SVAE‐GRU‐based degradation generation and prediction for small samples

The degradation process analysis is the basis of the system reliability assessment. Too few degradation samples will affect the accuracy of the reliability analysis. So, it is necessary to expand the degradation data and construct the degradation prediction model. This paper proposes an SVAE‐GRU‐bas...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Quality and reliability engineering international Ročník 39; číslo 7; s. 2851 - 2868
Hlavní autori: Shangguan, Anqi, Feng, Nan, Mu, Lingxia, Fei, Rong, Hei, Xinhong, Xie, Guo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Bognor Regis Wiley Subscription Services, Inc 01.11.2023
Predmet:
ISSN:0748-8017, 1099-1638
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The degradation process analysis is the basis of the system reliability assessment. Too few degradation samples will affect the accuracy of the reliability analysis. So, it is necessary to expand the degradation data and construct the degradation prediction model. This paper proposes an SVAE‐GRU‐based degradation generation and prediction model to handle the issues. New degradation data are generated by combining the Stacked Variational Autoencoder (SVAE) and Gated Recurrent Units (GRU) in each time step, which can improve the learning effectiveness of the degradation features. The GRU and the Multi‐layer perceptron calculate the mean and the variance of the degradation distribution for each timestamp, the deeply heterogeneity and temporal feature of the original degraded samples are learned. Then the degradation amount of different samples are predicted. The optimal hyper‐parameters of the SVAE‐GRU are obtained by the grid search method. To verify the effectiveness of the proposed method, three datasets and four methods are used for experiment comparison in this paper. The actual example indicate that the SVAE‐GRU method has the best effect on the degradation generation and prediction.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0748-8017
1099-1638
DOI:10.1002/qre.3394