A two-stage ensemble evolutionary algorithm for constrained multi-objective optimization

In constrained multi-objective evolutionary algorithms (CMOEAs), selecting appropriate constraint-handling techniques (CHTs) is challenging without prior knowledge of the problem’s constraint severity or feasible region distribution. Ensemble frameworks that integrate multiple CHTs with distinct pop...

Full description

Saved in:
Bibliographic Details
Published in:Swarm and evolutionary computation Vol. 99; p. 102213
Main Authors: Modampuri, Sri Srinivasa Raju, Fan, Jiahao, Sun, Yanan
Format: Journal Article
Language:English
Published: Elsevier B.V 01.12.2025
Subjects:
ISSN:2210-6502
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In constrained multi-objective evolutionary algorithms (CMOEAs), selecting appropriate constraint-handling techniques (CHTs) is challenging without prior knowledge of the problem’s constraint severity or feasible region distribution. Ensemble frameworks that integrate multiple CHTs with distinct populations offer a promising solution but face issues like redundant evaluations and poor exploration–exploitation balance. To address these limitations, we propose a two-stage ensemble-based CMOEA (CMOEA-TENS) that dynamically prioritizes suitable CHTs based on problem characteristics. Specifically, in the first stage, a population dedicated to explore the unconstrained search space drives the evolutionary process, while remaining populations co-evolve by leveraging solutions identified by the exploratory population. In the second stage, an ensemble of distinct populations drives the evolutionary process, each co-evolving with a different CHT focused on feasibility, diversity, or convergence to exploit the feasible regions effectively. Furthermore, we introduce a novel Multi-Armed Bandit (MAB)-based decision-making strategy that, unlike existing static or random selection approaches, adaptively learns and selects the most suitable CHT-based population to drive the evolutionary process based on real-time performance feedback. This dynamic strategy explicitly reduces redundant functional evaluations and ensures better management of exploration–exploitation trade-offs. CMOEA-TENS was evaluated against eleven state-of-the-art algorithms across six popular test suites, encompassing 57 test instances and six real-world problems. The empirical results demonstrate that CMOEA-TENS effectively balances exploration and exploitation while avoiding redundant evaluations by dynamically selecting the most suitable CHT-based population to drive the evolutionary process. Additionally, an ablation study further validates the effectiveness of the designed MAB strategy. •Proposed a two-stage ensemble CMOEA for solving constrained multi-objective problems.•Developed a dynamic two-stage strategy balancing exploration and exploitation effectively.•Designed an MAB strategy to select suitable population for offspring generation.•Validated the proposed algorithm on six test suites and six real-world optimization tasks.
AbstractList In constrained multi-objective evolutionary algorithms (CMOEAs), selecting appropriate constraint-handling techniques (CHTs) is challenging without prior knowledge of the problem’s constraint severity or feasible region distribution. Ensemble frameworks that integrate multiple CHTs with distinct populations offer a promising solution but face issues like redundant evaluations and poor exploration–exploitation balance. To address these limitations, we propose a two-stage ensemble-based CMOEA (CMOEA-TENS) that dynamically prioritizes suitable CHTs based on problem characteristics. Specifically, in the first stage, a population dedicated to explore the unconstrained search space drives the evolutionary process, while remaining populations co-evolve by leveraging solutions identified by the exploratory population. In the second stage, an ensemble of distinct populations drives the evolutionary process, each co-evolving with a different CHT focused on feasibility, diversity, or convergence to exploit the feasible regions effectively. Furthermore, we introduce a novel Multi-Armed Bandit (MAB)-based decision-making strategy that, unlike existing static or random selection approaches, adaptively learns and selects the most suitable CHT-based population to drive the evolutionary process based on real-time performance feedback. This dynamic strategy explicitly reduces redundant functional evaluations and ensures better management of exploration–exploitation trade-offs. CMOEA-TENS was evaluated against eleven state-of-the-art algorithms across six popular test suites, encompassing 57 test instances and six real-world problems. The empirical results demonstrate that CMOEA-TENS effectively balances exploration and exploitation while avoiding redundant evaluations by dynamically selecting the most suitable CHT-based population to drive the evolutionary process. Additionally, an ablation study further validates the effectiveness of the designed MAB strategy. •Proposed a two-stage ensemble CMOEA for solving constrained multi-objective problems.•Developed a dynamic two-stage strategy balancing exploration and exploitation effectively.•Designed an MAB strategy to select suitable population for offspring generation.•Validated the proposed algorithm on six test suites and six real-world optimization tasks.
ArticleNumber 102213
Author Fan, Jiahao
Modampuri, Sri Srinivasa Raju
Sun, Yanan
Author_xml – sequence: 1
  givenname: Sri Srinivasa Raju
  orcidid: 0000-0002-0683-014X
  surname: Modampuri
  fullname: Modampuri, Sri Srinivasa Raju
  email: msrisrinivasaraju@gmail.com
– sequence: 2
  givenname: Jiahao
  orcidid: 0000-0002-0818-8533
  surname: Fan
  fullname: Fan, Jiahao
  email: fanjh@scu.edu.cn
– sequence: 3
  givenname: Yanan
  orcidid: 0000-0001-6374-1429
  surname: Sun
  fullname: Sun, Yanan
  email: ysun@scu.edu.cn
BookMark eNp9kLtOAzEQRV0EiRDyBTT-gQ1-YIctKKKIR6RINCnoLK93HLzatSPb2Qi-HodQM80djeaM7twbNPHBA0J3lCwoofK-W6QTjGHBCBNlwhjlEzQtQiopCLtG85Q6UkqWBVFP0ccK51OoUtZ7wOATDE1fmjH0x-yC1_EL634fosufA7YhYhN8ylE7Dy0ejn12VWg6MNmNgMMhu8F96zN5i66s7hPM_3SGdi_Pu_VbtX1_3axX28oUA7mqqeZGP0jNpaVLIY1hphZGLK3ly0bW3ACTQjZck0fLDTGE1LIRlmmQvG35DPHLWRNDShGsOkQ3FNuKEnWORHXqNxJ1jkRdIinU04WC4mx0EFUyDryB1sXyi2qD-5f_AUFdcWE
Cites_doi 10.1109/TEVC.2022.3224600
10.1109/TEVC.2022.3175065
10.1109/TEVC.2021.3131124
10.1007/s11432-023-3864-6
10.1016/j.eswa.2025.126908
10.1109/TEVC.2005.851275
10.1016/j.swevo.2018.08.017
10.1109/4235.585893
10.1080/0305215X.2010.493937
10.1109/TCYB.2020.3021138
10.1109/TEVC.2019.2896967
10.1016/j.ins.2021.07.078
10.1016/j.asoc.2024.111703
10.1016/j.scs.2011.09.001
10.1016/j.ins.2021.01.029
10.1016/j.ins.2022.10.046
10.1016/j.swevo.2024.101784
10.1109/TEVC.2022.3199775
10.1109/TEVC.2007.892759
10.1109/TEVC.2020.3047835
10.1109/TEVC.2022.3155533
10.1109/TEVC.2020.2981949
10.1109/TEVC.2008.2009032
10.1109/TEVC.2021.3066301
10.1109/TEVC.2022.3202723
10.1007/s00500-019-03794-x
10.1007/s10462-017-9605-z
10.1016/j.asoc.2012.07.027
10.1016/j.ifacol.2022.09.663
10.1109/TEVC.2013.2281535
10.1109/TEVC.2008.925798
10.1109/MCI.2017.2742868
10.1162/evco_a_00259
10.1109/JAS.2023.123336
10.1145/3319619.3326909
10.1007/s11432-023-3895-3
10.1016/j.swevo.2022.101055
10.3390/sym14010116
10.1016/j.aei.2025.103115
10.1016/j.engappai.2023.107735
10.1109/TEVC.2018.2855411
10.1016/j.eswa.2022.116499
10.1109/4235.996017
10.1109/TEVC.2020.3004012
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.swevo.2025.102213
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_swevo_2025_102213
S2210650225003700
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AAAKF
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATLK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABGRD
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADQTV
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFKBS
EFLBG
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
ROL
SDF
SES
SPC
SPCBC
SSA
SSB
SSD
SST
SSV
SSW
SSZ
T5K
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c255t-91a3ca46a36f1756cc2c95c57ff37b693ce2656b3a08f3c0c0096b5f2ae63dd3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001615508600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2210-6502
IngestDate Thu Nov 13 04:30:26 EST 2025
Sat Nov 29 17:02:39 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Ensemble framework
Constrained multi-objective optimization problem
Evolutionary algorithm
Multi-armed bandit
Constraint handling technique
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c255t-91a3ca46a36f1756cc2c95c57ff37b693ce2656b3a08f3c0c0096b5f2ae63dd3
ORCID 0000-0001-6374-1429
0000-0002-0683-014X
0000-0002-0818-8533
ParticipantIDs crossref_primary_10_1016_j_swevo_2025_102213
elsevier_sciencedirect_doi_10_1016_j_swevo_2025_102213
PublicationCentury 2000
PublicationDate December 2025
2025-12-00
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: December 2025
PublicationDecade 2020
PublicationTitle Swarm and evolutionary computation
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Liu, Li, Liu, Wang (b33) 2025; 274
Qiao, Yu, Qu, Liang, Song, Yue, Lin, Tan (b49) 2023; 27
Jan, Khanum (b14) 2013; 13
Zhang, Li (b41) 2007; 11
Zhang, Tao, Ma, Yong (b27) 2020
Liang, Ban, Yu, Qu, Qiao, Yue, Chen, Tan (b8) 2023; 27
Zhang, Xu, Yen, Zhang (b30) 2024; 28
Zitzler, Laumanns, Thiele (b44) 2001; 103
While, Hingston, Barone, Huband (b38) 2006; 10
Ming, Trivedi, Wang, Srinivasan, Zhang (b20) 2021; 25
Tian, Zhang, Xiao, Zhang, Jin (b46) 2021; 25
Qu, Suganthan (b34) 2011; 43
Zhao, Hao, Chen, Yu, Li, Liu (b32) 2025; 92
Sun, Zou, Liu, Yang, Zheng (b50) 2023; 27
Ajani, Mallipeddi, Raju (b45) 2023
Luo, Yu, Yen (b31) 2024; 160
He, Cheng, Tian, Zhang, Tan, Jin (b48) 2021; 25
Armananzas, Lozano (b1) 2005; vol. 2
Ming, Wang, Ishibuchi, Zhang (b17) 2022; 26
Zhu, Zhang, Lin (b42) 2020; 24
Yang, Zhang, Liu, Li (b6) 2024; 67
Ma, Wei, Tian, Cheng, Zhang (b19) 2021; 560
Fan, Li, Cai, Li, Wei, Zhang, Deb, Goodman (b26) 2019; 44
.
Raju M, Mohapatra, Dutta, Mallipeddi, Das (b7) 2024; 130
Hussain, Mohd Salleh, Cheng, Shi (b9) 2019; 52
Raju, Dutta, Mallipeddi, Das (b22) 2022; 615
Ku, Ming, Gong (b35) 2022; 14
Dong, Gong, Ming, Wang (b28) 2022; 195
Ming, Gong, Li, Wang, Gao (b51) 2023; 27
Ming, Gong, Wang, Lu (b21) 2022; 70
Coello Coello, Castillo Tapia (b47) 2021
Takahama, Sakai (b13) 2010
Fan, Li, Cai, Li, Wei, Zhang, Deb, Goodman (b53) 2020; 28
Kuleshov, Precup (b43) 2014
Gao, Zhu (b3) 2022
Zou, Sun, Yang, Zheng (b23) 2021; 579
Sun, Zou, Liu, Yang, Zheng (b18) 2023; 27
Woldesenbet, Yen, Tessema (b12) 2009; 13
Deb, Jain (b55) 2014; 18
Qiao, Liang, Liu, Yu, Yue, Qu (b25) 2023; 10
A. Vodopija, A. Oyama, B. Filipič, Ensemble-based constraint handling in multiobjective optimization, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2019, pp. 2072–2075
Deb, Sindhya, Okabe (b40) 2007
Wolpert, Macready (b15) 1997; 1
Ma, Wang (b56) 2019; 23
Tian, Cheng, Zhang, Jin (b58) 2017; 12
Q. Zhang, A. Zhou, S. Zhao, P. Suganthan, W. Liu, S. Tiwari, Multiobjective Optimization Test Instances for the CEC 2009 Special Session and Competition, Technical Report CES-487, 2008, pp. 1–30.
Fan, Li, Cai, Huang, Fang, Yugen, Mo, Wei, Goodman (b54) 2019; 23
Deb, Pratap, Agarwal, Meyarivan (b10) 2002; 6
Yin, Xu, Shi, Xiang (b57) 2025; 65
Ekren, Chattopadhyay, Kumar (b2) 2022; 55
Raju M, Dutta, Mallipeddi, Das, Lee (b24) 2024; 84
Yang, Wang (b4) 2012; 2
Li, Zhang (b39) 2009; 13
Tian, Zhang, Su, Zhang, Tan, Jin (b29) 2022; 52
Sutton, Barto (b37) 2018
Liang, Zhang, Chen, Qu, Yu, Yue, Suganthan (b5) 2024; 67
Malan (b16) 2018
Li, Chen, Fu, Yao (b11) 2019; 23
Dong (10.1016/j.swevo.2025.102213_b28) 2022; 195
Yang (10.1016/j.swevo.2025.102213_b4) 2012; 2
Qu (10.1016/j.swevo.2025.102213_b34) 2011; 43
Zhang (10.1016/j.swevo.2025.102213_b41) 2007; 11
10.1016/j.swevo.2025.102213_b52
Qiao (10.1016/j.swevo.2025.102213_b25) 2023; 10
Sutton (10.1016/j.swevo.2025.102213_b37) 2018
Yin (10.1016/j.swevo.2025.102213_b57) 2025; 65
Malan (10.1016/j.swevo.2025.102213_b16) 2018
Qiao (10.1016/j.swevo.2025.102213_b49) 2023; 27
Ming (10.1016/j.swevo.2025.102213_b17) 2022; 26
Ma (10.1016/j.swevo.2025.102213_b19) 2021; 560
Ming (10.1016/j.swevo.2025.102213_b21) 2022; 70
Ma (10.1016/j.swevo.2025.102213_b56) 2019; 23
Zitzler (10.1016/j.swevo.2025.102213_b44) 2001; 103
Raju (10.1016/j.swevo.2025.102213_b22) 2022; 615
Liang (10.1016/j.swevo.2025.102213_b5) 2024; 67
Li (10.1016/j.swevo.2025.102213_b39) 2009; 13
Li (10.1016/j.swevo.2025.102213_b11) 2019; 23
Ajani (10.1016/j.swevo.2025.102213_b45) 2023
Fan (10.1016/j.swevo.2025.102213_b26) 2019; 44
Liang (10.1016/j.swevo.2025.102213_b8) 2023; 27
Ku (10.1016/j.swevo.2025.102213_b35) 2022; 14
Tian (10.1016/j.swevo.2025.102213_b29) 2022; 52
Tian (10.1016/j.swevo.2025.102213_b58) 2017; 12
10.1016/j.swevo.2025.102213_b36
Zhang (10.1016/j.swevo.2025.102213_b33) 2025; 274
Ekren (10.1016/j.swevo.2025.102213_b2) 2022; 55
Gao (10.1016/j.swevo.2025.102213_b3) 2022
He (10.1016/j.swevo.2025.102213_b48) 2021; 25
Hussain (10.1016/j.swevo.2025.102213_b9) 2019; 52
Woldesenbet (10.1016/j.swevo.2025.102213_b12) 2009; 13
Deb (10.1016/j.swevo.2025.102213_b40) 2007
While (10.1016/j.swevo.2025.102213_b38) 2006; 10
Luo (10.1016/j.swevo.2025.102213_b31) 2024; 160
Zou (10.1016/j.swevo.2025.102213_b23) 2021; 579
Zhu (10.1016/j.swevo.2025.102213_b42) 2020; 24
Sun (10.1016/j.swevo.2025.102213_b50) 2023; 27
Deb (10.1016/j.swevo.2025.102213_b10) 2002; 6
Tian (10.1016/j.swevo.2025.102213_b46) 2021; 25
Zhang (10.1016/j.swevo.2025.102213_b30) 2024; 28
Fan (10.1016/j.swevo.2025.102213_b53) 2020; 28
Coello Coello (10.1016/j.swevo.2025.102213_b47) 2021
Sun (10.1016/j.swevo.2025.102213_b18) 2023; 27
Zhang (10.1016/j.swevo.2025.102213_b27) 2020
Raju M (10.1016/j.swevo.2025.102213_b7) 2024; 130
Fan (10.1016/j.swevo.2025.102213_b54) 2019; 23
Raju M (10.1016/j.swevo.2025.102213_b24) 2024; 84
Jan (10.1016/j.swevo.2025.102213_b14) 2013; 13
Ming (10.1016/j.swevo.2025.102213_b20) 2021; 25
Wolpert (10.1016/j.swevo.2025.102213_b15) 1997; 1
Ming (10.1016/j.swevo.2025.102213_b51) 2023; 27
Zhao (10.1016/j.swevo.2025.102213_b32) 2025; 92
Kuleshov (10.1016/j.swevo.2025.102213_b43) 2014
Armananzas (10.1016/j.swevo.2025.102213_b1) 2005; vol. 2
Yang (10.1016/j.swevo.2025.102213_b6) 2024; 67
Takahama (10.1016/j.swevo.2025.102213_b13) 2010
Deb (10.1016/j.swevo.2025.102213_b55) 2014; 18
References_xml – volume: 10
  start-page: 1951
  year: 2023
  end-page: 1964
  ident: b25
  article-title: Evolutionary multitasking with global and local auxiliary tasks for constrained multi-objective optimization
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 25
  start-page: 102
  year: 2021
  end-page: 116
  ident: b46
  article-title: A coevolutionary framework for constrained multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 160
  year: 2024
  ident: b31
  article-title: Dual-stage and dual-population cooperative evolutionary algorithm for solving constrained multiobjective problems
  publication-title: Appl. Soft Comput.
– volume: 44
  start-page: 665
  year: 2019
  end-page: 679
  ident: b26
  article-title: Push and pull search for solving constrained multi-objective optimization problems
  publication-title: Swarm Evol. Comput.
– volume: 55
  start-page: 1822
  year: 2022
  end-page: 1827
  ident: b2
  article-title: Multi-objective inventory optimization problem for a sustainable food supply network under lateral inventory share policy
  publication-title: IFAC-PapersOnLine
– volume: 67
  year: 2024
  ident: b5
  article-title: An evolutionary multiobjective method based on dominance and decomposition for feature selection in classification
  publication-title: Sci. China Inf. Sci.
– volume: 27
  start-page: 1207
  year: 2023
  end-page: 1219
  ident: b50
  article-title: A multistage algorithm for solving multiobjective optimization problems with multiconstraints
  publication-title: IEEE Trans. Evol. Comput.
– reference: A. Vodopija, A. Oyama, B. Filipič, Ensemble-based constraint handling in multiobjective optimization, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2019, pp. 2072–2075,
– volume: 28
  start-page: 339
  year: 2020
  end-page: 378
  ident: b53
  article-title: Difficulty adjustable and scalable constrained multiobjective test problem toolkit
  publication-title: Evol. Comput.
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b15
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 13
  start-page: 128
  year: 2013
  end-page: 148
  ident: b14
  article-title: A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D
  publication-title: Appl. Soft Comput.
– volume: 52
  start-page: 9559
  year: 2022
  end-page: 9572
  ident: b29
  article-title: Balancing objective optimization and constraint satisfaction in constrained evolutionary multiobjective optimization
  publication-title: IEEE Trans. Cybern.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b10
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 176
  year: 2018
  end-page: 187
  ident: b16
  article-title: Landscape-aware constraint handling applied to differential evolution
  publication-title: Theory and Practice of Natural Computing
– volume: 27
  start-page: 642
  year: 2023
  end-page: 656
  ident: b49
  article-title: Dynamic auxiliary task-based evolutionary multitasking for constrained multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– reference: Q. Zhang, A. Zhou, S. Zhao, P. Suganthan, W. Liu, S. Tiwari, Multiobjective Optimization Test Instances for the CEC 2009 Special Session and Competition, Technical Report CES-487, 2008, pp. 1–30.
– volume: 560
  start-page: 68
  year: 2021
  end-page: 91
  ident: b19
  article-title: A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints
  publication-title: Inform. Sci.
– volume: 274
  year: 2025
  ident: b33
  article-title: A knowledge driven two-stage co-evolutionary algorithm for constrained multi-objective optimization
  publication-title: Expert Syst. Appl.
– volume: 23
  start-page: 972
  year: 2019
  end-page: 986
  ident: b56
  article-title: Evolutionary constrained multiobjective optimization: Test suite construction and performance comparisons
  publication-title: IEEE Trans. Evol. Comput.
– volume: 28
  start-page: 17
  year: 2024
  end-page: 31
  ident: b30
  article-title: Two-stage multiobjective evolution strategy for constrained multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 25
  start-page: 448
  year: 2021
  end-page: 462
  ident: b48
  article-title: Paired offspring generation for constrained large-scale multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 2
  start-page: 1
  year: 2012
  end-page: 7
  ident: b4
  article-title: Multi-objective optimization for decision-making of energy and comfort management in building automation and control
  publication-title: Sustain. Cities Soc.
– volume: 26
  start-page: 1129
  year: 2022
  end-page: 1143
  ident: b17
  article-title: A novel dual-stage dual-population evolutionary algorithm for constrained multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: vol. 2
  start-page: 1388
  year: 2005
  end-page: 1395
  ident: b1
  article-title: A multiobjective approach to the portfolio optimization problem
  publication-title: 2005 IEEE Congress on Evolutionary Computation
– volume: 103
  year: 2001
  ident: b44
  article-title: SPEA2: Improving the strength pareto evolutionary algorithm
  publication-title: ETH Zur.,TIK-Rep
– volume: 12
  start-page: 73
  year: 2017
  end-page: 87
  ident: b58
  article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEE Comput. Intell. Mag.
– start-page: 1
  year: 2010
  end-page: 8
  ident: b13
  article-title: Efficient constrained optimization by the
  publication-title: IEEE Congress on Evolutionary Computation
– volume: 195
  year: 2022
  ident: b28
  article-title: A two-stage evolutionary algorithm based on three indicators for constrained multi-objective optimization
  publication-title: Expert Syst. Appl.
– start-page: 654
  year: 2022
  end-page: 658
  ident: b3
  article-title: Multi objective optimal method for new energy power grid considering maximum demand response
  publication-title: 2022 7th Asia Conference on Power and Electrical Engineering
– volume: 84
  year: 2024
  ident: b24
  article-title: A constrained multi-objective evolutionary algorithm with clustering based weight vector adaptation
  publication-title: Swarm Evol. Comput.
– year: 2018
  ident: b37
  article-title: Reinforcement Learning: An Introduction
– year: 2014
  ident: b43
  article-title: Algorithms for multi-armed bandit problems
– volume: 27
  start-page: 1313
  year: 2023
  end-page: 1326
  ident: b51
  article-title: A competitive and cooperative swarm optimizer for constrained multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 615
  start-page: 557
  year: 2022
  end-page: 577
  ident: b22
  article-title: A dual-population and multi-stage based constrained multi-objective evolutionary
  publication-title: Inform. Sci.
– volume: 13
  start-page: 514
  year: 2009
  end-page: 525
  ident: b12
  article-title: Constraint handling in multiobjective evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 291
  year: 2021
  end-page: 298
  ident: b47
  article-title: The importance of diversity in multi-objective evolutionary algorithms
  publication-title: Intelligent Computing and Communication Systems
– volume: 130
  year: 2024
  ident: b7
  article-title: Optimal placement of fixed hub height wind turbines in a wind farm using twin archive guided decomposition based multi-objective evolutionary algorithm
  publication-title: Eng. Appl. Artif. Intell.
– year: 2023
  ident: b45
  article-title: IcSDE+–an indicator for constrained multi-objective optimization
– volume: 92
  year: 2025
  ident: b32
  article-title: Two-stage bidirectional coevolutionary algorithm for constrained multi-objective optimization
  publication-title: Swarm Evol. Comput.
– volume: 14
  year: 2022
  ident: b35
  article-title: An ensemble framework of evolutionary algorithm for constrained multi-objective optimization
  publication-title: Symmetry
– volume: 27
  start-page: 201
  year: 2023
  end-page: 221
  ident: b8
  article-title: A survey on evolutionary constrained multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1
  year: 2020
  end-page: 7
  ident: b27
  article-title: Handling constrained multi-objective optimization with objective space mapping to decision space based on extreme learning machine
  publication-title: 2020 IEEE Congress on Evolutionary Computation
– volume: 43
  start-page: 403
  year: 2011
  end-page: 416
  ident: b34
  article-title: Constrained multi-objective optimization algorithm with an ensemble of constraint handling methods
  publication-title: Eng. Optim.
– volume: 52
  start-page: 2191
  year: 2019
  end-page: 2233
  ident: b9
  article-title: Metaheuristic research: a comprehensive survey
  publication-title: Artif. Intell. Rev.
– volume: 25
  start-page: 739
  year: 2021
  end-page: 753
  ident: b20
  article-title: A dual-population-based evolutionary algorithm for constrained multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 24
  start-page: 938
  year: 2020
  end-page: 947
  ident: b42
  article-title: A constrained multiobjective evolutionary algorithm with detect-and-escape strategy
  publication-title: IEEE Trans. Evol. Comput.
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: b55
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
– volume: 23
  start-page: 303
  year: 2019
  end-page: 315
  ident: b11
  article-title: Two-archive evolutionary algorithm for constrained multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b41
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 65
  year: 2025
  ident: b57
  article-title: Collaborative path planning of multi-unmanned surface vehicles via multi-stage constrained multi-objective optimization
  publication-title: Adv. Eng. Inform.
– volume: 67
  year: 2024
  ident: b6
  article-title: Reducing idleness in financial cloud services via multi-objective evolutionary reinforcement learning based load balancer
  publication-title: Sci. China Inf. Sci.
– volume: 27
  start-page: 1207
  year: 2023
  end-page: 1219
  ident: b18
  article-title: A multistage algorithm for solving multiobjective optimization problems with multiconstraints
  publication-title: IEEE Trans. Evol. Comput.
– reference: .
– volume: 10
  start-page: 29
  year: 2006
  end-page: 38
  ident: b38
  article-title: A faster algorithm for calculating hypervolume
  publication-title: IEEE Trans. Evol. Comput.
– volume: 579
  start-page: 89
  year: 2021
  end-page: 102
  ident: b23
  article-title: A dual-population algorithm based on alternative evolution and degeneration for solving constrained multi-objective optimization problems
  publication-title: Inform. Sci.
– start-page: 1187
  year: 2007
  end-page: 1194
  ident: b40
  article-title: Self-adaptive simulated binary crossover for real-parameter optimization
  publication-title: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation
– volume: 70
  year: 2022
  ident: b21
  article-title: A tri-population based co-evolutionary framework for constrained multi-objective optimization problems
  publication-title: Swarm Evol. Comput.
– volume: 23
  start-page: 12491
  year: 2019
  end-page: 12510
  ident: b54
  article-title: An improved epsilon constraint-handling method in MOEA/D for CMOPs with Large Infeasible Regions
  publication-title: Soft Comput.
– volume: 13
  start-page: 284
  year: 2009
  end-page: 302
  ident: b39
  article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 27
  start-page: 1207
  issue: 5
  year: 2023
  ident: 10.1016/j.swevo.2025.102213_b18
  article-title: A multistage algorithm for solving multiobjective optimization problems with multiconstraints
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2022.3224600
– volume: 27
  start-page: 642
  issue: 3
  year: 2023
  ident: 10.1016/j.swevo.2025.102213_b49
  article-title: Dynamic auxiliary task-based evolutionary multitasking for constrained multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2022.3175065
– start-page: 1
  year: 2010
  ident: 10.1016/j.swevo.2025.102213_b13
  article-title: Efficient constrained optimization by the ϵ constrained adaptive differential evolution
– volume: 26
  start-page: 1129
  issue: 5
  year: 2022
  ident: 10.1016/j.swevo.2025.102213_b17
  article-title: A novel dual-stage dual-population evolutionary algorithm for constrained multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2021.3131124
– volume: 67
  issue: 2
  year: 2024
  ident: 10.1016/j.swevo.2025.102213_b5
  article-title: An evolutionary multiobjective method based on dominance and decomposition for feature selection in classification
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-023-3864-6
– volume: vol. 2
  start-page: 1388
  year: 2005
  ident: 10.1016/j.swevo.2025.102213_b1
  article-title: A multiobjective approach to the portfolio optimization problem
– volume: 274
  year: 2025
  ident: 10.1016/j.swevo.2025.102213_b33
  article-title: A knowledge driven two-stage co-evolutionary algorithm for constrained multi-objective optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2025.126908
– year: 2023
  ident: 10.1016/j.swevo.2025.102213_b45
– volume: 10
  start-page: 29
  issue: 1
  year: 2006
  ident: 10.1016/j.swevo.2025.102213_b38
  article-title: A faster algorithm for calculating hypervolume
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.851275
– volume: 44
  start-page: 665
  year: 2019
  ident: 10.1016/j.swevo.2025.102213_b26
  article-title: Push and pull search for solving constrained multi-objective optimization problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.08.017
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.swevo.2025.102213_b15
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 43
  start-page: 403
  issue: 4
  year: 2011
  ident: 10.1016/j.swevo.2025.102213_b34
  article-title: Constrained multi-objective optimization algorithm with an ensemble of constraint handling methods
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2010.493937
– volume: 52
  start-page: 9559
  issue: 9
  year: 2022
  ident: 10.1016/j.swevo.2025.102213_b29
  article-title: Balancing objective optimization and constraint satisfaction in constrained evolutionary multiobjective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.3021138
– volume: 23
  start-page: 972
  issue: 6
  year: 2019
  ident: 10.1016/j.swevo.2025.102213_b56
  article-title: Evolutionary constrained multiobjective optimization: Test suite construction and performance comparisons
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2896967
– volume: 579
  start-page: 89
  year: 2021
  ident: 10.1016/j.swevo.2025.102213_b23
  article-title: A dual-population algorithm based on alternative evolution and degeneration for solving constrained multi-objective optimization problems
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.07.078
– year: 2014
  ident: 10.1016/j.swevo.2025.102213_b43
– volume: 160
  year: 2024
  ident: 10.1016/j.swevo.2025.102213_b31
  article-title: Dual-stage and dual-population cooperative evolutionary algorithm for solving constrained multiobjective problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.111703
– volume: 27
  start-page: 1207
  issue: 5
  year: 2023
  ident: 10.1016/j.swevo.2025.102213_b50
  article-title: A multistage algorithm for solving multiobjective optimization problems with multiconstraints
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2022.3224600
– volume: 2
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.swevo.2025.102213_b4
  article-title: Multi-objective optimization for decision-making of energy and comfort management in building automation and control
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2011.09.001
– volume: 560
  start-page: 68
  year: 2021
  ident: 10.1016/j.swevo.2025.102213_b19
  article-title: A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.01.029
– volume: 615
  start-page: 557
  year: 2022
  ident: 10.1016/j.swevo.2025.102213_b22
  article-title: A dual-population and multi-stage based constrained multi-objective evolutionary
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2022.10.046
– volume: 92
  year: 2025
  ident: 10.1016/j.swevo.2025.102213_b32
  article-title: Two-stage bidirectional coevolutionary algorithm for constrained multi-objective optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2024.101784
– volume: 27
  start-page: 1313
  issue: 5
  year: 2023
  ident: 10.1016/j.swevo.2025.102213_b51
  article-title: A competitive and cooperative swarm optimizer for constrained multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2022.3199775
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.swevo.2025.102213_b41
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 25
  start-page: 448
  issue: 3
  year: 2021
  ident: 10.1016/j.swevo.2025.102213_b48
  article-title: Paired offspring generation for constrained large-scale multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2020.3047835
– volume: 27
  start-page: 201
  issue: 2
  year: 2023
  ident: 10.1016/j.swevo.2025.102213_b8
  article-title: A survey on evolutionary constrained multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2022.3155533
– start-page: 291
  year: 2021
  ident: 10.1016/j.swevo.2025.102213_b47
  article-title: The importance of diversity in multi-objective evolutionary algorithms
– volume: 24
  start-page: 938
  issue: 5
  year: 2020
  ident: 10.1016/j.swevo.2025.102213_b42
  article-title: A constrained multiobjective evolutionary algorithm with detect-and-escape strategy
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2020.2981949
– volume: 13
  start-page: 514
  issue: 3
  year: 2009
  ident: 10.1016/j.swevo.2025.102213_b12
  article-title: Constraint handling in multiobjective evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.2009032
– volume: 25
  start-page: 739
  issue: 4
  year: 2021
  ident: 10.1016/j.swevo.2025.102213_b20
  article-title: A dual-population-based evolutionary algorithm for constrained multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2021.3066301
– volume: 84
  year: 2024
  ident: 10.1016/j.swevo.2025.102213_b24
  article-title: A constrained multi-objective evolutionary algorithm with clustering based weight vector adaptation
  publication-title: Swarm Evol. Comput.
– volume: 28
  start-page: 17
  issue: 1
  year: 2024
  ident: 10.1016/j.swevo.2025.102213_b30
  article-title: Two-stage multiobjective evolution strategy for constrained multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2022.3202723
– volume: 23
  start-page: 12491
  year: 2019
  ident: 10.1016/j.swevo.2025.102213_b54
  article-title: An improved epsilon constraint-handling method in MOEA/D for CMOPs with Large Infeasible Regions
  publication-title: Soft Comput.
  doi: 10.1007/s00500-019-03794-x
– volume: 52
  start-page: 2191
  year: 2019
  ident: 10.1016/j.swevo.2025.102213_b9
  article-title: Metaheuristic research: a comprehensive survey
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-017-9605-z
– start-page: 176
  year: 2018
  ident: 10.1016/j.swevo.2025.102213_b16
  article-title: Landscape-aware constraint handling applied to differential evolution
– volume: 13
  start-page: 128
  issue: 1
  year: 2013
  ident: 10.1016/j.swevo.2025.102213_b14
  article-title: A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.07.027
– start-page: 1187
  year: 2007
  ident: 10.1016/j.swevo.2025.102213_b40
  article-title: Self-adaptive simulated binary crossover for real-parameter optimization
– volume: 55
  start-page: 1822
  issue: 10
  year: 2022
  ident: 10.1016/j.swevo.2025.102213_b2
  article-title: Multi-objective inventory optimization problem for a sustainable food supply network under lateral inventory share policy
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2022.09.663
– start-page: 1
  year: 2020
  ident: 10.1016/j.swevo.2025.102213_b27
  article-title: Handling constrained multi-objective optimization with objective space mapping to decision space based on extreme learning machine
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 10.1016/j.swevo.2025.102213_b55
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281535
– volume: 13
  start-page: 284
  issue: 2
  year: 2009
  ident: 10.1016/j.swevo.2025.102213_b39
  article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.925798
– volume: 12
  start-page: 73
  issue: 4
  year: 2017
  ident: 10.1016/j.swevo.2025.102213_b58
  article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2017.2742868
– volume: 28
  start-page: 339
  issue: 3
  year: 2020
  ident: 10.1016/j.swevo.2025.102213_b53
  article-title: Difficulty adjustable and scalable constrained multiobjective test problem toolkit
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00259
– volume: 10
  start-page: 1951
  issue: 10
  year: 2023
  ident: 10.1016/j.swevo.2025.102213_b25
  article-title: Evolutionary multitasking with global and local auxiliary tasks for constrained multi-objective optimization
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2023.123336
– ident: 10.1016/j.swevo.2025.102213_b36
  doi: 10.1145/3319619.3326909
– ident: 10.1016/j.swevo.2025.102213_b52
– volume: 67
  issue: 2
  year: 2024
  ident: 10.1016/j.swevo.2025.102213_b6
  article-title: Reducing idleness in financial cloud services via multi-objective evolutionary reinforcement learning based load balancer
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-023-3895-3
– start-page: 654
  year: 2022
  ident: 10.1016/j.swevo.2025.102213_b3
  article-title: Multi objective optimal method for new energy power grid considering maximum demand response
– volume: 70
  year: 2022
  ident: 10.1016/j.swevo.2025.102213_b21
  article-title: A tri-population based co-evolutionary framework for constrained multi-objective optimization problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2022.101055
– volume: 14
  issue: 1
  year: 2022
  ident: 10.1016/j.swevo.2025.102213_b35
  article-title: An ensemble framework of evolutionary algorithm for constrained multi-objective optimization
  publication-title: Symmetry
  doi: 10.3390/sym14010116
– volume: 65
  year: 2025
  ident: 10.1016/j.swevo.2025.102213_b57
  article-title: Collaborative path planning of multi-unmanned surface vehicles via multi-stage constrained multi-objective optimization
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2025.103115
– volume: 130
  year: 2024
  ident: 10.1016/j.swevo.2025.102213_b7
  article-title: Optimal placement of fixed hub height wind turbines in a wind farm using twin archive guided decomposition based multi-objective evolutionary algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.107735
– volume: 23
  start-page: 303
  issue: 2
  year: 2019
  ident: 10.1016/j.swevo.2025.102213_b11
  article-title: Two-archive evolutionary algorithm for constrained multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2855411
– volume: 195
  year: 2022
  ident: 10.1016/j.swevo.2025.102213_b28
  article-title: A two-stage evolutionary algorithm based on three indicators for constrained multi-objective optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116499
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.swevo.2025.102213_b10
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– year: 2018
  ident: 10.1016/j.swevo.2025.102213_b37
– volume: 103
  year: 2001
  ident: 10.1016/j.swevo.2025.102213_b44
  article-title: SPEA2: Improving the strength pareto evolutionary algorithm
  publication-title: ETH Zur.,TIK-Rep
– volume: 25
  start-page: 102
  issue: 1
  year: 2021
  ident: 10.1016/j.swevo.2025.102213_b46
  article-title: A coevolutionary framework for constrained multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2020.3004012
SSID ssj0000602559
Score 2.3746579
Snippet In constrained multi-objective evolutionary algorithms (CMOEAs), selecting appropriate constraint-handling techniques (CHTs) is challenging without prior...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 102213
SubjectTerms Constrained multi-objective optimization problem
Constraint handling technique
Ensemble framework
Evolutionary algorithm
Multi-armed bandit
Title A two-stage ensemble evolutionary algorithm for constrained multi-objective optimization
URI https://dx.doi.org/10.1016/j.swevo.2025.102213
Volume 99
WOSCitedRecordID wos001615508600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 2210-6502
  databaseCode: AIEXJ
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000602559
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdg48AFGAMxxpAP3DpPaZwvHys0NCYxIdpDd4psx9lS0WRKs3Z__p4_kqUtQgNph0SRpdjJez-9_J7zPhD64sEnd-jzjKhQBSSQiSAiEx4JRJIwyXQ9g9w0m4gvLpLplP10GdcL004gLsvk7o7dPKmqYQyUrVNn_0Hd3aQwANegdDiD2uH8KMWPBs2qIkD6rtQAfFQ117lRaunW1EFy_PdVVRfN9dzEGErNEHWjCKCeJryQVGJmzeCgAoMyd5mafRo7XvHa9tZYm1iaFhFr__Z_VBmHQZvPPq4LfZTFki_44Bef3Xbwsfuw5wW_5tXDjyozeMlLB2G3O-GHG5Ee22kz2rL54GcSoIZrZtj2Sdqy6HZzYXayWMELnegldLUJ3yawbpTKHuuJ9bzA6zwae95ztOvHIQNrtzv6fjo973bfvMj4UrrzYPssbUkqE_y3tdqfaUuPikzeoFfOh8Ajq_s99EyVb9Hrtj8HduZ6H01HuIMCbqGA-xrDHRQwQAH3oIA3oID7UHiHJt9OJ1_PiOukQSS8ZgNfNE4lDyJOoxz4oo6VlyyUYZznNBYRo1L5QOwF5V6SU-lJ7dmKMPe5imiW0fdop6xK9QFhGikGjHmopMgCpjjLA577iaTZMAtCRg_QcSun9MbWS0nbQMJZasSaarGmVqwHKGplmTrKZ6lcCvr_240f__fGQ_TyAaef0E5T36oj9EIum2JRf3Y4uQcU1YI6
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+two-stage+ensemble+evolutionary+algorithm+for+constrained+multi-objective+optimization&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Modampuri%2C+Sri+Srinivasa+Raju&rft.au=Fan%2C+Jiahao&rft.au=Sun%2C+Yanan&rft.date=2025-12-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=99&rft_id=info:doi/10.1016%2Fj.swevo.2025.102213&rft.externalDocID=S2210650225003700
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon