Algebraic decoding of the (41, 21, 9) quadratic residue code without determining the unknown syndromes

Quadratic residue (QR) codes have a high prospect on error correction for reliable data conveyance over channel with noise. This paper presents a fast algebraic scheme for decoding the binary (41, 21, 9) QR code for correcting up to 4 errors on an one-case-by-one-case basis, in which the calculation...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physical communication Ročník 42; s. 101135
Hlavní autoři: Luo, Chunlan, Wu, Yi, Chang, Hsin-chiu, Yang, Zheng, Xing, Song
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.10.2020
Témata:
ISSN:1874-4907, 1876-3219
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Quadratic residue (QR) codes have a high prospect on error correction for reliable data conveyance over channel with noise. This paper presents a fast algebraic scheme for decoding the binary (41, 21, 9) QR code for correcting up to 4 errors on an one-case-by-one-case basis, in which the calculation of unknown syndromes is eliminated and the conditions for checking for the various numbers of errors that exist in the received word are also simplified compared to those from Lin T. C. et al.’s algorithm, which is a traditional algebraic decoding algorithm (ADA). The computational complexity of the decoder performing the binary (41, 21, 9) QR code is analyzed thoroughly, which demonstrates that the proposed decoding scheme is faster, simpler, and more suitable for implementation than Lin T. C. et al.’s algorithm. Numerical emulation results demonstrate that the proposed decoding scheme achieves the same error-rate performance as Lin T. C. et al.’s algorithm, but it has a significantly decreased the complexity of this decoder in terms of the CPU time.
AbstractList Quadratic residue (QR) codes have a high prospect on error correction for reliable data conveyance over channel with noise. This paper presents a fast algebraic scheme for decoding the binary (41, 21, 9) QR code for correcting up to 4 errors on an one-case-by-one-case basis, in which the calculation of unknown syndromes is eliminated and the conditions for checking for the various numbers of errors that exist in the received word are also simplified compared to those from Lin T. C. et al.’s algorithm, which is a traditional algebraic decoding algorithm (ADA). The computational complexity of the decoder performing the binary (41, 21, 9) QR code is analyzed thoroughly, which demonstrates that the proposed decoding scheme is faster, simpler, and more suitable for implementation than Lin T. C. et al.’s algorithm. Numerical emulation results demonstrate that the proposed decoding scheme achieves the same error-rate performance as Lin T. C. et al.’s algorithm, but it has a significantly decreased the complexity of this decoder in terms of the CPU time.
ArticleNumber 101135
Author Luo, Chunlan
Xing, Song
Wu, Yi
Yang, Zheng
Chang, Hsin-chiu
Author_xml – sequence: 1
  givenname: Chunlan
  surname: Luo
  fullname: Luo, Chunlan
  email: chunlanlou@yeah.net
  organization: Key Laboratory of Opto Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, and Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, Fujian Normal University, Fuzhou, China
– sequence: 2
  givenname: Yi
  surname: Wu
  fullname: Wu, Yi
  email: wuyi@fjnu.edu.cn
  organization: Key Laboratory of Opto Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, and Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, Fujian Normal University, Fuzhou, China
– sequence: 3
  givenname: Hsin-chiu
  surname: Chang
  fullname: Chang, Hsin-chiu
  email: newballch@gmail.com
  organization: Key Laboratory of Opto Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, and Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, Fujian Normal University, Fuzhou, China
– sequence: 4
  givenname: Zheng
  surname: Yang
  fullname: Yang, Zheng
  email: zyfjnu@163.com
  organization: Key Laboratory of Opto Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, and Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, Fujian Normal University, Fuzhou, China
– sequence: 5
  givenname: Song
  surname: Xing
  fullname: Xing, Song
  email: sxing@exchange.calstatela.edu
  organization: Information Systems Department, California State University, Los Angeles, USA
BookMark eNp9kE1rwzAMhs3oYF3Xf7CDjxssne04dXwZlLIvKOzSu0ltpXXX2J2drPTfz1l2nkBICD0v0nuNRs47QOiWkhkldP64nx13Z-2bGSPsd0Tz4gKNaSnmWc6oHP32POOSiCs0jXFP-hCEcT5G9eKwhU2orMYGtDfWbbGvcbsDfMfpA2Yp5T3-6ioTqjZtBYjWdIDTLuCTbXe-axPaQmis6-ke7dyn8yeH49mZ4BuIN-iyrg4Rpn91gtYvz-vlW7b6eH1fLlaZZkXRZrIk0jBChS6oloVglaw3zKSPSlnqPOcpdFFIoqUsqeE1mYuNKXOmqQQh8wnig6wOPsYAtToG21ThrChRvVtqrwa3VO-WGtxK2NOAQTrt20JQUVtwGowNoFtlvP1f4Ae9g3UA
Cites_doi 10.1109/18.915677
10.1109/TCOMM.2009.07.060542
10.1109/TIT.1987.1057262
10.1016/j.ins.2009.06.002
10.1109/TIT.1964.1053699
10.1109/18.333854
10.1109/TCOMM.2003.816994
10.1109/TIT.2008.929956
10.1109/18.135639
10.1109/TC.1985.1676616
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.phycom.2020.101135
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1876-3219
ExternalDocumentID 10_1016_j_phycom_2020_101135
S1874490720302123
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSV
SSZ
T5K
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c255t-9809d2017c51c9572a9fb2d135898c334444c5590c9981d4f067bd832c19e793
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000572962200023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1874-4907
IngestDate Sat Nov 29 07:00:59 EST 2025
Fri Feb 23 02:49:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Quadratic residue codes
Fast algebraic decoding algorithm
Error pattern
Syndrome
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c255t-9809d2017c51c9572a9fb2d135898c334444c5590c9981d4f067bd832c19e793
ParticipantIDs crossref_primary_10_1016_j_phycom_2020_101135
elsevier_sciencedirect_doi_10_1016_j_phycom_2020_101135
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationTitle Physical communication
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lin, Truong, Lee, Chang (b8) 2009; 179
Chien (b11) 1964; 10
Reed, Truong, Chen, Yin (b9) 1992; 38
He, Reed, Truong, Chen (b4) 2001; 47
Elia (b3) 1987; 33
Prange (b1) 1958
Dubney, Reed, Truong, Yang (b5) 2009; 57
Wang, Truong, Shao, Deutsch, Omura, Reed (b14) 1985; 34
Chen, Truong, Chang, Lee, Chen (b10) 2007; 23
Wicker (b2) 1994
Truong, Shih, Su, Lee, Chang (b7) 2008; 54
Feng, Tzeng (b13) 1994; 40
Chang, Truong, Reed, Cheng, Lee (b6) 2003; 51
Berlekamp (b12) 1968
Chen (10.1016/j.phycom.2020.101135_b10) 2007; 23
Elia (10.1016/j.phycom.2020.101135_b3) 1987; 33
Wang (10.1016/j.phycom.2020.101135_b14) 1985; 34
Reed (10.1016/j.phycom.2020.101135_b9) 1992; 38
Lin (10.1016/j.phycom.2020.101135_b8) 2009; 179
Chang (10.1016/j.phycom.2020.101135_b6) 2003; 51
Berlekamp (10.1016/j.phycom.2020.101135_b12) 1968
Prange (10.1016/j.phycom.2020.101135_b1) 1958
Chien (10.1016/j.phycom.2020.101135_b11) 1964; 10
Truong (10.1016/j.phycom.2020.101135_b7) 2008; 54
He (10.1016/j.phycom.2020.101135_b4) 2001; 47
Feng (10.1016/j.phycom.2020.101135_b13) 1994; 40
Wicker (10.1016/j.phycom.2020.101135_b2) 1994
Dubney (10.1016/j.phycom.2020.101135_b5) 2009; 57
References_xml – year: 1958
  ident: b1
  article-title: Some Cyclic Error-Correcting Codes with Simple Decoding Algorithms
– volume: 179
  start-page: 3451
  year: 2009
  end-page: 3459
  ident: b8
  article-title: Algebraic decoding of the (41, 21, 9) quadratic residue code
  publication-title: Inform. Sci.
– volume: 47
  start-page: 1181
  year: 2001
  end-page: 1186
  ident: b4
  article-title: Decoding the (47, 24, 11) quadratic residue code
  publication-title: IEEE Trans. Inform. Theory
– volume: 23
  start-page: 127
  year: 2007
  end-page: 145
  ident: b10
  article-title: Algebraic decoding of quadratic residue codes using berlekamp-massey algorithm
  publication-title: J. Inf. Sci. Eng.
– volume: 33
  start-page: 150
  year: 1987
  end-page: 151
  ident: b3
  article-title: Algebraic decoding of the (23, 12, 7) Golay code
  publication-title: IEEE Trans. Inform. Theory
– volume: 57
  start-page: 1986
  year: 2009
  end-page: 1993
  ident: b5
  article-title: Decoding the (47, 24, 11) quadratic residue code using bit-error probability estimates
  publication-title: IEEE Trans. Commun.
– volume: 10
  start-page: 357
  year: 1964
  end-page: 363
  ident: b11
  article-title: Cyclic decoding procedures for bose-chaudhuri-hocquenghem codes
  publication-title: IEEE Trans. Inform. Theory
– volume: 54
  start-page: 5005
  year: 2008
  end-page: 5011
  ident: b7
  article-title: Algebraic decoding of the (89, 45, 17) quadratic residue code
  publication-title: IEEE Trans. Inform. Theory
– volume: 34
  start-page: 709
  year: 1985
  end-page: 717
  ident: b14
  article-title: VLSI architectures for computing multiplications and inverses in
  publication-title: IEEE Trans. Comput.
– volume: 38
  start-page: 974
  year: 1992
  end-page: 986
  ident: b9
  article-title: The algebraic decoding of the (41, 21, 9) quadratic residue code
  publication-title: IEEE Trans. Inform. Theory
– year: 1994
  ident: b2
  article-title: Error control systems for digital communication and storage
– volume: 40
  start-page: 1364
  year: 1994
  end-page: 1374
  ident: b13
  article-title: A new procedure for decoding cyclic and BCH codes up to actual minimum distance
  publication-title: IEEE Trans. Inform. Theory
– volume: 51
  start-page: 1463
  year: 2003
  end-page: 1473
  ident: b6
  article-title: Algebraic decoding of (71, 36, 11), (79, 40, 15), and (97, 49, 15) quadratic residue codes
  publication-title: IEEE Trans. Commun.
– year: 1968
  ident: b12
  article-title: Algebraic Coding Theory
– volume: 47
  start-page: 1181
  issue: 3
  year: 2001
  ident: 10.1016/j.phycom.2020.101135_b4
  article-title: Decoding the (47, 24, 11) quadratic residue code
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/18.915677
– volume: 57
  start-page: 1986
  issue: 7
  year: 2009
  ident: 10.1016/j.phycom.2020.101135_b5
  article-title: Decoding the (47, 24, 11) quadratic residue code using bit-error probability estimates
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2009.07.060542
– volume: 23
  start-page: 127
  issue: 1
  year: 2007
  ident: 10.1016/j.phycom.2020.101135_b10
  article-title: Algebraic decoding of quadratic residue codes using berlekamp-massey algorithm
  publication-title: J. Inf. Sci. Eng.
– year: 1958
  ident: 10.1016/j.phycom.2020.101135_b1
– volume: 33
  start-page: 150
  issue: 1
  year: 1987
  ident: 10.1016/j.phycom.2020.101135_b3
  article-title: Algebraic decoding of the (23, 12, 7) Golay code
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.1987.1057262
– volume: 179
  start-page: 3451
  issue: 19
  year: 2009
  ident: 10.1016/j.phycom.2020.101135_b8
  article-title: Algebraic decoding of the (41, 21, 9) quadratic residue code
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2009.06.002
– volume: 10
  start-page: 357
  issue: 4
  year: 1964
  ident: 10.1016/j.phycom.2020.101135_b11
  article-title: Cyclic decoding procedures for bose-chaudhuri-hocquenghem codes
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.1964.1053699
– volume: 40
  start-page: 1364
  issue: 5
  year: 1994
  ident: 10.1016/j.phycom.2020.101135_b13
  article-title: A new procedure for decoding cyclic and BCH codes up to actual minimum distance
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/18.333854
– year: 1994
  ident: 10.1016/j.phycom.2020.101135_b2
– volume: 51
  start-page: 1463
  issue: 9
  year: 2003
  ident: 10.1016/j.phycom.2020.101135_b6
  article-title: Algebraic decoding of (71, 36, 11), (79, 40, 15), and (97, 49, 15) quadratic residue codes
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2003.816994
– volume: 54
  start-page: 5005
  issue: 11
  year: 2008
  ident: 10.1016/j.phycom.2020.101135_b7
  article-title: Algebraic decoding of the (89, 45, 17) quadratic residue code
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2008.929956
– year: 1968
  ident: 10.1016/j.phycom.2020.101135_b12
– volume: 38
  start-page: 974
  issue: 3
  year: 1992
  ident: 10.1016/j.phycom.2020.101135_b9
  article-title: The algebraic decoding of the (41, 21, 9) quadratic residue code
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/18.135639
– volume: 34
  start-page: 709
  issue: 8
  year: 1985
  ident: 10.1016/j.phycom.2020.101135_b14
  article-title: VLSI architectures for computing multiplications and inverses in GF(2m)
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.1985.1676616
SSID ssj0000070244
Score 2.179039
Snippet Quadratic residue (QR) codes have a high prospect on error correction for reliable data conveyance over channel with noise. This paper presents a fast...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 101135
SubjectTerms Error pattern
Fast algebraic decoding algorithm
Quadratic residue codes
Syndrome
Title Algebraic decoding of the (41, 21, 9) quadratic residue code without determining the unknown syndromes
URI https://dx.doi.org/10.1016/j.phycom.2020.101135
Volume 42
WOSCitedRecordID wos000572962200023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1876-3219
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070244
  issn: 1874-4907
  databaseCode: AIEXJ
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKxwN7mPgUY4D8wAMIPDWJE8ePFRoaCE2TqKDiJUpsh2aqvK1tpom_nrvYziKKECBRKVZ1levk7qfz3eXuTMiL0pQmzpKSlRkgmGemZBWvFRM1mM9Cl6nu3p5__ihOTvL5XJ6ORt9DLczVUlibX1_Li_8qaqCBsLF09i_E3f8pEOA7CB1GEDuMfyT46fIbvgxu1GsNrqX2Wc1oX4IxySPkadyNEiMCl22pV76RM9xri8nr2nThWcxY1j5bJhRVtRaDcLZvdLAeGrenQeZqWHXSp_y0Liq7aO3yBpJf2m4TaAZpBk77HK8by9SiaXu95H_4ujB-t_XBCvBMQ9qbj6BtVdF0SjcXnHHpTr89NIGWsSSoU6-pXR-uLaXv4g9nh4BLzADCdZEYuT4oP7XT_oSr4WIxqDfct2-RnVikMh-Tnen7o_mHPkKHnZDi7jTg_gZD7WWXILi93K9tm4G9MrtL9ryjQacOIPfIyNj7ZHfQfvIBqXuo0AAVel5TkDN9yaM3NIZLvqI9RKiHCEWIUA8ROoBIN9VDhPYQeUhm745mb4-ZP3eDKXAwN0zmE6nBMBQqjZRMRVzKuoo1PGAuc5UkHD4KPNGJAl890rwGi6fSsDWoSBrQ94_I2J5b85jQKpqYCj16UdU8UVkO7jr2iKxSrgRQ9wkLDCsuXHeVIqQdnhWOwQUyuHAM3icicLXwFqKz_ArAwm9nPvnnmQfkzg2Sn5LxZtWaZ-S2uto069VzD5ofhwiIyg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algebraic+decoding+of+the+%2841%2C+21%2C+9%29+quadratic+residue+code+without+determining+the+unknown+syndromes&rft.jtitle=Physical+communication&rft.au=Luo%2C+Chunlan&rft.au=Wu%2C+Yi&rft.au=Chang%2C+Hsin-chiu&rft.au=Yang%2C+Zheng&rft.date=2020-10-01&rft.pub=Elsevier+B.V&rft.issn=1874-4907&rft.eissn=1876-3219&rft.volume=42&rft_id=info:doi/10.1016%2Fj.phycom.2020.101135&rft.externalDocID=S1874490720302123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1874-4907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1874-4907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1874-4907&client=summon