A dynamic evolution of graph structure-based algorithm for multi-modal multi-objective optimization

In the field of multi-modal multi-objective optimization problems (MMOPs), the challenge lies in simultaneously identifying multiple Pareto-optimal solution sets within the decision space and accurately locating the Pareto front in the objective space. Therefore, it is particularly important to deve...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Swarm and evolutionary computation Ročník 98; s. 102095
Hlavní autori: Yan, Pengguo, Tian, Ye, Liu, Yu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.10.2025
Predmet:
ISSN:2210-6502
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the field of multi-modal multi-objective optimization problems (MMOPs), the challenge lies in simultaneously identifying multiple Pareto-optimal solution sets within the decision space and accurately locating the Pareto front in the objective space. Therefore, it is particularly important to develop a method that can effectively represent and utilize the complex relationships and dependencies between variables. Considering that graph structures have unique advantages in capturing complex relationships and dependencies, it is necessary to explore graph-theoretic methods to solve the problem. Inspired by this, a dynamic evolution of graph structure-based algorithm is proposed in this paper. Specifically, a historical data-driven graph generation strategy is proposed to construct the initial population as graph-structured data. Then, the node2vec strategy is applied to perform random walks based on the weights on the edges, avoiding repeating the same mistakes in the search process, to enable more rapid and effective population evolution on the graph. Furthermore, a dynamic modal-labeling mechanism based on an adaptive density-based spatial clustering of applications with noise of the graph structure is proposed to prevent the mixing of information from different modalities while enabling the timely detection and optimization of initially unrecognized modalities. Moreover, a dynamic link node prediction mechanism is proposed to update the graph structure, enabling the network to adapt to changes in the data. Experiments on 28 MMOPs and the multiline distance minimization problem demonstrate that the proposed algorithm performs better than seven state-of-the-art representatives, including 22 MMOPs in CEC2020 and 6 MMMOPs.
AbstractList In the field of multi-modal multi-objective optimization problems (MMOPs), the challenge lies in simultaneously identifying multiple Pareto-optimal solution sets within the decision space and accurately locating the Pareto front in the objective space. Therefore, it is particularly important to develop a method that can effectively represent and utilize the complex relationships and dependencies between variables. Considering that graph structures have unique advantages in capturing complex relationships and dependencies, it is necessary to explore graph-theoretic methods to solve the problem. Inspired by this, a dynamic evolution of graph structure-based algorithm is proposed in this paper. Specifically, a historical data-driven graph generation strategy is proposed to construct the initial population as graph-structured data. Then, the node2vec strategy is applied to perform random walks based on the weights on the edges, avoiding repeating the same mistakes in the search process, to enable more rapid and effective population evolution on the graph. Furthermore, a dynamic modal-labeling mechanism based on an adaptive density-based spatial clustering of applications with noise of the graph structure is proposed to prevent the mixing of information from different modalities while enabling the timely detection and optimization of initially unrecognized modalities. Moreover, a dynamic link node prediction mechanism is proposed to update the graph structure, enabling the network to adapt to changes in the data. Experiments on 28 MMOPs and the multiline distance minimization problem demonstrate that the proposed algorithm performs better than seven state-of-the-art representatives, including 22 MMOPs in CEC2020 and 6 MMMOPs.
ArticleNumber 102095
Author Yan, Pengguo
Liu, Yu
Tian, Ye
Author_xml – sequence: 1
  givenname: Pengguo
  surname: Yan
  fullname: Yan, Pengguo
  organization: School of Electronic and Information Engineering, University of Science and Technology Liaoning, AnShan, 114051, China
– sequence: 2
  givenname: Ye
  surname: Tian
  fullname: Tian, Ye
  organization: School of Computer Science and Technology, Anhui University, Hefei, 230601, China
– sequence: 3
  givenname: Yu
  orcidid: 0009-0000-0191-1461
  surname: Liu
  fullname: Liu, Yu
  email: 320083100106@ustl.edu.cn
  organization: School of Electronic and Information Engineering, University of Science and Technology Liaoning, AnShan, 114051, China
BookMark eNp9kE1uwyAQhVmkUtM0J-iGCzjFuOCw6CKK-hMpUjftGmEYEizbRIBTpacvabLubGY0mu_pzbtDk8EPgNBDSRYlKflju4jfcPQLSijLG0oEm6AppSUpOCP0Fs1jbEkung-YmCK9wuY0qN5pnLluTM4P2Fu8C-qwxzGFUacxQNGoCAarbueDS_seWx9wP3bJFb03qrvOvmlBJ3cE7A_J9e5HnfXu0Y1VXYT5tc_Q1-vL5_q92H68bdarbaGzl1QIyq0QeVZWKWFNY0VTL5e1YQayXcvMUy14VWuiCDcZ0YLwEphgQGltq2qGqouuDj7GAFYegutVOMmSyHM8spV_8chzPPIST6aeLxRka0cHQUbtYNBgXMjPSOPdv_wvDF11RA
Cites_doi 10.1007/978-3-540-70928-2_7
10.1109/4235.797969
10.1016/j.knosys.2023.110398
10.1016/j.swevo.2024.101541
10.1109/TEVC.2019.2909744
10.1016/j.ejor.2006.06.042
10.1109/TSMC.2022.3171549
10.1007/s10489-024-05714-5
10.1109/TEVC.2017.2655451
10.1109/TEVC.2009.2021467
10.1016/j.swevo.2022.101031
10.1109/CEC60901.2024.10612194
10.1016/j.swevo.2023.101253
10.1016/j.ins.2023.118990
10.1109/TEVC.2021.3078441
10.1109/TEVC.2017.2754271
10.1162/evco_a_00335
10.1016/j.swevo.2022.101196
10.1109/TEVC.2020.3044711
10.1016/j.swevo.2017.11.002
10.1016/j.swevo.2024.101480
10.1016/j.ins.2022.10.096
10.1109/TEVC.2025.3541046
10.1109/CEC48606.2020.9185754
10.1016/j.asoc.2019.105886
10.1109/TEVC.2020.3008822
10.1109/TEVC.2021.3064508
10.1016/j.swevo.2023.101319
10.1109/TPAMI.2023.3256421
10.1016/j.asoc.2024.112155
10.1093/bioinformatics/btad047
10.1109/TCSS.2021.3061439
10.1016/j.swevo.2025.101892
10.1109/MCI.2017.2742868
10.1007/978-3-319-99253-2_21
10.1016/j.ins.2024.121858
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.swevo.2025.102095
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_swevo_2025_102095
S2210650225002536
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AAAKF
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATLK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABGRD
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADQTV
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFKBS
EFLBG
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
ROL
SDF
SES
SPC
SPCBC
SSA
SSB
SSD
SST
SSV
SSW
SSZ
T5K
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c255t-926f99c25afaa9fdbf9b7887d5de602f5d479637c0a06d255c9061e595e227f33
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001581917500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2210-6502
IngestDate Thu Nov 20 00:56:27 EST 2025
Sun Oct 19 01:39:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Multi-modal multi-objective optimization problems
Dynamic link node prediction
Graph generation strategy
Mode-labeling mechanism
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c255t-926f99c25afaa9fdbf9b7887d5de602f5d479637c0a06d255c9061e595e227f33
ORCID 0009-0000-0191-1461
ParticipantIDs crossref_primary_10_1016_j_swevo_2025_102095
elsevier_sciencedirect_doi_10_1016_j_swevo_2025_102095
PublicationCentury 2000
PublicationDate October 2025
2025-10-00
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: October 2025
PublicationDecade 2020
PublicationTitle Swarm and evolutionary computation
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yan, Tian, Liu (b9) 2025; 94
Li, Zhang, Wang, Ishibuchi (b24) 2021; 25
Kudo, Yoshikawa, Furuhashi (b3) 2011
Lynn, Ali, Suganthan (b1) 2018; 39
G. Rudolph, B. Naujoks, M. Preuss, Capabilities of emoa to detect and preserve equivalent pareto subsets, in: Proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2007, Matsushima, Japan, March 5-8, 2007, pp. 36–50.
Tian, Liu, Zhang, Ma, Tan, Jin (b38) 2020; 25
Kahraman, Akbel, Duman, Kati, Sayan (b17) 2022; 75
Yang, Wu, Ji (b16) 2023; 639
Zhang, Shen, Yen, Xu, He (b15) 2021; 25
Han, Zhu, Zhou, Cai (b5) 2021; 8
Ren, Wang, Dai, Peng, Chen, Song (b35) 2025
Liang, Hu, Li, Qiao, Guo (b6) 2023
Liu, Hirn, Krishnan (b33) 2023; 39
Xiong, Xiong, Liu, Liu, Han (b22) 2023; 84
Qu, Li, Liang, Yan, Yu, Zhu (b43) 2020; 86
Xiang (b27) 2023; 652
Bossek, Grimme (b10) 2023; 32
Xie, Li, Li, Zhu, Dai (b26) 2024; 85
Akbel, Kahraman, Duman, Temel (b42) 2024; 54
Y. Liu, H. Ishibuchi, Y. Nojima, N. Masuyama, K. Shang, A double-niched evolutionary algorithm and its behavior on polygon-based problems, in: Parallel Problem Solving from Nature–PPSN XV: 15th International Conference, Coimbra, Portugal, September 8–12, 2018, pp. 262–273.
Han, Zhu, Zhou, Cai (b4) 2022; 52
Deb, Tiwari (b12) 2008; 185
Li, Zhang, Wang, Ishibuchi (b40) 2021; 25
Ming, Gong, Jin (b29) 2024; 87
A. Grover, J. Leskovec, node2vec, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.
Tutsoy (b8) 2023; 45
Zhou, Zhang, Jin (b49) 2009; 13
Dang, Liu, Yang, He (b28) 2025
Ren, Wang, Dai, Peng, Chen, Song (b20) 2025; 700
Zhang, Zou, Yang, Zheng (b21) 2023; 619
Lin, Lin, Zhu, Gong, Li, Coello (b19) 2021; 25
Yu, Tang, Jiang, Fan (b30) 2025
Ester, Kriegel, Sander, Xu (b34) 1996
Li, Zhang, Wang, Huang, Liang (b2) 2023; 77
Li, Grosan, Yang, Liu, Yao (b48) 2018; 22
Zitzler, Thiele (b52) 1999; 3
Ding, Cao, Chen, Sun, Zhang, Tao (b37) 2023; 266
Zhang, Tang (b31) 2023
Tian, Cheng, Zhang, Jin (b36) 2017; 12
Zitzler, Thiele, Laumanns, Fonseca, da Fonseca (b50) 2003; 7
Y. Peng, H. Ishibuchi, A Decomposition-based Large-scale Multi-modal Multi-objective optimization Algorithm, in: 2020 IEEE Congress on Evolutionary Computation, CEC, Glasgow, UK, 2020, pp. 1–8.
X. Wang, X. Wang, Y. Jin, U. Rückert, A Graph Neural Network Assisted Evolutionary Algorithm for Expensive Multi-Objective Optimization, in: 2024 IEEE Congress on Evolutionary Computation, CEC, Yokohama, Japan, 2024.
Bakır, Kahraman, Yılmaz, Duman, Guvenc (b39) 2024; 166
Tanabe, Ishibuchi (b7) 2020; 24
Liang, Yue, Qu (b13) 2016
Yue, Qu, Liang (b51) 2018; 22
Hu, Zhou, Su, Liu (b41) 2022; 69
Deb, Tiwari (b46) 2008; 185
Tian, Liu, Zhang, Ma, Tan, Jin (b18) 2020; 25
Liang, Qu, Gong, Yue (b44) 2019
Liu, Yen, Gong (b47) 2019; vol. 23, no. 4
Lv, Li, Sun, Zhang (b25) 2023; 82
10.1016/j.swevo.2025.102095_b11
Tian (10.1016/j.swevo.2025.102095_b38) 2020; 25
Bakır (10.1016/j.swevo.2025.102095_b39) 2024; 166
Ester (10.1016/j.swevo.2025.102095_b34) 1996
10.1016/j.swevo.2025.102095_b14
Ming (10.1016/j.swevo.2025.102095_b29) 2024; 87
Lv (10.1016/j.swevo.2025.102095_b25) 2023; 82
Tutsoy (10.1016/j.swevo.2025.102095_b8) 2023; 45
Han (10.1016/j.swevo.2025.102095_b5) 2021; 8
10.1016/j.swevo.2025.102095_b45
Yan (10.1016/j.swevo.2025.102095_b9) 2025; 94
Li (10.1016/j.swevo.2025.102095_b2) 2023; 77
Liu (10.1016/j.swevo.2025.102095_b33) 2023; 39
Kudo (10.1016/j.swevo.2025.102095_b3) 2011
Liang (10.1016/j.swevo.2025.102095_b6) 2023
Tanabe (10.1016/j.swevo.2025.102095_b7) 2020; 24
Zhou (10.1016/j.swevo.2025.102095_b49) 2009; 13
Tian (10.1016/j.swevo.2025.102095_b36) 2017; 12
Deb (10.1016/j.swevo.2025.102095_b12) 2008; 185
Liu (10.1016/j.swevo.2025.102095_b47) 2019; vol. 23, no. 4
Lin (10.1016/j.swevo.2025.102095_b19) 2021; 25
Li (10.1016/j.swevo.2025.102095_b24) 2021; 25
Zitzler (10.1016/j.swevo.2025.102095_b50) 2003; 7
10.1016/j.swevo.2025.102095_b32
Zhang (10.1016/j.swevo.2025.102095_b15) 2021; 25
Xie (10.1016/j.swevo.2025.102095_b26) 2024; 85
Akbel (10.1016/j.swevo.2025.102095_b42) 2024; 54
Qu (10.1016/j.swevo.2025.102095_b43) 2020; 86
Ren (10.1016/j.swevo.2025.102095_b20) 2025; 700
Ding (10.1016/j.swevo.2025.102095_b37) 2023; 266
Lynn (10.1016/j.swevo.2025.102095_b1) 2018; 39
Kahraman (10.1016/j.swevo.2025.102095_b17) 2022; 75
Ren (10.1016/j.swevo.2025.102095_b35) 2025
Li (10.1016/j.swevo.2025.102095_b40) 2021; 25
Zhang (10.1016/j.swevo.2025.102095_b21) 2023; 619
Xiong (10.1016/j.swevo.2025.102095_b22) 2023; 84
Hu (10.1016/j.swevo.2025.102095_b41) 2022; 69
Li (10.1016/j.swevo.2025.102095_b48) 2018; 22
Liang (10.1016/j.swevo.2025.102095_b13) 2016
Yu (10.1016/j.swevo.2025.102095_b30) 2025
Zhang (10.1016/j.swevo.2025.102095_b31) 2023
10.1016/j.swevo.2025.102095_b23
Han (10.1016/j.swevo.2025.102095_b4) 2022; 52
Tian (10.1016/j.swevo.2025.102095_b18) 2020; 25
Bossek (10.1016/j.swevo.2025.102095_b10) 2023; 32
Liang (10.1016/j.swevo.2025.102095_b44) 2019
Deb (10.1016/j.swevo.2025.102095_b46) 2008; 185
Zitzler (10.1016/j.swevo.2025.102095_b52) 1999; 3
Xiang (10.1016/j.swevo.2025.102095_b27) 2023; 652
Dang (10.1016/j.swevo.2025.102095_b28) 2025
Yang (10.1016/j.swevo.2025.102095_b16) 2023; 639
Yue (10.1016/j.swevo.2025.102095_b51) 2018; 22
References_xml – year: 2011
  ident: b3
  article-title: A study on analysis of design variables in Pareto solutions for conceptual design optimization problem of hybrid rocket engine
– volume: 25
  start-page: 1064
  year: 2021
  end-page: 1078
  ident: b40
  article-title: Weighted indicator-based evolutionary algorithm for multimodal multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 22
  start-page: 61
  year: 2018
  end-page: 78
  ident: b48
  article-title: Multiline distance minimization: A visualized many-objective test problem suite
  publication-title: IEEE Trans. Evol. Comput.
– volume: 87
  year: 2024
  ident: b29
  article-title: Growing neural gas network-based surrogate-assisted Pareto set learning for multimodal multi-objective optimization
  publication-title: Swarm Evol. Comput.
– volume: 25
  start-page: 754
  year: 2021
  end-page: 768
  ident: b15
  article-title: Two-stage double niched evolution strategy for multimodal multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1
  year: 2025
  end-page: 34
  ident: b35
  article-title: Revolutionizing population sparsity assessment: machine learning–powered solutions for multi-objective evolutionary algorithms
  publication-title: Eng. Optim.
– volume: 25
  start-page: 405
  year: 2020
  end-page: 418
  ident: b18
  article-title: A multipopulation evolutionary algorithm for solving large-scale multimodal multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 25
  start-page: 1064
  year: 2021
  end-page: 1078
  ident: b24
  article-title: Weighted indicator-based evolutionary algorithm for multimodal multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 39
  start-page: 24
  year: 2018
  end-page: 35
  ident: b1
  article-title: Population topologies for particle swarm optimization and differential evolution
  publication-title: Swarm Evol. Comput.
– volume: 8
  start-page: 856
  year: 2021
  end-page: 869
  ident: b5
  article-title: Information-utilization-method-assisted multimodal multiobjective optimization and application to credit card fraud detection
  publication-title: IEEE Trans. Comput. Soc. Syst.
– volume: 32
  start-page: 143
  year: 2023
  end-page: 175
  ident: b10
  article-title: On single-objective sub-graph-based mutation for solving the bi-objective minimum spanning tree problem
  publication-title: Evol. Comput.
– volume: 7
  start-page: 117
  year: 2003
  end-page: 132
  ident: b50
  article-title: Performance assessment of multiobjective optimizers: An analysis and review
  publication-title: IEEE Trans. Cybern.
– start-page: 1
  year: 2025
  ident: b28
  article-title: Data-driven evolutionary algorithm based on inductive graph neural networks for multimodal multi-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1
  year: 2025
  ident: b30
  article-title: A deep reinforcement learning-assisted multimodal multi-objective bi-level optimization method for multi-robot task allocation
  publication-title: IEEE Trans. Evol. Comput.
– volume: 94
  year: 2025
  ident: b9
  article-title: An indicator-based multi-objective evolutionary algorithm assisted by improved graph convolutional networks
  publication-title: Swarm Evol. Comput.
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: b52
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach
  publication-title: IEEE Trans. Evol. Comput.
– volume: 82
  year: 2023
  ident: b25
  article-title: A multimodal multi-objective evolutionary algorithm with two-stage dual-indicator selection strategy
  publication-title: Swarm Evol. Comput.
– volume: 77
  year: 2023
  ident: b2
  article-title: Multimodal multi-objective optimization: Comparative study of the state-of-the-art
  publication-title: Swarm Evol. Comput.
– volume: 22
  start-page: 805
  year: 2018
  end-page: 817
  ident: b51
  article-title: A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 185
  start-page: 1062
  year: 2008
  end-page: 1087
  ident: b46
  article-title: Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization
  publication-title: European J. Oper. Res.
– volume: 24
  start-page: 193
  year: 2020
  end-page: 200
  ident: b7
  article-title: A review of evolutionary multimodal multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 84
  year: 2023
  ident: b22
  article-title: A multi-modal multi-objective evolutionary algorithm based on dual decomposition and subset selection
  publication-title: Swarm Evol. Comput.
– reference: Y. Liu, H. Ishibuchi, Y. Nojima, N. Masuyama, K. Shang, A double-niched evolutionary algorithm and its behavior on polygon-based problems, in: Parallel Problem Solving from Nature–PPSN XV: 15th International Conference, Coimbra, Portugal, September 8–12, 2018, pp. 262–273.
– volume: vol. 23, no. 4
  start-page: 660
  year: 2019
  end-page: 674
  ident: b47
  publication-title: A Multimodal Multiobjective Evolutionary Algorithm using Two-Archive and Recombination Strategies
– volume: 25
  start-page: 130
  year: 2021
  end-page: 144
  ident: b19
  article-title: Multimodal multiobjective evolutionary optimization with dual clustering in decision and objective spaces
  publication-title: IEEE Trans. Evol. Comput.
– volume: 45
  start-page: 9836
  year: 2023
  end-page: 9845
  ident: b8
  article-title: Graph theory based large-scale machine learning with multi-dimensional constrained optimization approaches for exact epidemiological modeling of pandemic diseases
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 12
  start-page: 73
  year: 2017
  end-page: 87
  ident: b36
  article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [Educational Forum]
  publication-title: IEEE Comput. Intell. Mag.
– start-page: 226
  year: 1996
  end-page: 231
  ident: b34
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Knowledge Discovery and Data Mining
– year: 2016
  ident: b13
  article-title: Multimodal multi-objective optimization: A preliminary study
– start-page: 353
  year: 2019
  end-page: 370
  ident: b44
  article-title: Problem Definitions and Evaluation Criteria for the CEC 2019 Special Session on Multimodal Multiobjective Optimization
– volume: 86
  year: 2020
  ident: b43
  article-title: A self-organized speciation based multi-objective particle swarm optimizer for multimodal multi-objective problems
  publication-title: Appl. Soft Comput.
– reference: X. Wang, X. Wang, Y. Jin, U. Rückert, A Graph Neural Network Assisted Evolutionary Algorithm for Expensive Multi-Objective Optimization, in: 2024 IEEE Congress on Evolutionary Computation, CEC, Yokohama, Japan, 2024.
– volume: 266
  year: 2023
  ident: b37
  article-title: Large-scale multimodal multiobjective evolutionary optimization based on hybrid hierarchical clustering
  publication-title: Knowl.-Based Syst.
– volume: 652
  year: 2023
  ident: b27
  article-title: Weak relationship indicator-based evolutionary algorithm for multimodal multi-objective optimization
  publication-title: Inform. Sci.
– volume: 39
  year: 2023
  ident: b33
  article-title: Accurately modeling biased random walks on weighted networks using node2vec+
  publication-title: Bioinformatics
– volume: 52
  start-page: 7845
  year: 2022
  end-page: 7857
  ident: b4
  article-title: Competition-driven multimodal multiobjective optimization and its application to feature selection for credit card fraud detection
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– start-page: 1
  year: 2023
  end-page: 14
  ident: b31
  article-title: A theoretical analysis of DeepWalk and node2vec for exact recovery of community structures in stochastic blockmodels
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 166
  year: 2024
  ident: b39
  article-title: Dynamic switched crowding-based multi-objective particle swarm optimization algorithm for solving multi-objective AC-DC optimal power flow problem
  publication-title: Appl. Soft Comput.
– volume: 25
  start-page: 405
  year: 2020
  end-page: 418
  ident: b38
  article-title: A multipopulation evolutionary algorithm for solving large-scale multimodal multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 185
  start-page: 1062
  year: 2008
  end-page: 1087
  ident: b12
  article-title: Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization
  publication-title: European J. Oper. Res.
– volume: 75
  year: 2022
  ident: b17
  article-title: Unified space approach-based dynamic switched crowding (DSC): A new method for designing Pareto-based multi/many-objective algorithms
  publication-title: Swarm Evol. Comput.
– volume: 700
  year: 2025
  ident: b20
  article-title: Balancing convergence and diversity: Gaussian mixture models in adaptive weight vector strategies for multi-objective algorithms
  publication-title: Inform. Sci.
– start-page: 1
  year: 2023
  ident: b6
  article-title: Multi-objective optimization based network control principles for identifying personalized drug targets with cancer
  publication-title: IEEE Trans. Evol. Comput.
– volume: 13
  start-page: 1167
  year: 2009
  end-page: 1189
  ident: b49
  article-title: Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm
  publication-title: IEEE Trans. Evol. Comput.
– reference: A. Grover, J. Leskovec, node2vec, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.
– volume: 69
  year: 2022
  ident: b41
  article-title: A niching backtracking search algorithm with adaptive local search for multimodal multiobjective optimization
  publication-title: Swarm Evol. Comput.
– volume: 639
  year: 2023
  ident: b16
  article-title: Two-stage species conservation for multimodal multi-objective optimization with local Pareto sets
  publication-title: Inform. Sci.
– volume: 619
  start-page: 908
  year: 2023
  end-page: 929
  ident: b21
  article-title: An evolutionary algorithm based on independently evolving sub-problems for multimodal multi-objective optimization
  publication-title: Inform. Sci.
– volume: 85
  year: 2024
  ident: b26
  article-title: Two-stage evolutionary algorithm with fuzzy preference indicator for multimodal multi-objective optimization
  publication-title: Swarm Evol. Comput.
– reference: G. Rudolph, B. Naujoks, M. Preuss, Capabilities of emoa to detect and preserve equivalent pareto subsets, in: Proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2007, Matsushima, Japan, March 5-8, 2007, pp. 36–50.
– reference: Y. Peng, H. Ishibuchi, A Decomposition-based Large-scale Multi-modal Multi-objective optimization Algorithm, in: 2020 IEEE Congress on Evolutionary Computation, CEC, Glasgow, UK, 2020, pp. 1–8.
– volume: 54
  start-page: 11603
  year: 2024
  end-page: 11648
  ident: b42
  article-title: A clustering-based archive handling method and multi-objective optimization of the optimal power flow problem
  publication-title: Appl. Intell.
– start-page: 353
  year: 2019
  ident: 10.1016/j.swevo.2025.102095_b44
– ident: 10.1016/j.swevo.2025.102095_b45
  doi: 10.1007/978-3-540-70928-2_7
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 10.1016/j.swevo.2025.102095_b52
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.797969
– volume: 266
  year: 2023
  ident: 10.1016/j.swevo.2025.102095_b37
  article-title: Large-scale multimodal multiobjective evolutionary optimization based on hybrid hierarchical clustering
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2023.110398
– volume: 87
  year: 2024
  ident: 10.1016/j.swevo.2025.102095_b29
  article-title: Growing neural gas network-based surrogate-assisted Pareto set learning for multimodal multi-objective optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2024.101541
– volume: 652
  year: 2023
  ident: 10.1016/j.swevo.2025.102095_b27
  article-title: Weak relationship indicator-based evolutionary algorithm for multimodal multi-objective optimization
  publication-title: Inform. Sci.
– volume: 84
  year: 2023
  ident: 10.1016/j.swevo.2025.102095_b22
  article-title: A multi-modal multi-objective evolutionary algorithm based on dual decomposition and subset selection
  publication-title: Swarm Evol. Comput.
– volume: 24
  start-page: 193
  issue: 1
  year: 2020
  ident: 10.1016/j.swevo.2025.102095_b7
  article-title: A review of evolutionary multimodal multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2909744
– volume: 185
  start-page: 1062
  issue: 3
  year: 2008
  ident: 10.1016/j.swevo.2025.102095_b12
  article-title: Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2006.06.042
– start-page: 226
  year: 1996
  ident: 10.1016/j.swevo.2025.102095_b34
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
– volume: 52
  start-page: 7845
  issue: 12
  year: 2022
  ident: 10.1016/j.swevo.2025.102095_b4
  article-title: Competition-driven multimodal multiobjective optimization and its application to feature selection for credit card fraud detection
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2022.3171549
– start-page: 1
  year: 2025
  ident: 10.1016/j.swevo.2025.102095_b30
  article-title: A deep reinforcement learning-assisted multimodal multi-objective bi-level optimization method for multi-robot task allocation
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1
  year: 2025
  ident: 10.1016/j.swevo.2025.102095_b35
  article-title: Revolutionizing population sparsity assessment: machine learning–powered solutions for multi-objective evolutionary algorithms
  publication-title: Eng. Optim.
– volume: 54
  start-page: 11603
  issue: 22
  year: 2024
  ident: 10.1016/j.swevo.2025.102095_b42
  article-title: A clustering-based archive handling method and multi-objective optimization of the optimal power flow problem
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-024-05714-5
– volume: 22
  start-page: 61
  issue: 1
  year: 2018
  ident: 10.1016/j.swevo.2025.102095_b48
  article-title: Multiline distance minimization: A visualized many-objective test problem suite
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2655451
– volume: 13
  start-page: 1167
  issue: 5
  year: 2009
  ident: 10.1016/j.swevo.2025.102095_b49
  article-title: Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2021467
– year: 2011
  ident: 10.1016/j.swevo.2025.102095_b3
– volume: 69
  year: 2022
  ident: 10.1016/j.swevo.2025.102095_b41
  article-title: A niching backtracking search algorithm with adaptive local search for multimodal multiobjective optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2022.101031
– ident: 10.1016/j.swevo.2025.102095_b11
  doi: 10.1109/CEC60901.2024.10612194
– volume: 77
  year: 2023
  ident: 10.1016/j.swevo.2025.102095_b2
  article-title: Multimodal multi-objective optimization: Comparative study of the state-of-the-art
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2023.101253
– volume: 639
  year: 2023
  ident: 10.1016/j.swevo.2025.102095_b16
  article-title: Two-stage species conservation for multimodal multi-objective optimization with local Pareto sets
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2023.118990
– volume: 25
  start-page: 1064
  issue: 6
  year: 2021
  ident: 10.1016/j.swevo.2025.102095_b40
  article-title: Weighted indicator-based evolutionary algorithm for multimodal multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2021.3078441
– year: 2016
  ident: 10.1016/j.swevo.2025.102095_b13
– volume: vol. 23, no. 4
  start-page: 660
  year: 2019
  ident: 10.1016/j.swevo.2025.102095_b47
– volume: 22
  start-page: 805
  issue: 5
  year: 2018
  ident: 10.1016/j.swevo.2025.102095_b51
  article-title: A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2754271
– volume: 32
  start-page: 143
  issue: 2
  year: 2023
  ident: 10.1016/j.swevo.2025.102095_b10
  article-title: On single-objective sub-graph-based mutation for solving the bi-objective minimum spanning tree problem
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00335
– volume: 75
  year: 2022
  ident: 10.1016/j.swevo.2025.102095_b17
  article-title: Unified space approach-based dynamic switched crowding (DSC): A new method for designing Pareto-based multi/many-objective algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2022.101196
– start-page: 1
  year: 2023
  ident: 10.1016/j.swevo.2025.102095_b6
  article-title: Multi-objective optimization based network control principles for identifying personalized drug targets with cancer
  publication-title: IEEE Trans. Evol. Comput.
– volume: 25
  start-page: 405
  issue: 3
  year: 2020
  ident: 10.1016/j.swevo.2025.102095_b38
  article-title: A multipopulation evolutionary algorithm for solving large-scale multimodal multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2020.3044711
– volume: 185
  start-page: 1062
  issue: 3
  year: 2008
  ident: 10.1016/j.swevo.2025.102095_b46
  article-title: Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2006.06.042
– volume: 39
  start-page: 24
  year: 2018
  ident: 10.1016/j.swevo.2025.102095_b1
  article-title: Population topologies for particle swarm optimization and differential evolution
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2017.11.002
– volume: 85
  year: 2024
  ident: 10.1016/j.swevo.2025.102095_b26
  article-title: Two-stage evolutionary algorithm with fuzzy preference indicator for multimodal multi-objective optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2024.101480
– volume: 619
  start-page: 908
  year: 2023
  ident: 10.1016/j.swevo.2025.102095_b21
  article-title: An evolutionary algorithm based on independently evolving sub-problems for multimodal multi-objective optimization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2022.10.096
– volume: 25
  start-page: 405
  issue: 3
  year: 2020
  ident: 10.1016/j.swevo.2025.102095_b18
  article-title: A multipopulation evolutionary algorithm for solving large-scale multimodal multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2020.3044711
– start-page: 1
  year: 2025
  ident: 10.1016/j.swevo.2025.102095_b28
  article-title: Data-driven evolutionary algorithm based on inductive graph neural networks for multimodal multi-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2025.3541046
– ident: 10.1016/j.swevo.2025.102095_b32
– ident: 10.1016/j.swevo.2025.102095_b23
  doi: 10.1109/CEC48606.2020.9185754
– start-page: 1
  year: 2023
  ident: 10.1016/j.swevo.2025.102095_b31
  article-title: A theoretical analysis of DeepWalk and node2vec for exact recovery of community structures in stochastic blockmodels
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 86
  year: 2020
  ident: 10.1016/j.swevo.2025.102095_b43
  article-title: A self-organized speciation based multi-objective particle swarm optimizer for multimodal multi-objective problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105886
– volume: 25
  start-page: 130
  issue: 1
  year: 2021
  ident: 10.1016/j.swevo.2025.102095_b19
  article-title: Multimodal multiobjective evolutionary optimization with dual clustering in decision and objective spaces
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2020.3008822
– volume: 25
  start-page: 754
  issue: 4
  year: 2021
  ident: 10.1016/j.swevo.2025.102095_b15
  article-title: Two-stage double niched evolution strategy for multimodal multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2021.3064508
– volume: 82
  year: 2023
  ident: 10.1016/j.swevo.2025.102095_b25
  article-title: A multimodal multi-objective evolutionary algorithm with two-stage dual-indicator selection strategy
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2023.101319
– volume: 45
  start-page: 9836
  issue: 8
  year: 2023
  ident: 10.1016/j.swevo.2025.102095_b8
  article-title: Graph theory based large-scale machine learning with multi-dimensional constrained optimization approaches for exact epidemiological modeling of pandemic diseases
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2023.3256421
– volume: 166
  year: 2024
  ident: 10.1016/j.swevo.2025.102095_b39
  article-title: Dynamic switched crowding-based multi-objective particle swarm optimization algorithm for solving multi-objective AC-DC optimal power flow problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.112155
– volume: 39
  issue: 1
  year: 2023
  ident: 10.1016/j.swevo.2025.102095_b33
  article-title: Accurately modeling biased random walks on weighted networks using node2vec+
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btad047
– volume: 8
  start-page: 856
  issue: 4
  year: 2021
  ident: 10.1016/j.swevo.2025.102095_b5
  article-title: Information-utilization-method-assisted multimodal multiobjective optimization and application to credit card fraud detection
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2021.3061439
– volume: 25
  start-page: 1064
  issue: 6
  year: 2021
  ident: 10.1016/j.swevo.2025.102095_b24
  article-title: Weighted indicator-based evolutionary algorithm for multimodal multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2021.3078441
– volume: 94
  year: 2025
  ident: 10.1016/j.swevo.2025.102095_b9
  article-title: An indicator-based multi-objective evolutionary algorithm assisted by improved graph convolutional networks
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2025.101892
– volume: 12
  start-page: 73
  issue: 4
  year: 2017
  ident: 10.1016/j.swevo.2025.102095_b36
  article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [Educational Forum]
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2017.2742868
– ident: 10.1016/j.swevo.2025.102095_b14
  doi: 10.1007/978-3-319-99253-2_21
– volume: 7
  start-page: 117
  issue: 2
  year: 2003
  ident: 10.1016/j.swevo.2025.102095_b50
  article-title: Performance assessment of multiobjective optimizers: An analysis and review
  publication-title: IEEE Trans. Cybern.
– volume: 700
  year: 2025
  ident: 10.1016/j.swevo.2025.102095_b20
  article-title: Balancing convergence and diversity: Gaussian mixture models in adaptive weight vector strategies for multi-objective algorithms
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2024.121858
SSID ssj0000602559
Score 2.369102
Snippet In the field of multi-modal multi-objective optimization problems (MMOPs), the challenge lies in simultaneously identifying multiple Pareto-optimal solution...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 102095
SubjectTerms Dynamic link node prediction
Graph generation strategy
Mode-labeling mechanism
Multi-modal multi-objective optimization problems
Title A dynamic evolution of graph structure-based algorithm for multi-modal multi-objective optimization
URI https://dx.doi.org/10.1016/j.swevo.2025.102095
Volume 98
WOSCitedRecordID wos001581917500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 2210-6502
  databaseCode: AIEXJ
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000602559
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELag5cCFN6JAKx-4LY4269gbHyNUVKqqqkRB6WnlXdshEdmt8mj78xk_1t2kqKIHLivLyo4dz6fP49nxDEKfZMkrOuSGMKZSMlD9PilhoySccknLnErqbvH_PMlPT4fjsTgLruylKyeQ1_Xw5kZc_ldVQx8o216dfYC6o1DogDYoHZ6gdnj-k-JHifJV5hN9FQayFqHLTJ34dLHrhSZ2-1KJ_D1pFtPVr7kLN3TRhWTeKHulxLWbcuYZMWmAW-bh0mbXov1-LRe-zEYczgbiVa5axMZn_gvvaz3T9WSybqLLYOq7LyLCTqZr17HueiQyFmPbAnFlcIwkYPltsKyvNR1oEqya1NfWvMPg3pkw6y2vYdY9K753--vNfNlb-1iMLmwD12aFE1JYIYUX8hjtZjkTwOC7o2-H4-Pojku5O1zZUoTt7NscVS4a8M50_m7HdGyT8xfoWThU4JEHw0v0SNev0PO2YAcO_P0aVSMcsIGjsnBjsMMG3sIGjtjAgA3cwQbewgbuYuMN-vH18PzLEQlVNkgF_3hFRMaNENCWRkphVGlEaUNMFVMaFsUwNciBpfMqlSlX8EolwAbUTDCdZbmh9C3aqZtav0NYw9lhqPqV0OVgoLUUilJTCcEUz0zZF3voc7tmxaVPplLco6w9xNt1LYI96O28AsBy34vvHzbOB_T0FsYf0Q6stt5HT6qr1XS5OAhI-QPPuobW
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+evolution+of+graph+structure-based+algorithm+for+multi-modal+multi-objective+optimization&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Yan%2C+Pengguo&rft.au=Tian%2C+Ye&rft.au=Liu%2C+Yu&rft.date=2025-10-01&rft.issn=2210-6502&rft.volume=98&rft.spage=102095&rft_id=info:doi/10.1016%2Fj.swevo.2025.102095&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_swevo_2025_102095
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon