A dynamic evolution of graph structure-based algorithm for multi-modal multi-objective optimization
In the field of multi-modal multi-objective optimization problems (MMOPs), the challenge lies in simultaneously identifying multiple Pareto-optimal solution sets within the decision space and accurately locating the Pareto front in the objective space. Therefore, it is particularly important to deve...
Uložené v:
| Vydané v: | Swarm and evolutionary computation Ročník 98; s. 102095 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.10.2025
|
| Predmet: | |
| ISSN: | 2210-6502 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In the field of multi-modal multi-objective optimization problems (MMOPs), the challenge lies in simultaneously identifying multiple Pareto-optimal solution sets within the decision space and accurately locating the Pareto front in the objective space. Therefore, it is particularly important to develop a method that can effectively represent and utilize the complex relationships and dependencies between variables. Considering that graph structures have unique advantages in capturing complex relationships and dependencies, it is necessary to explore graph-theoretic methods to solve the problem. Inspired by this, a dynamic evolution of graph structure-based algorithm is proposed in this paper. Specifically, a historical data-driven graph generation strategy is proposed to construct the initial population as graph-structured data. Then, the node2vec strategy is applied to perform random walks based on the weights on the edges, avoiding repeating the same mistakes in the search process, to enable more rapid and effective population evolution on the graph. Furthermore, a dynamic modal-labeling mechanism based on an adaptive density-based spatial clustering of applications with noise of the graph structure is proposed to prevent the mixing of information from different modalities while enabling the timely detection and optimization of initially unrecognized modalities. Moreover, a dynamic link node prediction mechanism is proposed to update the graph structure, enabling the network to adapt to changes in the data. Experiments on 28 MMOPs and the multiline distance minimization problem demonstrate that the proposed algorithm performs better than seven state-of-the-art representatives, including 22 MMOPs in CEC2020 and 6 MMMOPs. |
|---|---|
| AbstractList | In the field of multi-modal multi-objective optimization problems (MMOPs), the challenge lies in simultaneously identifying multiple Pareto-optimal solution sets within the decision space and accurately locating the Pareto front in the objective space. Therefore, it is particularly important to develop a method that can effectively represent and utilize the complex relationships and dependencies between variables. Considering that graph structures have unique advantages in capturing complex relationships and dependencies, it is necessary to explore graph-theoretic methods to solve the problem. Inspired by this, a dynamic evolution of graph structure-based algorithm is proposed in this paper. Specifically, a historical data-driven graph generation strategy is proposed to construct the initial population as graph-structured data. Then, the node2vec strategy is applied to perform random walks based on the weights on the edges, avoiding repeating the same mistakes in the search process, to enable more rapid and effective population evolution on the graph. Furthermore, a dynamic modal-labeling mechanism based on an adaptive density-based spatial clustering of applications with noise of the graph structure is proposed to prevent the mixing of information from different modalities while enabling the timely detection and optimization of initially unrecognized modalities. Moreover, a dynamic link node prediction mechanism is proposed to update the graph structure, enabling the network to adapt to changes in the data. Experiments on 28 MMOPs and the multiline distance minimization problem demonstrate that the proposed algorithm performs better than seven state-of-the-art representatives, including 22 MMOPs in CEC2020 and 6 MMMOPs. |
| ArticleNumber | 102095 |
| Author | Yan, Pengguo Liu, Yu Tian, Ye |
| Author_xml | – sequence: 1 givenname: Pengguo surname: Yan fullname: Yan, Pengguo organization: School of Electronic and Information Engineering, University of Science and Technology Liaoning, AnShan, 114051, China – sequence: 2 givenname: Ye surname: Tian fullname: Tian, Ye organization: School of Computer Science and Technology, Anhui University, Hefei, 230601, China – sequence: 3 givenname: Yu orcidid: 0009-0000-0191-1461 surname: Liu fullname: Liu, Yu email: 320083100106@ustl.edu.cn organization: School of Electronic and Information Engineering, University of Science and Technology Liaoning, AnShan, 114051, China |
| BookMark | eNp9kE1uwyAQhVmkUtM0J-iGCzjFuOCw6CKK-hMpUjftGmEYEizbRIBTpacvabLubGY0mu_pzbtDk8EPgNBDSRYlKflju4jfcPQLSijLG0oEm6AppSUpOCP0Fs1jbEkung-YmCK9wuY0qN5pnLluTM4P2Fu8C-qwxzGFUacxQNGoCAarbueDS_seWx9wP3bJFb03qrvOvmlBJ3cE7A_J9e5HnfXu0Y1VXYT5tc_Q1-vL5_q92H68bdarbaGzl1QIyq0QeVZWKWFNY0VTL5e1YQayXcvMUy14VWuiCDcZ0YLwEphgQGltq2qGqouuDj7GAFYegutVOMmSyHM8spV_8chzPPIST6aeLxRka0cHQUbtYNBgXMjPSOPdv_wvDF11RA |
| Cites_doi | 10.1007/978-3-540-70928-2_7 10.1109/4235.797969 10.1016/j.knosys.2023.110398 10.1016/j.swevo.2024.101541 10.1109/TEVC.2019.2909744 10.1016/j.ejor.2006.06.042 10.1109/TSMC.2022.3171549 10.1007/s10489-024-05714-5 10.1109/TEVC.2017.2655451 10.1109/TEVC.2009.2021467 10.1016/j.swevo.2022.101031 10.1109/CEC60901.2024.10612194 10.1016/j.swevo.2023.101253 10.1016/j.ins.2023.118990 10.1109/TEVC.2021.3078441 10.1109/TEVC.2017.2754271 10.1162/evco_a_00335 10.1016/j.swevo.2022.101196 10.1109/TEVC.2020.3044711 10.1016/j.swevo.2017.11.002 10.1016/j.swevo.2024.101480 10.1016/j.ins.2022.10.096 10.1109/TEVC.2025.3541046 10.1109/CEC48606.2020.9185754 10.1016/j.asoc.2019.105886 10.1109/TEVC.2020.3008822 10.1109/TEVC.2021.3064508 10.1016/j.swevo.2023.101319 10.1109/TPAMI.2023.3256421 10.1016/j.asoc.2024.112155 10.1093/bioinformatics/btad047 10.1109/TCSS.2021.3061439 10.1016/j.swevo.2025.101892 10.1109/MCI.2017.2742868 10.1007/978-3-319-99253-2_21 10.1016/j.ins.2024.121858 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.swevo.2025.102095 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_swevo_2025_102095 S2210650225002536 |
| GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AAAKF AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATLK AATTM AAXKI AAXUO AAYFN AAYWO ABAOU ABBOA ABGRD ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFS ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADMUD ADNMO ADQTV ADTZH AEBSH AECPX AEIPS AEKER AENEX AEQOU AEUPX AFJKZ AFPUW AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM APXCP ARUGR AXJTR BJAXD BKOJK BLXMC EBS EFJIC EFKBS EFLBG EJD FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HAMUX HVGLF HZ~ J1W JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 ROL SDF SES SPC SPCBC SSA SSB SSD SST SSV SSW SSZ T5K ~G- ~HD AAYXX CITATION |
| ID | FETCH-LOGICAL-c255t-926f99c25afaa9fdbf9b7887d5de602f5d479637c0a06d255c9061e595e227f33 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001581917500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2210-6502 |
| IngestDate | Thu Nov 20 00:56:27 EST 2025 Sun Oct 19 01:39:17 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-modal multi-objective optimization problems Dynamic link node prediction Graph generation strategy Mode-labeling mechanism |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c255t-926f99c25afaa9fdbf9b7887d5de602f5d479637c0a06d255c9061e595e227f33 |
| ORCID | 0009-0000-0191-1461 |
| ParticipantIDs | crossref_primary_10_1016_j_swevo_2025_102095 elsevier_sciencedirect_doi_10_1016_j_swevo_2025_102095 |
| PublicationCentury | 2000 |
| PublicationDate | October 2025 2025-10-00 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: October 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Swarm and evolutionary computation |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Yan, Tian, Liu (b9) 2025; 94 Li, Zhang, Wang, Ishibuchi (b24) 2021; 25 Kudo, Yoshikawa, Furuhashi (b3) 2011 Lynn, Ali, Suganthan (b1) 2018; 39 G. Rudolph, B. Naujoks, M. Preuss, Capabilities of emoa to detect and preserve equivalent pareto subsets, in: Proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2007, Matsushima, Japan, March 5-8, 2007, pp. 36–50. Tian, Liu, Zhang, Ma, Tan, Jin (b38) 2020; 25 Kahraman, Akbel, Duman, Kati, Sayan (b17) 2022; 75 Yang, Wu, Ji (b16) 2023; 639 Zhang, Shen, Yen, Xu, He (b15) 2021; 25 Han, Zhu, Zhou, Cai (b5) 2021; 8 Ren, Wang, Dai, Peng, Chen, Song (b35) 2025 Liang, Hu, Li, Qiao, Guo (b6) 2023 Liu, Hirn, Krishnan (b33) 2023; 39 Xiong, Xiong, Liu, Liu, Han (b22) 2023; 84 Qu, Li, Liang, Yan, Yu, Zhu (b43) 2020; 86 Xiang (b27) 2023; 652 Bossek, Grimme (b10) 2023; 32 Xie, Li, Li, Zhu, Dai (b26) 2024; 85 Akbel, Kahraman, Duman, Temel (b42) 2024; 54 Y. Liu, H. Ishibuchi, Y. Nojima, N. Masuyama, K. Shang, A double-niched evolutionary algorithm and its behavior on polygon-based problems, in: Parallel Problem Solving from Nature–PPSN XV: 15th International Conference, Coimbra, Portugal, September 8–12, 2018, pp. 262–273. Han, Zhu, Zhou, Cai (b4) 2022; 52 Deb, Tiwari (b12) 2008; 185 Li, Zhang, Wang, Ishibuchi (b40) 2021; 25 Ming, Gong, Jin (b29) 2024; 87 A. Grover, J. Leskovec, node2vec, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019. Tutsoy (b8) 2023; 45 Zhou, Zhang, Jin (b49) 2009; 13 Dang, Liu, Yang, He (b28) 2025 Ren, Wang, Dai, Peng, Chen, Song (b20) 2025; 700 Zhang, Zou, Yang, Zheng (b21) 2023; 619 Lin, Lin, Zhu, Gong, Li, Coello (b19) 2021; 25 Yu, Tang, Jiang, Fan (b30) 2025 Ester, Kriegel, Sander, Xu (b34) 1996 Li, Zhang, Wang, Huang, Liang (b2) 2023; 77 Li, Grosan, Yang, Liu, Yao (b48) 2018; 22 Zitzler, Thiele (b52) 1999; 3 Ding, Cao, Chen, Sun, Zhang, Tao (b37) 2023; 266 Zhang, Tang (b31) 2023 Tian, Cheng, Zhang, Jin (b36) 2017; 12 Zitzler, Thiele, Laumanns, Fonseca, da Fonseca (b50) 2003; 7 Y. Peng, H. Ishibuchi, A Decomposition-based Large-scale Multi-modal Multi-objective optimization Algorithm, in: 2020 IEEE Congress on Evolutionary Computation, CEC, Glasgow, UK, 2020, pp. 1–8. X. Wang, X. Wang, Y. Jin, U. Rückert, A Graph Neural Network Assisted Evolutionary Algorithm for Expensive Multi-Objective Optimization, in: 2024 IEEE Congress on Evolutionary Computation, CEC, Yokohama, Japan, 2024. Bakır, Kahraman, Yılmaz, Duman, Guvenc (b39) 2024; 166 Tanabe, Ishibuchi (b7) 2020; 24 Liang, Yue, Qu (b13) 2016 Yue, Qu, Liang (b51) 2018; 22 Hu, Zhou, Su, Liu (b41) 2022; 69 Deb, Tiwari (b46) 2008; 185 Tian, Liu, Zhang, Ma, Tan, Jin (b18) 2020; 25 Liang, Qu, Gong, Yue (b44) 2019 Liu, Yen, Gong (b47) 2019; vol. 23, no. 4 Lv, Li, Sun, Zhang (b25) 2023; 82 10.1016/j.swevo.2025.102095_b11 Tian (10.1016/j.swevo.2025.102095_b38) 2020; 25 Bakır (10.1016/j.swevo.2025.102095_b39) 2024; 166 Ester (10.1016/j.swevo.2025.102095_b34) 1996 10.1016/j.swevo.2025.102095_b14 Ming (10.1016/j.swevo.2025.102095_b29) 2024; 87 Lv (10.1016/j.swevo.2025.102095_b25) 2023; 82 Tutsoy (10.1016/j.swevo.2025.102095_b8) 2023; 45 Han (10.1016/j.swevo.2025.102095_b5) 2021; 8 10.1016/j.swevo.2025.102095_b45 Yan (10.1016/j.swevo.2025.102095_b9) 2025; 94 Li (10.1016/j.swevo.2025.102095_b2) 2023; 77 Liu (10.1016/j.swevo.2025.102095_b33) 2023; 39 Kudo (10.1016/j.swevo.2025.102095_b3) 2011 Liang (10.1016/j.swevo.2025.102095_b6) 2023 Tanabe (10.1016/j.swevo.2025.102095_b7) 2020; 24 Zhou (10.1016/j.swevo.2025.102095_b49) 2009; 13 Tian (10.1016/j.swevo.2025.102095_b36) 2017; 12 Deb (10.1016/j.swevo.2025.102095_b12) 2008; 185 Liu (10.1016/j.swevo.2025.102095_b47) 2019; vol. 23, no. 4 Lin (10.1016/j.swevo.2025.102095_b19) 2021; 25 Li (10.1016/j.swevo.2025.102095_b24) 2021; 25 Zitzler (10.1016/j.swevo.2025.102095_b50) 2003; 7 10.1016/j.swevo.2025.102095_b32 Zhang (10.1016/j.swevo.2025.102095_b15) 2021; 25 Xie (10.1016/j.swevo.2025.102095_b26) 2024; 85 Akbel (10.1016/j.swevo.2025.102095_b42) 2024; 54 Qu (10.1016/j.swevo.2025.102095_b43) 2020; 86 Ren (10.1016/j.swevo.2025.102095_b20) 2025; 700 Ding (10.1016/j.swevo.2025.102095_b37) 2023; 266 Lynn (10.1016/j.swevo.2025.102095_b1) 2018; 39 Kahraman (10.1016/j.swevo.2025.102095_b17) 2022; 75 Ren (10.1016/j.swevo.2025.102095_b35) 2025 Li (10.1016/j.swevo.2025.102095_b40) 2021; 25 Zhang (10.1016/j.swevo.2025.102095_b21) 2023; 619 Xiong (10.1016/j.swevo.2025.102095_b22) 2023; 84 Hu (10.1016/j.swevo.2025.102095_b41) 2022; 69 Li (10.1016/j.swevo.2025.102095_b48) 2018; 22 Liang (10.1016/j.swevo.2025.102095_b13) 2016 Yu (10.1016/j.swevo.2025.102095_b30) 2025 Zhang (10.1016/j.swevo.2025.102095_b31) 2023 10.1016/j.swevo.2025.102095_b23 Han (10.1016/j.swevo.2025.102095_b4) 2022; 52 Tian (10.1016/j.swevo.2025.102095_b18) 2020; 25 Bossek (10.1016/j.swevo.2025.102095_b10) 2023; 32 Liang (10.1016/j.swevo.2025.102095_b44) 2019 Deb (10.1016/j.swevo.2025.102095_b46) 2008; 185 Zitzler (10.1016/j.swevo.2025.102095_b52) 1999; 3 Xiang (10.1016/j.swevo.2025.102095_b27) 2023; 652 Dang (10.1016/j.swevo.2025.102095_b28) 2025 Yang (10.1016/j.swevo.2025.102095_b16) 2023; 639 Yue (10.1016/j.swevo.2025.102095_b51) 2018; 22 |
| References_xml | – year: 2011 ident: b3 article-title: A study on analysis of design variables in Pareto solutions for conceptual design optimization problem of hybrid rocket engine – volume: 25 start-page: 1064 year: 2021 end-page: 1078 ident: b40 article-title: Weighted indicator-based evolutionary algorithm for multimodal multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 22 start-page: 61 year: 2018 end-page: 78 ident: b48 article-title: Multiline distance minimization: A visualized many-objective test problem suite publication-title: IEEE Trans. Evol. Comput. – volume: 87 year: 2024 ident: b29 article-title: Growing neural gas network-based surrogate-assisted Pareto set learning for multimodal multi-objective optimization publication-title: Swarm Evol. Comput. – volume: 25 start-page: 754 year: 2021 end-page: 768 ident: b15 article-title: Two-stage double niched evolution strategy for multimodal multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – start-page: 1 year: 2025 end-page: 34 ident: b35 article-title: Revolutionizing population sparsity assessment: machine learning–powered solutions for multi-objective evolutionary algorithms publication-title: Eng. Optim. – volume: 25 start-page: 405 year: 2020 end-page: 418 ident: b18 article-title: A multipopulation evolutionary algorithm for solving large-scale multimodal multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. – volume: 25 start-page: 1064 year: 2021 end-page: 1078 ident: b24 article-title: Weighted indicator-based evolutionary algorithm for multimodal multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 39 start-page: 24 year: 2018 end-page: 35 ident: b1 article-title: Population topologies for particle swarm optimization and differential evolution publication-title: Swarm Evol. Comput. – volume: 8 start-page: 856 year: 2021 end-page: 869 ident: b5 article-title: Information-utilization-method-assisted multimodal multiobjective optimization and application to credit card fraud detection publication-title: IEEE Trans. Comput. Soc. Syst. – volume: 32 start-page: 143 year: 2023 end-page: 175 ident: b10 article-title: On single-objective sub-graph-based mutation for solving the bi-objective minimum spanning tree problem publication-title: Evol. Comput. – volume: 7 start-page: 117 year: 2003 end-page: 132 ident: b50 article-title: Performance assessment of multiobjective optimizers: An analysis and review publication-title: IEEE Trans. Cybern. – start-page: 1 year: 2025 ident: b28 article-title: Data-driven evolutionary algorithm based on inductive graph neural networks for multimodal multi-objective optimization publication-title: IEEE Trans. Evol. Comput. – start-page: 1 year: 2025 ident: b30 article-title: A deep reinforcement learning-assisted multimodal multi-objective bi-level optimization method for multi-robot task allocation publication-title: IEEE Trans. Evol. Comput. – volume: 94 year: 2025 ident: b9 article-title: An indicator-based multi-objective evolutionary algorithm assisted by improved graph convolutional networks publication-title: Swarm Evol. Comput. – volume: 3 start-page: 257 year: 1999 end-page: 271 ident: b52 article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach publication-title: IEEE Trans. Evol. Comput. – volume: 82 year: 2023 ident: b25 article-title: A multimodal multi-objective evolutionary algorithm with two-stage dual-indicator selection strategy publication-title: Swarm Evol. Comput. – volume: 77 year: 2023 ident: b2 article-title: Multimodal multi-objective optimization: Comparative study of the state-of-the-art publication-title: Swarm Evol. Comput. – volume: 22 start-page: 805 year: 2018 end-page: 817 ident: b51 article-title: A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems publication-title: IEEE Trans. Evol. Comput. – volume: 185 start-page: 1062 year: 2008 end-page: 1087 ident: b46 article-title: Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization publication-title: European J. Oper. Res. – volume: 24 start-page: 193 year: 2020 end-page: 200 ident: b7 article-title: A review of evolutionary multimodal multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 84 year: 2023 ident: b22 article-title: A multi-modal multi-objective evolutionary algorithm based on dual decomposition and subset selection publication-title: Swarm Evol. Comput. – reference: Y. Liu, H. Ishibuchi, Y. Nojima, N. Masuyama, K. Shang, A double-niched evolutionary algorithm and its behavior on polygon-based problems, in: Parallel Problem Solving from Nature–PPSN XV: 15th International Conference, Coimbra, Portugal, September 8–12, 2018, pp. 262–273. – volume: vol. 23, no. 4 start-page: 660 year: 2019 end-page: 674 ident: b47 publication-title: A Multimodal Multiobjective Evolutionary Algorithm using Two-Archive and Recombination Strategies – volume: 25 start-page: 130 year: 2021 end-page: 144 ident: b19 article-title: Multimodal multiobjective evolutionary optimization with dual clustering in decision and objective spaces publication-title: IEEE Trans. Evol. Comput. – volume: 45 start-page: 9836 year: 2023 end-page: 9845 ident: b8 article-title: Graph theory based large-scale machine learning with multi-dimensional constrained optimization approaches for exact epidemiological modeling of pandemic diseases publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 12 start-page: 73 year: 2017 end-page: 87 ident: b36 article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [Educational Forum] publication-title: IEEE Comput. Intell. Mag. – start-page: 226 year: 1996 end-page: 231 ident: b34 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Knowledge Discovery and Data Mining – year: 2016 ident: b13 article-title: Multimodal multi-objective optimization: A preliminary study – start-page: 353 year: 2019 end-page: 370 ident: b44 article-title: Problem Definitions and Evaluation Criteria for the CEC 2019 Special Session on Multimodal Multiobjective Optimization – volume: 86 year: 2020 ident: b43 article-title: A self-organized speciation based multi-objective particle swarm optimizer for multimodal multi-objective problems publication-title: Appl. Soft Comput. – reference: X. Wang, X. Wang, Y. Jin, U. Rückert, A Graph Neural Network Assisted Evolutionary Algorithm for Expensive Multi-Objective Optimization, in: 2024 IEEE Congress on Evolutionary Computation, CEC, Yokohama, Japan, 2024. – volume: 266 year: 2023 ident: b37 article-title: Large-scale multimodal multiobjective evolutionary optimization based on hybrid hierarchical clustering publication-title: Knowl.-Based Syst. – volume: 652 year: 2023 ident: b27 article-title: Weak relationship indicator-based evolutionary algorithm for multimodal multi-objective optimization publication-title: Inform. Sci. – volume: 39 year: 2023 ident: b33 article-title: Accurately modeling biased random walks on weighted networks using node2vec+ publication-title: Bioinformatics – volume: 52 start-page: 7845 year: 2022 end-page: 7857 ident: b4 article-title: Competition-driven multimodal multiobjective optimization and its application to feature selection for credit card fraud detection publication-title: IEEE Trans. Syst. Man Cybern. Syst. – start-page: 1 year: 2023 end-page: 14 ident: b31 article-title: A theoretical analysis of DeepWalk and node2vec for exact recovery of community structures in stochastic blockmodels publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 166 year: 2024 ident: b39 article-title: Dynamic switched crowding-based multi-objective particle swarm optimization algorithm for solving multi-objective AC-DC optimal power flow problem publication-title: Appl. Soft Comput. – volume: 25 start-page: 405 year: 2020 end-page: 418 ident: b38 article-title: A multipopulation evolutionary algorithm for solving large-scale multimodal multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. – volume: 185 start-page: 1062 year: 2008 end-page: 1087 ident: b12 article-title: Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization publication-title: European J. Oper. Res. – volume: 75 year: 2022 ident: b17 article-title: Unified space approach-based dynamic switched crowding (DSC): A new method for designing Pareto-based multi/many-objective algorithms publication-title: Swarm Evol. Comput. – volume: 700 year: 2025 ident: b20 article-title: Balancing convergence and diversity: Gaussian mixture models in adaptive weight vector strategies for multi-objective algorithms publication-title: Inform. Sci. – start-page: 1 year: 2023 ident: b6 article-title: Multi-objective optimization based network control principles for identifying personalized drug targets with cancer publication-title: IEEE Trans. Evol. Comput. – volume: 13 start-page: 1167 year: 2009 end-page: 1189 ident: b49 article-title: Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm publication-title: IEEE Trans. Evol. Comput. – reference: A. Grover, J. Leskovec, node2vec, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019. – volume: 69 year: 2022 ident: b41 article-title: A niching backtracking search algorithm with adaptive local search for multimodal multiobjective optimization publication-title: Swarm Evol. Comput. – volume: 639 year: 2023 ident: b16 article-title: Two-stage species conservation for multimodal multi-objective optimization with local Pareto sets publication-title: Inform. Sci. – volume: 619 start-page: 908 year: 2023 end-page: 929 ident: b21 article-title: An evolutionary algorithm based on independently evolving sub-problems for multimodal multi-objective optimization publication-title: Inform. Sci. – volume: 85 year: 2024 ident: b26 article-title: Two-stage evolutionary algorithm with fuzzy preference indicator for multimodal multi-objective optimization publication-title: Swarm Evol. Comput. – reference: G. Rudolph, B. Naujoks, M. Preuss, Capabilities of emoa to detect and preserve equivalent pareto subsets, in: Proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2007, Matsushima, Japan, March 5-8, 2007, pp. 36–50. – reference: Y. Peng, H. Ishibuchi, A Decomposition-based Large-scale Multi-modal Multi-objective optimization Algorithm, in: 2020 IEEE Congress on Evolutionary Computation, CEC, Glasgow, UK, 2020, pp. 1–8. – volume: 54 start-page: 11603 year: 2024 end-page: 11648 ident: b42 article-title: A clustering-based archive handling method and multi-objective optimization of the optimal power flow problem publication-title: Appl. Intell. – start-page: 353 year: 2019 ident: 10.1016/j.swevo.2025.102095_b44 – ident: 10.1016/j.swevo.2025.102095_b45 doi: 10.1007/978-3-540-70928-2_7 – volume: 3 start-page: 257 issue: 4 year: 1999 ident: 10.1016/j.swevo.2025.102095_b52 article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.797969 – volume: 266 year: 2023 ident: 10.1016/j.swevo.2025.102095_b37 article-title: Large-scale multimodal multiobjective evolutionary optimization based on hybrid hierarchical clustering publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.110398 – volume: 87 year: 2024 ident: 10.1016/j.swevo.2025.102095_b29 article-title: Growing neural gas network-based surrogate-assisted Pareto set learning for multimodal multi-objective optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2024.101541 – volume: 652 year: 2023 ident: 10.1016/j.swevo.2025.102095_b27 article-title: Weak relationship indicator-based evolutionary algorithm for multimodal multi-objective optimization publication-title: Inform. Sci. – volume: 84 year: 2023 ident: 10.1016/j.swevo.2025.102095_b22 article-title: A multi-modal multi-objective evolutionary algorithm based on dual decomposition and subset selection publication-title: Swarm Evol. Comput. – volume: 24 start-page: 193 issue: 1 year: 2020 ident: 10.1016/j.swevo.2025.102095_b7 article-title: A review of evolutionary multimodal multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2909744 – volume: 185 start-page: 1062 issue: 3 year: 2008 ident: 10.1016/j.swevo.2025.102095_b12 article-title: Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2006.06.042 – start-page: 226 year: 1996 ident: 10.1016/j.swevo.2025.102095_b34 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise – volume: 52 start-page: 7845 issue: 12 year: 2022 ident: 10.1016/j.swevo.2025.102095_b4 article-title: Competition-driven multimodal multiobjective optimization and its application to feature selection for credit card fraud detection publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2022.3171549 – start-page: 1 year: 2025 ident: 10.1016/j.swevo.2025.102095_b30 article-title: A deep reinforcement learning-assisted multimodal multi-objective bi-level optimization method for multi-robot task allocation publication-title: IEEE Trans. Evol. Comput. – start-page: 1 year: 2025 ident: 10.1016/j.swevo.2025.102095_b35 article-title: Revolutionizing population sparsity assessment: machine learning–powered solutions for multi-objective evolutionary algorithms publication-title: Eng. Optim. – volume: 54 start-page: 11603 issue: 22 year: 2024 ident: 10.1016/j.swevo.2025.102095_b42 article-title: A clustering-based archive handling method and multi-objective optimization of the optimal power flow problem publication-title: Appl. Intell. doi: 10.1007/s10489-024-05714-5 – volume: 22 start-page: 61 issue: 1 year: 2018 ident: 10.1016/j.swevo.2025.102095_b48 article-title: Multiline distance minimization: A visualized many-objective test problem suite publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2655451 – volume: 13 start-page: 1167 issue: 5 year: 2009 ident: 10.1016/j.swevo.2025.102095_b49 article-title: Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2021467 – year: 2011 ident: 10.1016/j.swevo.2025.102095_b3 – volume: 69 year: 2022 ident: 10.1016/j.swevo.2025.102095_b41 article-title: A niching backtracking search algorithm with adaptive local search for multimodal multiobjective optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2022.101031 – ident: 10.1016/j.swevo.2025.102095_b11 doi: 10.1109/CEC60901.2024.10612194 – volume: 77 year: 2023 ident: 10.1016/j.swevo.2025.102095_b2 article-title: Multimodal multi-objective optimization: Comparative study of the state-of-the-art publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2023.101253 – volume: 639 year: 2023 ident: 10.1016/j.swevo.2025.102095_b16 article-title: Two-stage species conservation for multimodal multi-objective optimization with local Pareto sets publication-title: Inform. Sci. doi: 10.1016/j.ins.2023.118990 – volume: 25 start-page: 1064 issue: 6 year: 2021 ident: 10.1016/j.swevo.2025.102095_b40 article-title: Weighted indicator-based evolutionary algorithm for multimodal multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2021.3078441 – year: 2016 ident: 10.1016/j.swevo.2025.102095_b13 – volume: vol. 23, no. 4 start-page: 660 year: 2019 ident: 10.1016/j.swevo.2025.102095_b47 – volume: 22 start-page: 805 issue: 5 year: 2018 ident: 10.1016/j.swevo.2025.102095_b51 article-title: A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2754271 – volume: 32 start-page: 143 issue: 2 year: 2023 ident: 10.1016/j.swevo.2025.102095_b10 article-title: On single-objective sub-graph-based mutation for solving the bi-objective minimum spanning tree problem publication-title: Evol. Comput. doi: 10.1162/evco_a_00335 – volume: 75 year: 2022 ident: 10.1016/j.swevo.2025.102095_b17 article-title: Unified space approach-based dynamic switched crowding (DSC): A new method for designing Pareto-based multi/many-objective algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2022.101196 – start-page: 1 year: 2023 ident: 10.1016/j.swevo.2025.102095_b6 article-title: Multi-objective optimization based network control principles for identifying personalized drug targets with cancer publication-title: IEEE Trans. Evol. Comput. – volume: 25 start-page: 405 issue: 3 year: 2020 ident: 10.1016/j.swevo.2025.102095_b38 article-title: A multipopulation evolutionary algorithm for solving large-scale multimodal multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2020.3044711 – volume: 185 start-page: 1062 issue: 3 year: 2008 ident: 10.1016/j.swevo.2025.102095_b46 article-title: Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2006.06.042 – volume: 39 start-page: 24 year: 2018 ident: 10.1016/j.swevo.2025.102095_b1 article-title: Population topologies for particle swarm optimization and differential evolution publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2017.11.002 – volume: 85 year: 2024 ident: 10.1016/j.swevo.2025.102095_b26 article-title: Two-stage evolutionary algorithm with fuzzy preference indicator for multimodal multi-objective optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2024.101480 – volume: 619 start-page: 908 year: 2023 ident: 10.1016/j.swevo.2025.102095_b21 article-title: An evolutionary algorithm based on independently evolving sub-problems for multimodal multi-objective optimization publication-title: Inform. Sci. doi: 10.1016/j.ins.2022.10.096 – volume: 25 start-page: 405 issue: 3 year: 2020 ident: 10.1016/j.swevo.2025.102095_b18 article-title: A multipopulation evolutionary algorithm for solving large-scale multimodal multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2020.3044711 – start-page: 1 year: 2025 ident: 10.1016/j.swevo.2025.102095_b28 article-title: Data-driven evolutionary algorithm based on inductive graph neural networks for multimodal multi-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2025.3541046 – ident: 10.1016/j.swevo.2025.102095_b32 – ident: 10.1016/j.swevo.2025.102095_b23 doi: 10.1109/CEC48606.2020.9185754 – start-page: 1 year: 2023 ident: 10.1016/j.swevo.2025.102095_b31 article-title: A theoretical analysis of DeepWalk and node2vec for exact recovery of community structures in stochastic blockmodels publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 86 year: 2020 ident: 10.1016/j.swevo.2025.102095_b43 article-title: A self-organized speciation based multi-objective particle swarm optimizer for multimodal multi-objective problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105886 – volume: 25 start-page: 130 issue: 1 year: 2021 ident: 10.1016/j.swevo.2025.102095_b19 article-title: Multimodal multiobjective evolutionary optimization with dual clustering in decision and objective spaces publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2020.3008822 – volume: 25 start-page: 754 issue: 4 year: 2021 ident: 10.1016/j.swevo.2025.102095_b15 article-title: Two-stage double niched evolution strategy for multimodal multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2021.3064508 – volume: 82 year: 2023 ident: 10.1016/j.swevo.2025.102095_b25 article-title: A multimodal multi-objective evolutionary algorithm with two-stage dual-indicator selection strategy publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2023.101319 – volume: 45 start-page: 9836 issue: 8 year: 2023 ident: 10.1016/j.swevo.2025.102095_b8 article-title: Graph theory based large-scale machine learning with multi-dimensional constrained optimization approaches for exact epidemiological modeling of pandemic diseases publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2023.3256421 – volume: 166 year: 2024 ident: 10.1016/j.swevo.2025.102095_b39 article-title: Dynamic switched crowding-based multi-objective particle swarm optimization algorithm for solving multi-objective AC-DC optimal power flow problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.112155 – volume: 39 issue: 1 year: 2023 ident: 10.1016/j.swevo.2025.102095_b33 article-title: Accurately modeling biased random walks on weighted networks using node2vec+ publication-title: Bioinformatics doi: 10.1093/bioinformatics/btad047 – volume: 8 start-page: 856 issue: 4 year: 2021 ident: 10.1016/j.swevo.2025.102095_b5 article-title: Information-utilization-method-assisted multimodal multiobjective optimization and application to credit card fraud detection publication-title: IEEE Trans. Comput. Soc. Syst. doi: 10.1109/TCSS.2021.3061439 – volume: 25 start-page: 1064 issue: 6 year: 2021 ident: 10.1016/j.swevo.2025.102095_b24 article-title: Weighted indicator-based evolutionary algorithm for multimodal multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2021.3078441 – volume: 94 year: 2025 ident: 10.1016/j.swevo.2025.102095_b9 article-title: An indicator-based multi-objective evolutionary algorithm assisted by improved graph convolutional networks publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2025.101892 – volume: 12 start-page: 73 issue: 4 year: 2017 ident: 10.1016/j.swevo.2025.102095_b36 article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [Educational Forum] publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2017.2742868 – ident: 10.1016/j.swevo.2025.102095_b14 doi: 10.1007/978-3-319-99253-2_21 – volume: 7 start-page: 117 issue: 2 year: 2003 ident: 10.1016/j.swevo.2025.102095_b50 article-title: Performance assessment of multiobjective optimizers: An analysis and review publication-title: IEEE Trans. Cybern. – volume: 700 year: 2025 ident: 10.1016/j.swevo.2025.102095_b20 article-title: Balancing convergence and diversity: Gaussian mixture models in adaptive weight vector strategies for multi-objective algorithms publication-title: Inform. Sci. doi: 10.1016/j.ins.2024.121858 |
| SSID | ssj0000602559 |
| Score | 2.369102 |
| Snippet | In the field of multi-modal multi-objective optimization problems (MMOPs), the challenge lies in simultaneously identifying multiple Pareto-optimal solution... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 102095 |
| SubjectTerms | Dynamic link node prediction Graph generation strategy Mode-labeling mechanism Multi-modal multi-objective optimization problems |
| Title | A dynamic evolution of graph structure-based algorithm for multi-modal multi-objective optimization |
| URI | https://dx.doi.org/10.1016/j.swevo.2025.102095 |
| Volume | 98 |
| WOSCitedRecordID | wos001581917500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 2210-6502 databaseCode: AIEXJ dateStart: 20110301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000602559 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELag5cCFN6JAKx-4LY4269gbHyNUVKqqqkRB6WnlXdshEdmt8mj78xk_1t2kqKIHLivLyo4dz6fP49nxDEKfZMkrOuSGMKZSMlD9PilhoySccknLnErqbvH_PMlPT4fjsTgLruylKyeQ1_Xw5kZc_ldVQx8o216dfYC6o1DogDYoHZ6gdnj-k-JHifJV5hN9FQayFqHLTJ34dLHrhSZ2-1KJ_D1pFtPVr7kLN3TRhWTeKHulxLWbcuYZMWmAW-bh0mbXov1-LRe-zEYczgbiVa5axMZn_gvvaz3T9WSybqLLYOq7LyLCTqZr17HueiQyFmPbAnFlcIwkYPltsKyvNR1oEqya1NfWvMPg3pkw6y2vYdY9K753--vNfNlb-1iMLmwD12aFE1JYIYUX8hjtZjkTwOC7o2-H4-Pojku5O1zZUoTt7NscVS4a8M50_m7HdGyT8xfoWThU4JEHw0v0SNev0PO2YAcO_P0aVSMcsIGjsnBjsMMG3sIGjtjAgA3cwQbewgbuYuMN-vH18PzLEQlVNkgF_3hFRMaNENCWRkphVGlEaUNMFVMaFsUwNciBpfMqlSlX8EolwAbUTDCdZbmh9C3aqZtav0NYw9lhqPqV0OVgoLUUilJTCcEUz0zZF3voc7tmxaVPplLco6w9xNt1LYI96O28AsBy34vvHzbOB_T0FsYf0Q6stt5HT6qr1XS5OAhI-QPPuobW |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+evolution+of+graph+structure-based+algorithm+for+multi-modal+multi-objective+optimization&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Yan%2C+Pengguo&rft.au=Tian%2C+Ye&rft.au=Liu%2C+Yu&rft.date=2025-10-01&rft.issn=2210-6502&rft.volume=98&rft.spage=102095&rft_id=info:doi/10.1016%2Fj.swevo.2025.102095&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_swevo_2025_102095 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon |