan (10.1016/j.neucom.2025.129922_bib21) 2014 Zhu (10.1016/j.neucom.2025.129922_bib29) 2022; 13 Wang (10.1016/j.neucom.2025.129922_bib20) 2022; 45 Yang (10.1016/j.neucom.2025.129922_bib12) 2024; 240 Ashwini (10.1016/j.neucom.2025.129922_bib55) 2022; 16 10.1016/j.neucom.2025.129922_bib49 Peng (10.1016/j.neucom.2025.129922_bib41) 2024; 102 10.1016/j.neucom.2025.129922_bib47 Xu (10.1016/j.neucom.2025.129922_bib3) 2024; 170 10.1016/j.neucom.2025.129922_bib43 10.1016/j.neucom.2025.129922_bib42 El-Sayed (10.1016/j.neucom.2025.129922_bib53) 2022; 16 Cui (10.1016/j.neucom.2025.129922_bib46) 2023; 24 Pan (10.1016/j.neucom.2025.129922_bib28) 2024 Mi (10.1016/j.neucom.2025.129922_bib6) 2024; 569 Chen (10.1016/j.neucom.2025.129922_bib33) 2022; 4 10.1016/j.neucom.2025.129922_bib39 10.1016/j.neucom.2025.129922_bib37 10.1016/j.neucom.2025.129922_bib36 10.1016/j.neucom.2025.129922_bib35 10.1016/j.neucom.2025.129922_bib34 |
| References_xml | – volume: 1 start-page: 89 year: 2012 end-page: 100 ident: bib54 article-title: A comparison of bayesian methods and artificial neural networks for forecasting chaotic financial time series publication-title: J. Stat. Appl. Probab. – start-page: 737 year: 2023 end-page: 746 ident: bib40 article-title: Graphmae2: a decoding-enhanced masked self-supervised graph learner publication-title: Proc. ACM web Conf. – reference: A. Santoro, D. Raposo, D.G. Barrett, M. Malinowski, R. Pascanu, P. Battaglia, T. Lillicrap, A simple neural network module for relational reasoning, in: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 1-10. 〈 – volume: 34 start-page: 5375 year: 2022 end-page: 5387 ident: bib23 article-title: A preference random walk algorithm for link prediction through mutual influence nodes in complex networks publication-title: J. King Sand Univ. -Com. – reference: E. Zhan, S. Zheng, Y. Yue, L. Sha, P. Lucey, Generating multi-agent trajectories using programmatic weak supervision, 2018, arXiv preprint arXiv: 1803. 07612. – start-page: 2233 year: 2022 end-page: 2240 ident: bib22 article-title: Beyond homophily: structure-aware path aggregation graph neural network publication-title: Proc. Int. Jt. Conf. Artif. Intell. – volume: 45 start-page: 2897 year: 2022 end-page: 2912 ident: bib20 article-title: Deep generative mixture model for robust imbalance classification publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 1 year: 2024 end-page: 16 ident: bib13 article-title: Edge-enhanced heterogeneous graph transformer with priority-based feature aggregation for multi-agent trajectory prediction publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 240 year: 2024 ident: bib12 article-title: Meta-IRLSOT+ +: a meta-inverse reinforcement learning method for fast adaptation of trajectory prediction networks publication-title: Expert Syst. Appl. – reference: W. Ai, Y.T. Shou, T. Meng, K.Q. Li, Der-gcn: Dialogue and event relation-aware graph convolutional neural network for multimodal dialogue emotion recognition, 2023, arXiv preprint arXiv: 2312. 10579. – volume: 16 start-page: 423 year: 2022 end-page: 433 ident: bib55 article-title: Corn disease detection based on deep neural network for substantiating the crop yield publication-title: Appl. Math. Inf. Sci. – volume: 170 start-page: 564 year: 2024 end-page: 577 ident: bib3 article-title: Dynamic-group-aware networks for multi-agent trajectory prediction with relational reasoning publication-title: Neural Netw. – reference: 〉. – reference: S. Sukhbaatar, A. Szlam, R. Fergus, Learning multia gent communication with backpropagation, in: Proceedings of the 29th Conference on Neural Information Processing Systems, 2016, pp. 2252-2260. 〈http://doi.org/abs/1605.07736〉. – volume: 25 start-page: bbad400 year: 2024 ident: bib45 article-title: BatmanNet: bi-branch masked graph transformer autoencoder for molecular representation publication-title: Brief. Bioinf. – reference: M.Y. Chen, J. Zhang, Z. Zhang, L. Du, Q. Hu, S. Wang, J.Q. Zhu, Inference for network structure and dynamics from time series data via graph neural network, 2020, arXiv preprint arXiv: 2001. 06576. – reference: S.V. Steenkiste, M. Chang, K. Greff, J. Schmidhuber, Relational neural expectation maximization: Unsupervised discovery of objects and their interactions, in: Proceedings of the International Conference on Learning Representations, 2018, pp.1-15. 〈http://doi.org/1802.10353〉. – volume: 102 year: 2024 ident: bib41 article-title: Multi-view graph imputation network publication-title: Inf. Fusion – volume: 491 start-page: 333 year: 2022 end-page: 342 ident: bib50 article-title: Evostgat: evolving spatiotemporal graph attention networks for pedestrian trajectory prediction publication-title: Neurocomputing – reference: Q.Y. Tan, N.H. Liu, X. Huang, S.H. Choi, L. Li, R. Chen, X. Hu, S2GAE: Self-supervised graph autoencoders are generalizable learners with graph masking, in: Proceedings of the the 16th ACM International Conference on Web Search and Data Mining, 2023, pp. 787-795. 〈 – reference: J.R. Sun, Y.J. Fan, C.C. Yeh, W. Zhang, G. Chowdhary, Revealing the power of spatial-temporal masked graph autoencoders in multivariate time series forecasting, 2023, arXiv preprint arXiv: 2309. 15169. – reference: [dataset] Carnegie Mellon University Graphics Lab, CMU, Carnegie-Mellon Motion Capture Database, 2003, http://mocap.cs.cmu.edu. – volume: 568 year: 2024 ident: bib1 article-title: Stabilization and synchronization control for discrete-time complex networks via the auxiliary role of edges subsystem publication-title: Neurocomputing – volume: 171 year: 2024 ident: bib44 article-title: Git-mol: a multi-modal large language model for molecular science with graph, image, and text publication-title: Comput. Biol. Med. – volume: 4 start-page: 1 year: 2019 end-page: 17 ident: bib18 article-title: A general deep learning framework for network reconstruction and dynamics learning publication-title: Appl. Netw. Sci. – volume: 34 start-page: 2350057 year: 2023 ident: bib31 article-title: Reconstruction of complex network from time series data based on graph attention network and gumbel softmax publication-title: Int. J. Mod. Phys. C – volume: 23 start-page: 10359 year: 2023 end-page: 10369 ident: bib48 article-title: A mask self-supervised learning-based transformer for bearing fault diagnosis with limited labeled samples publication-title: IEEE Sens. J. – volume: 51 start-page: 5 year: 2021 end-page: 21 ident: bib10 article-title: Systems science and engineering research in the context of systems, man, and cybernetics: recollection, trends, and future directions publication-title: IEEE Trans. Syst. Man Cybern.: Syst. – reference: Q.Y. Tan, N.H. Liu, X. Huang, R. Chen, S.H. Choi, X. Hu, MGAE: Masked graph autoencoders for self-supervised learning on graphs, 2022, arXiv preprint arXiv: 2201. 02534. – volume: 16 start-page: 643 year: 2022 end-page: 653 ident: bib53 article-title: Chain based leader selection using neural network in wireless sensor networks protocols publication-title: Appl. Math. Inf. Sci. – reference: T. Kipf, E. Fetaya, K.C. Wang, M. Welling, R. Zemel, Neural relational inference for interacting systems, in: Proceedings of the 35th International conference on machine learning, 2018, pp. 2688-2697. – reference: Y.C. Shi, Y.S. Dong, Q.Y. Tan, J.D. Li, N.H. Liu, Gigamae: Generalizable graph masked graph autoencoder via collaborative latent space reconstruction, in: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, 2023, pp. 2259-2269. 〈 – reference: Y.W. Ye, L.H. Xia, C. Huang, Graph masked graph autoencoder for sequential recommendation, in: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2023, pp. 321–330. 〈 – volume: 4 start-page: lqac068 year: 2022 ident: bib33 article-title: Inferring structural and dynamical properties of gene networks from data with deep learning publication-title: NAR Genom. Bioinf. – reference: N. Watters, D. Zoran, T. Weber, P. Battaglia, R. Pascanu, A. Tacchetti, Visual interaction networks: learning a physics simulator from video, in: Proceedings of the 31st Conference on Neural Information Processing Systems, 2017, pp. 4540-4548. 〈http://doi.org/abs/1706.01433〉. – reference: Y. Hoshen, Vain: attentional multi-agent predictive modeling, in: Proceedings of the 31st Conference on Neural Information Processing Systems, 2017, pp. 2702-2712. 〈http://doi.org/abs/1706.06122〉. – volume: 72 start-page: 12540 year: 2023 end-page: 12552 ident: bib14 article-title: VNAGT: variational non-autoregressive graph transformer network for multi-agent trajectory prediction publication-title: IEEE Trans. Veh. Technol. – reference: C. Graber, A. Schwing, Dynamic neural relational inference, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020, pp. 8513-8522. 〈 – reference: J.C. Li, C.B. Hua, H.B. Ma, J. k Park, V. Dax, M.J. Kochenderfer, Multi-agent dynamic relational reasoning for social robot navigation, 2024, arXiv preprint arXiv: 2401. 12275. – volume: 13 start-page: 1661 year: 2022 ident: bib29 article-title: Neural relational inference to learn long-range allosteric interactions in proteins from molecular dynamics simulations publication-title: Nat. Commun. – start-page: 10007 year: 2020 end-page: 10013 ident: bib25 article-title: Relational graph learning for crowd navigation publication-title: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. – start-page: 14508 year: 2024 end-page: 14516 ident: bib28 article-title: A graph dynamics prior for relational inference publication-title: Proc. AAAI Conf. Artif. Intell. – start-page: 701 year: 2014 end-page: 710 ident: bib21 article-title: DeepWalk: online learning of social representations publication-title: Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. – reference: F. Alet, E. Weng, T.L. Pérez, L.P. Kaelbling, Neural relational inference with fast modular meta-learning, in: Proceedings of the 33rd Conference on Neural Information Processing Systems, 2019, pp. 1-12. 〈http://doi.org/2310.07015〉. – volume: 24 start-page: bbad406 year: 2023 ident: bib46 article-title: SMG: self-supervised masked graph learning for cancer gene identification publication-title: Brief. Bioinf. – reference: J.T. Li, R.F. Wu, W.B. Sun, L. Chen, S. Tian, L. Zhu, What's behind the mask: understanding masked graph modeling for graph autoencoders, in: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023, pp. 1268–1279. 〈http://doi.org/2205.10053〉. – volume: 36 start-page: 5340 year: 2023 end-page: 5353 ident: bib38 article-title: RARE: Robust masked graph autoencode publication-title: IEEE Trans. Knowl. Data Eng. – reference: X.C. Yuan, C.H. Zhang, Y.J. Tian, C.X. Zhang, Navigating graph robust learning against all-intensity attacks, in: Proceedings of the 2nd AdvML Frontiers workshop at 40th International Conference on Machine Learning, 2023, pp. 1–1. – volume: 18 start-page: 20 year: 2023 ident: bib30 article-title: A multi-sensor relation model for recognizing and localizing faults of machines based on network analysis publication-title: Front. Mech. Eng. – volume: 146 year: 2023 ident: bib32 article-title: Unboxing the graph: towards interpretable graph neural networks for transport prediction through neural relational inference publication-title: Transp. Res. C: Emer. – reference: J.C. Li, C.B. Hua, J. Park, H.B. Ma, V. Dax, M.J. Kochenderfer, Evolvehypergraph: Group-aware dynamic relational reasoning for trajectory prediction, 2022, arXiv preprint arXiv: 2208. 05470. – volume: 611 year: 2025 ident: bib2 article-title: SPMGAE: self-purified masked graph autoencoders release robust expression power publication-title: Neurocomputing – reference: S. Ha, H. Jeong, Learning heterogeneous interaction strengths by trajectory prediction with graph neural network, 2022, arXiv preprint arXiv: 2208. 13179. – reference: Z.Y. Hou, X. Liu, Y.K. Cen, Y.X. Dong, H.X. Yang, C.J. Wang, J. Tang, Graphmae: Self-supervised masked graph autoencoders, in: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022, pp. 594-604. 〈 – reference: J.C. Li, F. Yang, M. Tomizuka, C. Choi, Evolvegraph: multi-agent trajectory prediction with dynamic relational reasoning, in: Proceedings of the 34th Conference on Neural Information Processing Systems, 2020, pp. 19783-19794. 〈 – volume: 569 year: 2024 ident: bib6 article-title: DERGCN: dynamic-evolving graph convolutional networks for human trajectory prediction publication-title: Neurocomputing – volume: 4 start-page: lqac068 issue: 3 year: 2022 ident: 10.1016/j.neucom.2025.129922_bib33 article-title: Inferring structural and dynamical properties of gene networks from data with deep learning publication-title: NAR Genom. Bioinf. doi: 10.1093/nargab/lqac068 – start-page: 1 year: 2024 ident: 10.1016/j.neucom.2025.129922_bib13 article-title: Edge-enhanced heterogeneous graph transformer with priority-based feature aggregation for multi-agent trajectory prediction publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 737 year: 2023 ident: 10.1016/j.neucom.2025.129922_bib40 article-title: Graphmae2: a decoding-enhanced masked self-supervised graph learner publication-title: Proc. ACM web Conf. – ident: 10.1016/j.neucom.2025.129922_bib15 doi: 10.1109/CVPR42600.2020.00854 – volume: 569 year: 2024 ident: 10.1016/j.neucom.2025.129922_bib6 article-title: DERGCN: dynamic-evolving graph convolutional networks for human trajectory prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.127117 – ident: 10.1016/j.neucom.2025.129922_bib39 – ident: 10.1016/j.neucom.2025.129922_bib51 – ident: 10.1016/j.neucom.2025.129922_bib16 – volume: 23 start-page: 10359 issue: 10 year: 2023 ident: 10.1016/j.neucom.2025.129922_bib48 article-title: A mask self-supervised learning-based transformer for bearing fault diagnosis with limited labeled samples publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3264853 – start-page: 14508 year: 2024 ident: 10.1016/j.neucom.2025.129922_bib28 article-title: A graph dynamics prior for relational inference publication-title: Proc. AAAI Conf. Artif. Intell. – ident: 10.1016/j.neucom.2025.129922_bib8 – ident: 10.1016/j.neucom.2025.129922_bib26 – ident: 10.1016/j.neucom.2025.129922_bib4 – volume: 45 start-page: 2897 issue: 3 year: 2022 ident: 10.1016/j.neucom.2025.129922_bib20 article-title: Deep generative mixture model for robust imbalance classification publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2022.3178914 – ident: 10.1016/j.neucom.2025.129922_bib34 – ident: 10.1016/j.neucom.2025.129922_bib17 – volume: 51 start-page: 5 issue: 1 year: 2021 ident: 10.1016/j.neucom.2025.129922_bib10 article-title: Systems science and engineering research in the context of systems, man, and cybernetics: recollection, trends, and future directions publication-title: IEEE Trans. Syst. Man Cybern.: Syst. doi: 10.1109/TSMC.2020.3043192 – volume: 25 start-page: bbad400 issue: 1 year: 2024 ident: 10.1016/j.neucom.2025.129922_bib45 article-title: BatmanNet: bi-branch masked graph transformer autoencoder for molecular representation publication-title: Brief. Bioinf. doi: 10.1093/bib/bbad400 – ident: 10.1016/j.neucom.2025.129922_bib36 doi: 10.1145/3580305.3599546 – volume: 146 year: 2023 ident: 10.1016/j.neucom.2025.129922_bib32 article-title: Unboxing the graph: towards interpretable graph neural networks for transport prediction through neural relational inference publication-title: Transp. Res. C: Emer. doi: 10.1016/j.trc.2022.103946 – start-page: 2233 year: 2022 ident: 10.1016/j.neucom.2025.129922_bib22 article-title: Beyond homophily: structure-aware path aggregation graph neural network publication-title: Proc. Int. Jt. Conf. Artif. Intell. – volume: 34 start-page: 5375 issue: 8 year: 2022 ident: 10.1016/j.neucom.2025.129922_bib23 article-title: A preference random walk algorithm for link prediction through mutual influence nodes in complex networks publication-title: J. King Sand Univ. -Com. doi: 10.1016/j.jksuci.2021.05.006 – start-page: 701 year: 2014 ident: 10.1016/j.neucom.2025.129922_bib21 article-title: DeepWalk: online learning of social representations publication-title: Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. – ident: 10.1016/j.neucom.2025.129922_bib7 – ident: 10.1016/j.neucom.2025.129922_bib27 – volume: 16 start-page: 423 issue: 3 year: 2022 ident: 10.1016/j.neucom.2025.129922_bib55 article-title: Corn disease detection based on deep neural network for substantiating the crop yield publication-title: Appl. Math. Inf. Sci. doi: 10.18576/amis/160304 – ident: 10.1016/j.neucom.2025.129922_bib42 doi: 10.1145/3539597.3570404 – ident: 10.1016/j.neucom.2025.129922_bib43 – volume: 24 start-page: bbad406 issue: 6 year: 2023 ident: 10.1016/j.neucom.2025.129922_bib46 article-title: SMG: self-supervised masked graph learning for cancer gene identification publication-title: Brief. Bioinf. doi: 10.1093/bib/bbad406 – volume: 36 start-page: 5340 issue: 10 year: 2023 ident: 10.1016/j.neucom.2025.129922_bib38 article-title: RARE: Robust masked graph autoencode publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2023.3335222 – volume: 72 start-page: 12540 issue: 10 year: 2023 ident: 10.1016/j.neucom.2025.129922_bib14 article-title: VNAGT: variational non-autoregressive graph transformer network for multi-agent trajectory prediction publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2023.3273230 – volume: 240 year: 2024 ident: 10.1016/j.neucom.2025.129922_bib12 article-title: Meta-IRLSOT+ +: a meta-inverse reinforcement learning method for fast adaptation of trajectory prediction networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.122499 – ident: 10.1016/j.neucom.2025.129922_bib37 doi: 10.1145/3583780.3614894 – volume: 102 year: 2024 ident: 10.1016/j.neucom.2025.129922_bib41 article-title: Multi-view graph imputation network publication-title: Inf. Fusion doi: 10.1016/j.inffus.2023.102024 – ident: 10.1016/j.neucom.2025.129922_bib47 – ident: 10.1016/j.neucom.2025.129922_bib24 – volume: 34 start-page: 2350057 issue: 5 year: 2023 ident: 10.1016/j.neucom.2025.129922_bib31 article-title: Reconstruction of complex network from time series data based on graph attention network and gumbel softmax publication-title: Int. J. Mod. Phys. C doi: 10.1142/S0129183123500572 – volume: 171 year: 2024 ident: 10.1016/j.neucom.2025.129922_bib44 article-title: Git-mol: a multi-modal large language model for molecular science with graph, image, and text publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2024.108073 – ident: 10.1016/j.neucom.2025.129922_bib35 doi: 10.1145/3534678.3539321 – ident: 10.1016/j.neucom.2025.129922_bib11 – volume: 611 year: 2025 ident: 10.1016/j.neucom.2025.129922_bib2 article-title: SPMGAE: self-purified masked graph autoencoders release robust expression power publication-title: Neurocomputing doi: 10.1016/j.neucom.2024.128631 – ident: 10.1016/j.neucom.2025.129922_bib52 – volume: 1 start-page: 89 issue: 2 year: 2012 ident: 10.1016/j.neucom.2025.129922_bib54 article-title: A comparison of bayesian methods and artificial neural networks for forecasting chaotic financial time series publication-title: J. Stat. Appl. Probab. doi: 10.12785/jsap/010202 – ident: 10.1016/j.neucom.2025.129922_bib19 – volume: 491 start-page: 333 year: 2022 ident: 10.1016/j.neucom.2025.129922_bib50 article-title: Evostgat: evolving spatiotemporal graph attention networks for pedestrian trajectory prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.03.051 – volume: 18 start-page: 20 issue: 2 year: 2023 ident: 10.1016/j.neucom.2025.129922_bib30 article-title: A multi-sensor relation model for recognizing and localizing faults of machines based on network analysis publication-title: Front. Mech. Eng. doi: 10.1007/s11465-022-0736-9 – volume: 13 start-page: 1661 issue: 1 year: 2022 ident: 10.1016/j.neucom.2025.129922_bib29 article-title: Neural relational inference to learn long-range allosteric interactions in proteins from molecular dynamics simulations publication-title: Nat. Commun. doi: 10.1038/s41467-022-29331-3 – volume: 170 start-page: 564 year: 2024 ident: 10.1016/j.neucom.2025.129922_bib3 article-title: Dynamic-group-aware networks for multi-agent trajectory prediction with relational reasoning publication-title: Neural Netw. doi: 10.1016/j.neunet.2023.11.005 – ident: 10.1016/j.neucom.2025.129922_bib9 – volume: 4 start-page: 1 year: 2019 ident: 10.1016/j.neucom.2025.129922_bib18 article-title: A general deep learning framework for network reconstruction and dynamics learning publication-title: Appl. Netw. Sci. doi: 10.1007/s41109-019-0194-4 – start-page: 10007 year: 2020 ident: 10.1016/j.neucom.2025.129922_bib25 article-title: Relational graph learning for crowd navigation publication-title: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. – volume: 16 start-page: 643 issue: 4 year: 2022 ident: 10.1016/j.neucom.2025.129922_bib53 article-title: Chain based leader selection using neural network in wireless sensor networks protocols publication-title: Appl. Math. Inf. Sci. doi: 10.18576/amis/160418 – ident: 10.1016/j.neucom.2025.129922_bib49 doi: 10.1145/3539618.3591692 – volume: 568 year: 2024 ident: 10.1016/j.neucom.2025.129922_bib1 article-title: Stabilization and synchronization control for discrete-time complex networks via the auxiliary role of edges subsystem publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.127029 – ident: 10.1016/j.neucom.2025.129922_bib5 |
| SSID | ssj0017129 |
| Score | 2.4508026 |
| Snippet | Dynamic relational inference models uncover potential complex system interactions, enabling trajectory prediction and improving the interpretability of... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 129922 |
| SubjectTerms | Dynamic relational inference Graph attention network Masked graph autoencoder Multi-agent Trajectory prediction |
| Title | Masked graph autoencoder-based multi-agent dynamic relational inference model for trajectory prediction |
| URI | https://dx.doi.org/10.1016/j.neucom.2025.129922 |
| Volume | 634 |
| WOSCitedRecordID | wos001446308500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017129 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYo9NBLebRVgbbyoTdkRB624-OKggpSEVJBWrhETuzQXdQs2t1U8O8Ze5xk262qFqmXKPLayWrmkz3zZR6EfOTgUMMPnHEuLUsrmTKthGGqgtMdzAdbhWYT8uwsGw7VeQgrmvl2ArKus_t7dfdfVQ1joGyXOvsP6u4eCgNwD0qHK6gdrn-l-C96dgtWpK9Evaeb-cSVqjR2ytyBZTCCkGmXUbVnsB19SGjxnOCoTQDEHjkYhTjVY0_uP7iSAmZUdsoct7WfGjgHfX-IwDwMvrsCDMahrWMarr9pz8seNw9Nj8lDHBwCTG90OEYXJp-68WLUTf_UIGN7NQlzA2MRcxdZFfWM5XIqDfKRMBGMzZ-2ZoFE59I2j4zDeL-2jYv5cS_ZB8NFYYrzLwW0v7pHuyeDteeq04hnZC2WXME2vjY4ORqedl-dZBRjbcbwV9pUSx8PuPyu35syC-bJxQZ5GfwKOkA8bJIVW2-R9bZnBw1b-Ctyg_CgHh50CR50AR40wIP28KAdPKiHBwV40B4etIfHa3J5fHRx-JmFZhusBK9yzrTkVVJUotI6EkKWcZEaU1lwD2xRwA1PyoQrW6aZkiaOrCkM-KZJccBtlQgdJW_Iaj2p7VtCD6TQVqQygZVwDpssU6kCucFWL8EhiLYJa-WW32FNlbwNNhznKOfcyTlHOW8T2Qo3D3Yh2ns54OGPK3eevHKXvOih-46szqeNfU-elz_mo9n0QwDOI416jeo |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Masked+graph+autoencoder-based+multi-agent+dynamic+relational+inference+model+for+trajectory+prediction&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Zhao%2C+Fuyuan&rft.au=Cao%2C+Xiangang&rft.au=Zhao%2C+Jiangbin&rft.au=Duan%2C+Yong&rft.date=2025-06-14&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.volume=634&rft_id=info:doi/10.1016%2Fj.neucom.2025.129922&rft.externalDocID=S0925231225005946 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |