SVAE‐GRU‐based degradation generation and prediction for small samples
The degradation process analysis is the basis of the system reliability assessment. Too few degradation samples will affect the accuracy of the reliability analysis. So, it is necessary to expand the degradation data and construct the degradation prediction model. This paper proposes an SVAE‐GRU‐bas...
Uložené v:
| Vydané v: | Quality and reliability engineering international Ročník 39; číslo 7; s. 2851 - 2868 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Bognor Regis
Wiley Subscription Services, Inc
01.11.2023
|
| Predmet: | |
| ISSN: | 0748-8017, 1099-1638 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The degradation process analysis is the basis of the system reliability assessment. Too few degradation samples will affect the accuracy of the reliability analysis. So, it is necessary to expand the degradation data and construct the degradation prediction model. This paper proposes an SVAE‐GRU‐based degradation generation and prediction model to handle the issues. New degradation data are generated by combining the Stacked Variational Autoencoder (SVAE) and Gated Recurrent Units (GRU) in each time step, which can improve the learning effectiveness of the degradation features. The GRU and the Multi‐layer perceptron calculate the mean and the variance of the degradation distribution for each timestamp, the deeply heterogeneity and temporal feature of the original degraded samples are learned. Then the degradation amount of different samples are predicted. The optimal hyper‐parameters of the SVAE‐GRU are obtained by the grid search method. To verify the effectiveness of the proposed method, three datasets and four methods are used for experiment comparison in this paper. The actual example indicate that the SVAE‐GRU method has the best effect on the degradation generation and prediction. |
|---|---|
| AbstractList | The degradation process analysis is the basis of the system reliability assessment. Too few degradation samples will affect the accuracy of the reliability analysis. So, it is necessary to expand the degradation data and construct the degradation prediction model. This paper proposes an SVAE‐GRU‐based degradation generation and prediction model to handle the issues. New degradation data are generated by combining the Stacked Variational Autoencoder (SVAE) and Gated Recurrent Units (GRU) in each time step, which can improve the learning effectiveness of the degradation features. The GRU and the Multi‐layer perceptron calculate the mean and the variance of the degradation distribution for each timestamp, the deeply heterogeneity and temporal feature of the original degraded samples are learned. Then the degradation amount of different samples are predicted. The optimal hyper‐parameters of the SVAE‐GRU are obtained by the grid search method. To verify the effectiveness of the proposed method, three datasets and four methods are used for experiment comparison in this paper. The actual example indicate that the SVAE‐GRU method has the best effect on the degradation generation and prediction. The degradation process analysis is the basis of the system reliability assessment. Too few degradation samples will affect the accuracy of the reliability analysis. So, it is necessary to expand the degradation data and construct the degradation prediction model. This paper proposes an SVAE‐GRU‐based degradation generation and prediction model to handle the issues. New degradation data are generated by combining the Stacked Variational Autoencoder (SVAE) and Gated Recurrent Units (GRU) in each time step, which can improve the learning effectiveness of the degradation features. The GRU and the Multi‐layer perceptron calculate the mean and the variance of the degradation distribution for each timestamp, the deeply heterogeneity and temporal feature of the original degraded samples are learned. Then the degradation amount of different samples are predicted. The optimal hyper‐parameters of the SVAE‐GRU are obtained by the grid search method. To verify the effectiveness of the proposed method, three datasets and four methods are used for experiment comparison in this paper. The actual example indicate that the SVAE‐GRU method has the best effect on the degradation generation and prediction. |
| Author | Xie, Guo Hei, Xinhong Shangguan, Anqi Feng, Nan Mu, Lingxia Fei, Rong |
| Author_xml | – sequence: 1 givenname: Anqi orcidid: 0000-0003-2848-322X surname: Shangguan fullname: Shangguan, Anqi organization: School of Automation and Information Engineering Xi'an University of Technology Xi'an China – sequence: 2 givenname: Nan surname: Feng fullname: Feng, Nan organization: School of Intelligent Science and Technology Beijing University of Science and Technology Beijing China – sequence: 3 givenname: Lingxia surname: Mu fullname: Mu, Lingxia organization: School of Automation and Information Engineering Xi'an University of Technology Xi'an China – sequence: 4 givenname: Rong surname: Fei fullname: Fei, Rong organization: School of computer science and Engineering Xi'an University of Technology Xi'an China – sequence: 5 givenname: Xinhong surname: Hei fullname: Hei, Xinhong organization: School of computer science and Engineering Xi'an University of Technology Xi'an China – sequence: 6 givenname: Guo orcidid: 0000-0002-9948-453X surname: Xie fullname: Xie, Guo organization: School of Automation and Information Engineering Xi'an University of Technology Xi'an China |
| BookMark | eNplkMtKw0AUhgepYFsFHyHgxk3q3DKXZSm1KgVBrdthkjlTUtIknUkX7nwEn9EnMW1d6eZc4P_Oz_lHaFA3NSB0TfCEYEzvdgEmjGl-hoYEa50SwdQADbHkKlWYyAs0inGDcS_WaoieXt-n8-_Pr8XLqq-5jeASB-tgne3Kpk7WUEM4jbZ2SRvAlcVx9U1I4tZWVRLttq0gXqJzb6sIV799jFb387fZQ7p8XjzOpsu0oFnWpdprnme5pko4SnNBnKDUS0adzIjVTHrQIAXW0kEhfaaZ4N5JS3muRM4zNkY3p7ttaHZ7iJ3ZNPtQ95aGKkmV5ryHxmhyUhWhiTGAN0XZHR_pgi0rQ7A55GX6vMwhrx64_QO0odza8PFf-gOk8247 |
| CitedBy_id | crossref_primary_10_1016_j_jfca_2025_107994 |
| Cites_doi | 10.1109/TR.2017.2765485 10.1109/TASE.2020.3035620 10.1016/j.knosys.2022.108919 10.1016/j.ins.2019.07.070 10.1016/j.ress.2018.10.002 10.1109/LSP.2020.2977498 10.1109/LSP.2004.840869 10.1016/j.epsr.2022.108462 10.1016/j.ress.2019.106631 10.1016/j.asr.2022.08.072.2022 10.1002/qre.2762 10.1016/j.ress.2022.108412 10.1016/j.ress.2022.108816 10.1016/j.ress.2021.107897 10.3390/rs13030464 10.1016/j.eswa.2023.119775 10.1109/TASLP.2020.3000593 10.1016/j.ress.2022.109078 10.1109/TMECH.2020.3043471 10.1016/j.apm.2020.03.018 10.1016/j.seta.2022.102807 10.1109/LGRS.2019.2913387 10.1109/TII.2020.3025204 10.1016/j.microrel.2017.07.005 10.1109/TNNLS.2020.2980749 10.1016/j.asoc.2022.109515 10.1016/j.ijhydene.2022.09.160 10.1002/qre.1489 10.1016/j.ress.2021.107446 10.1109/JIOT.2021.3052162 10.1109/JSEN.2021.3128562 10.1016/j.jmrt.2021.11.029 10.1016/j.ins.2020.04.042 10.1016/j.ress.2021.107738 10.1109/TII.2020.3046566 10.1109/TKDE.2021.3130595 10.1016/j.measurement.2023.112739 10.1109/TII.2019.2951622 10.1016/j.ins.2020.01.045 |
| ContentType | Journal Article |
| Copyright | 2023 John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2023 John Wiley & Sons Ltd. |
| DBID | AAYXX CITATION 7TB 8FD FR3 |
| DOI | 10.1002/qre.3394 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
| DatabaseTitleList | Technology Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1099-1638 |
| EndPage | 2868 |
| ExternalDocumentID | 10_1002_qre_3394 |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADMLS ADNMO ADOZA ADXAS AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O8X O9- P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT 7TB 8FD ALUQN FR3 |
| ID | FETCH-LOGICAL-c255t-9f94b5b9286d22b61d622f732d751a937fe9e76097dec7f59364fd7a24b86b453 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001003436600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0748-8017 |
| IngestDate | Fri Jul 25 12:17:19 EDT 2025 Tue Nov 18 21:21:10 EST 2025 Sat Nov 29 02:33:18 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c255t-9f94b5b9286d22b61d622f732d751a937fe9e76097dec7f59364fd7a24b86b453 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9948-453X 0000-0003-2848-322X |
| PQID | 2872894459 |
| PQPubID | 1016437 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2872894459 crossref_citationtrail_10_1002_qre_3394 crossref_primary_10_1002_qre_3394 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-00 20231101 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Bognor Regis |
| PublicationPlace_xml | – name: Bognor Regis |
| PublicationTitle | Quality and reliability engineering international |
| PublicationYear | 2023 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 Chawla N (e_1_2_8_16_1) 2011; 16 e_1_2_8_38_1 e_1_2_8_37_1 Freitas MA (e_1_2_8_42_1) 2010; 25 Kingma D P (e_1_2_8_28_1) 2014; 1050 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – ident: e_1_2_8_39_1 doi: 10.1109/TR.2017.2765485 – ident: e_1_2_8_33_1 doi: 10.1109/TASE.2020.3035620 – volume: 16 start-page: 321 issue: 1 year: 2011 ident: e_1_2_8_16_1 article-title: SMOTE: Synthetic minority oversampling technique publication-title: Artificial Intelligent – volume: 1050 start-page: 10 year: 2014 ident: e_1_2_8_28_1 article-title: Auto‐Encoding Variational Bayes publication-title: Statistics – ident: e_1_2_8_17_1 doi: 10.1016/j.knosys.2022.108919 – ident: e_1_2_8_18_1 doi: 10.1016/j.ins.2019.07.070 – ident: e_1_2_8_12_1 doi: 10.1016/j.ress.2018.10.002 – ident: e_1_2_8_29_1 doi: 10.1109/LSP.2020.2977498 – ident: e_1_2_8_24_1 doi: 10.1109/LSP.2004.840869 – ident: e_1_2_8_13_1 doi: 10.1016/j.epsr.2022.108462 – ident: e_1_2_8_7_1 doi: 10.1016/j.ress.2019.106631 – ident: e_1_2_8_40_1 doi: 10.1016/j.asr.2022.08.072.2022 – volume: 25 start-page: 607 issue: 5 year: 2010 ident: e_1_2_8_42_1 article-title: Using degradation data to assess reliability: a case study on train wheel degradation publication-title: Inf Sci – ident: e_1_2_8_25_1 doi: 10.1002/qre.2762 – ident: e_1_2_8_11_1 doi: 10.1016/j.ress.2022.108412 – ident: e_1_2_8_2_1 doi: 10.1016/j.ress.2022.108816 – ident: e_1_2_8_3_1 doi: 10.1016/j.ress.2021.107897 – ident: e_1_2_8_20_1 doi: 10.3390/rs13030464 – ident: e_1_2_8_32_1 doi: 10.1016/j.eswa.2023.119775 – ident: e_1_2_8_38_1 doi: 10.1109/TASLP.2020.3000593 – ident: e_1_2_8_26_1 doi: 10.1016/j.ress.2022.109078 – ident: e_1_2_8_5_1 doi: 10.1109/TMECH.2020.3043471 – ident: e_1_2_8_6_1 doi: 10.1016/j.apm.2020.03.018 – ident: e_1_2_8_15_1 doi: 10.1016/j.seta.2022.102807 – ident: e_1_2_8_19_1 doi: 10.1109/LGRS.2019.2913387 – ident: e_1_2_8_34_1 doi: 10.1109/TII.2020.3025204 – ident: e_1_2_8_43_1 doi: 10.1016/j.microrel.2017.07.005 – ident: e_1_2_8_37_1 doi: 10.1109/TNNLS.2020.2980749 – ident: e_1_2_8_35_1 – ident: e_1_2_8_10_1 doi: 10.1016/j.asoc.2022.109515 – ident: e_1_2_8_8_1 doi: 10.1016/j.ijhydene.2022.09.160 – ident: e_1_2_8_23_1 doi: 10.1002/qre.1489 – ident: e_1_2_8_9_1 doi: 10.1016/j.ress.2021.107446 – ident: e_1_2_8_31_1 doi: 10.1109/JIOT.2021.3052162 – ident: e_1_2_8_36_1 doi: 10.1109/JSEN.2021.3128562 – ident: e_1_2_8_44_1 doi: 10.1016/j.jmrt.2021.11.029 – ident: e_1_2_8_4_1 doi: 10.1016/j.ins.2020.04.042 – ident: e_1_2_8_14_1 doi: 10.1016/j.ress.2021.107738 – ident: e_1_2_8_21_1 doi: 10.1109/TII.2020.3046566 – ident: e_1_2_8_22_1 doi: 10.1109/TKDE.2021.3130595 – ident: e_1_2_8_27_1 doi: 10.1016/j.measurement.2023.112739 – ident: e_1_2_8_30_1 doi: 10.1109/TII.2019.2951622 – ident: e_1_2_8_41_1 doi: 10.1016/j.ins.2020.01.045 |
| SSID | ssj0010098 |
| Score | 2.3511527 |
| Snippet | The degradation process analysis is the basis of the system reliability assessment. Too few degradation samples will affect the accuracy of the reliability... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 2851 |
| SubjectTerms | Degradation Effectiveness Heterogeneity Prediction models Reliability analysis System reliability |
| Title | SVAE‐GRU‐based degradation generation and prediction for small samples |
| URI | https://www.proquest.com/docview/2872894459 |
| Volume | 39 |
| WOSCitedRecordID | wos001003436600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-1638 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010098 issn: 0748-8017 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Lb9QwEMetpeUAB8RT9AEyEhKHKrBx_DxW0IJQWaHSRb1FTuxUkZbQbnar5cZH4M6345Mwjp3HFg7lwCXKRk5W6_nvzNixf4PQcx27oMJEpDmDAYqmKtLMsIgUhlFjKGSoDWf2SEwm8vRUfRyNfrZ7YS5noqrkaqXO_6up4RoY222d_Qdzdw-FC3AORocjmB2O1zL8p8_7B90ShrfH0-7cBSyzZxwdwhdScuWTbVBA4AWYMu8WH9Zf3GvrWjt-cD1MYj13w4Ob5nZWetT3tz3bsw0bDEU309hN47jZ6bOlDtiCi7JPRL3LmfRa_bAMUwZnq1L37Uq_HDzE2zBdQZKwb6_3aoJKFxZ9lLXe6zpMqEsMh27ZM46C_MTQx8qAqLXho6_L80cs8GzZi7l9mSS-kPI6bvtKGOwWJ3qQM0nhztTdeQNtEsEUuMzNN8eH06PuJZVjsXrKq_9FLdt4TF6137qe7awH-yaDObmL7oShB973krmHRra6j24PgJQP0Hsnnl_ff4Bs4NgIBg8Eg3vBYDA-7gWDQTC4EQwOgnmIpocHJ6_fRaHaRpTDsHIRqULRjGUK-tMQkvHYcEIKkRAjWKwhiy2ssoKPlTA2F4WrBEkLIzShmeQZZckjtFF9rexjhHkWa5ZzqeI8oZmhemyt0DEfF5YrW8gt9KLtlTQPKHpXEWWWXu37LfSsa3nu8St_abPbdmwa_od1SqQgUlHK1PY1HrGDbvVa3UUbi_nSPkE388tFWc-fBrv_BqwIhVE |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SVAE%E2%80%90GRU%E2%80%90based+degradation+generation+and+prediction+for+small+samples&rft.jtitle=Quality+and+reliability+engineering+international&rft.au=Shangguan%2C+Anqi&rft.au=Feng%2C+Nan&rft.au=Mu%2C+Lingxia&rft.au=Fei%2C+Rong&rft.date=2023-11-01&rft.issn=0748-8017&rft.eissn=1099-1638&rft.volume=39&rft.issue=7&rft.spage=2851&rft.epage=2868&rft_id=info:doi/10.1002%2Fqre.3394&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_qre_3394 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0748-8017&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0748-8017&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0748-8017&client=summon |