A two-stage ensemble evolutionary algorithm for constrained multi-objective optimization
In constrained multi-objective evolutionary algorithms (CMOEAs), selecting appropriate constraint-handling techniques (CHTs) is challenging without prior knowledge of the problem’s constraint severity or feasible region distribution. Ensemble frameworks that integrate multiple CHTs with distinct pop...
Saved in:
| Published in: | Swarm and evolutionary computation Vol. 99; p. 102213 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.12.2025
|
| Subjects: | |
| ISSN: | 2210-6502 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In constrained multi-objective evolutionary algorithms (CMOEAs), selecting appropriate constraint-handling techniques (CHTs) is challenging without prior knowledge of the problem’s constraint severity or feasible region distribution. Ensemble frameworks that integrate multiple CHTs with distinct populations offer a promising solution but face issues like redundant evaluations and poor exploration–exploitation balance. To address these limitations, we propose a two-stage ensemble-based CMOEA (CMOEA-TENS) that dynamically prioritizes suitable CHTs based on problem characteristics. Specifically, in the first stage, a population dedicated to explore the unconstrained search space drives the evolutionary process, while remaining populations co-evolve by leveraging solutions identified by the exploratory population. In the second stage, an ensemble of distinct populations drives the evolutionary process, each co-evolving with a different CHT focused on feasibility, diversity, or convergence to exploit the feasible regions effectively. Furthermore, we introduce a novel Multi-Armed Bandit (MAB)-based decision-making strategy that, unlike existing static or random selection approaches, adaptively learns and selects the most suitable CHT-based population to drive the evolutionary process based on real-time performance feedback. This dynamic strategy explicitly reduces redundant functional evaluations and ensures better management of exploration–exploitation trade-offs. CMOEA-TENS was evaluated against eleven state-of-the-art algorithms across six popular test suites, encompassing 57 test instances and six real-world problems. The empirical results demonstrate that CMOEA-TENS effectively balances exploration and exploitation while avoiding redundant evaluations by dynamically selecting the most suitable CHT-based population to drive the evolutionary process. Additionally, an ablation study further validates the effectiveness of the designed MAB strategy.
•Proposed a two-stage ensemble CMOEA for solving constrained multi-objective problems.•Developed a dynamic two-stage strategy balancing exploration and exploitation effectively.•Designed an MAB strategy to select suitable population for offspring generation.•Validated the proposed algorithm on six test suites and six real-world optimization tasks. |
|---|---|
| AbstractList | In constrained multi-objective evolutionary algorithms (CMOEAs), selecting appropriate constraint-handling techniques (CHTs) is challenging without prior knowledge of the problem’s constraint severity or feasible region distribution. Ensemble frameworks that integrate multiple CHTs with distinct populations offer a promising solution but face issues like redundant evaluations and poor exploration–exploitation balance. To address these limitations, we propose a two-stage ensemble-based CMOEA (CMOEA-TENS) that dynamically prioritizes suitable CHTs based on problem characteristics. Specifically, in the first stage, a population dedicated to explore the unconstrained search space drives the evolutionary process, while remaining populations co-evolve by leveraging solutions identified by the exploratory population. In the second stage, an ensemble of distinct populations drives the evolutionary process, each co-evolving with a different CHT focused on feasibility, diversity, or convergence to exploit the feasible regions effectively. Furthermore, we introduce a novel Multi-Armed Bandit (MAB)-based decision-making strategy that, unlike existing static or random selection approaches, adaptively learns and selects the most suitable CHT-based population to drive the evolutionary process based on real-time performance feedback. This dynamic strategy explicitly reduces redundant functional evaluations and ensures better management of exploration–exploitation trade-offs. CMOEA-TENS was evaluated against eleven state-of-the-art algorithms across six popular test suites, encompassing 57 test instances and six real-world problems. The empirical results demonstrate that CMOEA-TENS effectively balances exploration and exploitation while avoiding redundant evaluations by dynamically selecting the most suitable CHT-based population to drive the evolutionary process. Additionally, an ablation study further validates the effectiveness of the designed MAB strategy.
•Proposed a two-stage ensemble CMOEA for solving constrained multi-objective problems.•Developed a dynamic two-stage strategy balancing exploration and exploitation effectively.•Designed an MAB strategy to select suitable population for offspring generation.•Validated the proposed algorithm on six test suites and six real-world optimization tasks. |
| ArticleNumber | 102213 |
| Author | Fan, Jiahao Modampuri, Sri Srinivasa Raju Sun, Yanan |
| Author_xml | – sequence: 1 givenname: Sri Srinivasa Raju orcidid: 0000-0002-0683-014X surname: Modampuri fullname: Modampuri, Sri Srinivasa Raju email: msrisrinivasaraju@gmail.com – sequence: 2 givenname: Jiahao orcidid: 0000-0002-0818-8533 surname: Fan fullname: Fan, Jiahao email: fanjh@scu.edu.cn – sequence: 3 givenname: Yanan orcidid: 0000-0001-6374-1429 surname: Sun fullname: Sun, Yanan email: ysun@scu.edu.cn |
| BookMark | eNp9kLtOAzEQRV0EiRDyBTT-gQ1-YIctKKKIR6RINCnoLK93HLzatSPb2Qi-HodQM80djeaM7twbNPHBA0J3lCwoofK-W6QTjGHBCBNlwhjlEzQtQiopCLtG85Q6UkqWBVFP0ccK51OoUtZ7wOATDE1fmjH0x-yC1_EL634fosufA7YhYhN8ylE7Dy0ejn12VWg6MNmNgMMhu8F96zN5i66s7hPM_3SGdi_Pu_VbtX1_3axX28oUA7mqqeZGP0jNpaVLIY1hphZGLK3ly0bW3ACTQjZck0fLDTGE1LIRlmmQvG35DPHLWRNDShGsOkQ3FNuKEnWORHXqNxJ1jkRdIinU04WC4mx0EFUyDryB1sXyi2qD-5f_AUFdcWE |
| Cites_doi | 10.1109/TEVC.2022.3224600 10.1109/TEVC.2022.3175065 10.1109/TEVC.2021.3131124 10.1007/s11432-023-3864-6 10.1016/j.eswa.2025.126908 10.1109/TEVC.2005.851275 10.1016/j.swevo.2018.08.017 10.1109/4235.585893 10.1080/0305215X.2010.493937 10.1109/TCYB.2020.3021138 10.1109/TEVC.2019.2896967 10.1016/j.ins.2021.07.078 10.1016/j.asoc.2024.111703 10.1016/j.scs.2011.09.001 10.1016/j.ins.2021.01.029 10.1016/j.ins.2022.10.046 10.1016/j.swevo.2024.101784 10.1109/TEVC.2022.3199775 10.1109/TEVC.2007.892759 10.1109/TEVC.2020.3047835 10.1109/TEVC.2022.3155533 10.1109/TEVC.2020.2981949 10.1109/TEVC.2008.2009032 10.1109/TEVC.2021.3066301 10.1109/TEVC.2022.3202723 10.1007/s00500-019-03794-x 10.1007/s10462-017-9605-z 10.1016/j.asoc.2012.07.027 10.1016/j.ifacol.2022.09.663 10.1109/TEVC.2013.2281535 10.1109/TEVC.2008.925798 10.1109/MCI.2017.2742868 10.1162/evco_a_00259 10.1109/JAS.2023.123336 10.1145/3319619.3326909 10.1007/s11432-023-3895-3 10.1016/j.swevo.2022.101055 10.3390/sym14010116 10.1016/j.aei.2025.103115 10.1016/j.engappai.2023.107735 10.1109/TEVC.2018.2855411 10.1016/j.eswa.2022.116499 10.1109/4235.996017 10.1109/TEVC.2020.3004012 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.swevo.2025.102213 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_swevo_2025_102213 S2210650225003700 |
| GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AAAKF AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATLK AATTM AAXKI AAXUO AAYFN AAYWO ABAOU ABBOA ABGRD ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFS ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADMUD ADNMO ADQTV ADTZH AEBSH AECPX AEIPS AEKER AENEX AEQOU AEUPX AFJKZ AFPUW AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM APXCP ARUGR AXJTR BJAXD BKOJK BLXMC EBS EFJIC EFKBS EFLBG EJD FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HAMUX HVGLF HZ~ J1W JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 ROL SDF SES SPC SPCBC SSA SSB SSD SST SSV SSW SSZ T5K ~G- ~HD AAYXX CITATION |
| ID | FETCH-LOGICAL-c255t-91a3ca46a36f1756cc2c95c57ff37b693ce2656b3a08f3c0c0096b5f2ae63dd3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001615508600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2210-6502 |
| IngestDate | Thu Nov 13 04:30:26 EST 2025 Sat Nov 29 17:02:39 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Ensemble framework Constrained multi-objective optimization problem Evolutionary algorithm Multi-armed bandit Constraint handling technique |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c255t-91a3ca46a36f1756cc2c95c57ff37b693ce2656b3a08f3c0c0096b5f2ae63dd3 |
| ORCID | 0000-0001-6374-1429 0000-0002-0683-014X 0000-0002-0818-8533 |
| ParticipantIDs | crossref_primary_10_1016_j_swevo_2025_102213 elsevier_sciencedirect_doi_10_1016_j_swevo_2025_102213 |
| PublicationCentury | 2000 |
| PublicationDate | December 2025 2025-12-00 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: December 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Swarm and evolutionary computation |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zhang, Liu, Li, Liu, Wang (b33) 2025; 274 Qiao, Yu, Qu, Liang, Song, Yue, Lin, Tan (b49) 2023; 27 Jan, Khanum (b14) 2013; 13 Zhang, Li (b41) 2007; 11 Zhang, Tao, Ma, Yong (b27) 2020 Liang, Ban, Yu, Qu, Qiao, Yue, Chen, Tan (b8) 2023; 27 Zhang, Xu, Yen, Zhang (b30) 2024; 28 Zitzler, Laumanns, Thiele (b44) 2001; 103 While, Hingston, Barone, Huband (b38) 2006; 10 Ming, Trivedi, Wang, Srinivasan, Zhang (b20) 2021; 25 Tian, Zhang, Xiao, Zhang, Jin (b46) 2021; 25 Qu, Suganthan (b34) 2011; 43 Zhao, Hao, Chen, Yu, Li, Liu (b32) 2025; 92 Sun, Zou, Liu, Yang, Zheng (b50) 2023; 27 Ajani, Mallipeddi, Raju (b45) 2023 Luo, Yu, Yen (b31) 2024; 160 He, Cheng, Tian, Zhang, Tan, Jin (b48) 2021; 25 Armananzas, Lozano (b1) 2005; vol. 2 Ming, Wang, Ishibuchi, Zhang (b17) 2022; 26 Zhu, Zhang, Lin (b42) 2020; 24 Yang, Zhang, Liu, Li (b6) 2024; 67 Ma, Wei, Tian, Cheng, Zhang (b19) 2021; 560 Fan, Li, Cai, Li, Wei, Zhang, Deb, Goodman (b26) 2019; 44 . Raju M, Mohapatra, Dutta, Mallipeddi, Das (b7) 2024; 130 Hussain, Mohd Salleh, Cheng, Shi (b9) 2019; 52 Raju, Dutta, Mallipeddi, Das (b22) 2022; 615 Ku, Ming, Gong (b35) 2022; 14 Dong, Gong, Ming, Wang (b28) 2022; 195 Ming, Gong, Li, Wang, Gao (b51) 2023; 27 Ming, Gong, Wang, Lu (b21) 2022; 70 Coello Coello, Castillo Tapia (b47) 2021 Takahama, Sakai (b13) 2010 Fan, Li, Cai, Li, Wei, Zhang, Deb, Goodman (b53) 2020; 28 Kuleshov, Precup (b43) 2014 Gao, Zhu (b3) 2022 Zou, Sun, Yang, Zheng (b23) 2021; 579 Sun, Zou, Liu, Yang, Zheng (b18) 2023; 27 Woldesenbet, Yen, Tessema (b12) 2009; 13 Deb, Jain (b55) 2014; 18 Qiao, Liang, Liu, Yu, Yue, Qu (b25) 2023; 10 A. Vodopija, A. Oyama, B. Filipič, Ensemble-based constraint handling in multiobjective optimization, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2019, pp. 2072–2075 Deb, Sindhya, Okabe (b40) 2007 Wolpert, Macready (b15) 1997; 1 Ma, Wang (b56) 2019; 23 Tian, Cheng, Zhang, Jin (b58) 2017; 12 Q. Zhang, A. Zhou, S. Zhao, P. Suganthan, W. Liu, S. Tiwari, Multiobjective Optimization Test Instances for the CEC 2009 Special Session and Competition, Technical Report CES-487, 2008, pp. 1–30. Fan, Li, Cai, Huang, Fang, Yugen, Mo, Wei, Goodman (b54) 2019; 23 Deb, Pratap, Agarwal, Meyarivan (b10) 2002; 6 Yin, Xu, Shi, Xiang (b57) 2025; 65 Ekren, Chattopadhyay, Kumar (b2) 2022; 55 Raju M, Dutta, Mallipeddi, Das, Lee (b24) 2024; 84 Yang, Wang (b4) 2012; 2 Li, Zhang (b39) 2009; 13 Tian, Zhang, Su, Zhang, Tan, Jin (b29) 2022; 52 Sutton, Barto (b37) 2018 Liang, Zhang, Chen, Qu, Yu, Yue, Suganthan (b5) 2024; 67 Malan (b16) 2018 Li, Chen, Fu, Yao (b11) 2019; 23 Dong (10.1016/j.swevo.2025.102213_b28) 2022; 195 Yang (10.1016/j.swevo.2025.102213_b4) 2012; 2 Qu (10.1016/j.swevo.2025.102213_b34) 2011; 43 Zhang (10.1016/j.swevo.2025.102213_b41) 2007; 11 10.1016/j.swevo.2025.102213_b52 Qiao (10.1016/j.swevo.2025.102213_b25) 2023; 10 Sutton (10.1016/j.swevo.2025.102213_b37) 2018 Yin (10.1016/j.swevo.2025.102213_b57) 2025; 65 Malan (10.1016/j.swevo.2025.102213_b16) 2018 Qiao (10.1016/j.swevo.2025.102213_b49) 2023; 27 Ming (10.1016/j.swevo.2025.102213_b17) 2022; 26 Ma (10.1016/j.swevo.2025.102213_b19) 2021; 560 Ming (10.1016/j.swevo.2025.102213_b21) 2022; 70 Ma (10.1016/j.swevo.2025.102213_b56) 2019; 23 Zitzler (10.1016/j.swevo.2025.102213_b44) 2001; 103 Raju (10.1016/j.swevo.2025.102213_b22) 2022; 615 Liang (10.1016/j.swevo.2025.102213_b5) 2024; 67 Li (10.1016/j.swevo.2025.102213_b39) 2009; 13 Li (10.1016/j.swevo.2025.102213_b11) 2019; 23 Ajani (10.1016/j.swevo.2025.102213_b45) 2023 Fan (10.1016/j.swevo.2025.102213_b26) 2019; 44 Liang (10.1016/j.swevo.2025.102213_b8) 2023; 27 Ku (10.1016/j.swevo.2025.102213_b35) 2022; 14 Tian (10.1016/j.swevo.2025.102213_b29) 2022; 52 Tian (10.1016/j.swevo.2025.102213_b58) 2017; 12 10.1016/j.swevo.2025.102213_b36 Zhang (10.1016/j.swevo.2025.102213_b33) 2025; 274 Ekren (10.1016/j.swevo.2025.102213_b2) 2022; 55 Gao (10.1016/j.swevo.2025.102213_b3) 2022 He (10.1016/j.swevo.2025.102213_b48) 2021; 25 Hussain (10.1016/j.swevo.2025.102213_b9) 2019; 52 Woldesenbet (10.1016/j.swevo.2025.102213_b12) 2009; 13 Deb (10.1016/j.swevo.2025.102213_b40) 2007 While (10.1016/j.swevo.2025.102213_b38) 2006; 10 Luo (10.1016/j.swevo.2025.102213_b31) 2024; 160 Zou (10.1016/j.swevo.2025.102213_b23) 2021; 579 Zhu (10.1016/j.swevo.2025.102213_b42) 2020; 24 Sun (10.1016/j.swevo.2025.102213_b50) 2023; 27 Deb (10.1016/j.swevo.2025.102213_b10) 2002; 6 Tian (10.1016/j.swevo.2025.102213_b46) 2021; 25 Zhang (10.1016/j.swevo.2025.102213_b30) 2024; 28 Fan (10.1016/j.swevo.2025.102213_b53) 2020; 28 Coello Coello (10.1016/j.swevo.2025.102213_b47) 2021 Sun (10.1016/j.swevo.2025.102213_b18) 2023; 27 Zhang (10.1016/j.swevo.2025.102213_b27) 2020 Raju M (10.1016/j.swevo.2025.102213_b7) 2024; 130 Fan (10.1016/j.swevo.2025.102213_b54) 2019; 23 Raju M (10.1016/j.swevo.2025.102213_b24) 2024; 84 Jan (10.1016/j.swevo.2025.102213_b14) 2013; 13 Ming (10.1016/j.swevo.2025.102213_b20) 2021; 25 Wolpert (10.1016/j.swevo.2025.102213_b15) 1997; 1 Ming (10.1016/j.swevo.2025.102213_b51) 2023; 27 Zhao (10.1016/j.swevo.2025.102213_b32) 2025; 92 Kuleshov (10.1016/j.swevo.2025.102213_b43) 2014 Armananzas (10.1016/j.swevo.2025.102213_b1) 2005; vol. 2 Yang (10.1016/j.swevo.2025.102213_b6) 2024; 67 Takahama (10.1016/j.swevo.2025.102213_b13) 2010 Deb (10.1016/j.swevo.2025.102213_b55) 2014; 18 |
| References_xml | – volume: 10 start-page: 1951 year: 2023 end-page: 1964 ident: b25 article-title: Evolutionary multitasking with global and local auxiliary tasks for constrained multi-objective optimization publication-title: IEEE/CAA J. Autom. Sin. – volume: 25 start-page: 102 year: 2021 end-page: 116 ident: b46 article-title: A coevolutionary framework for constrained multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. – volume: 160 year: 2024 ident: b31 article-title: Dual-stage and dual-population cooperative evolutionary algorithm for solving constrained multiobjective problems publication-title: Appl. Soft Comput. – volume: 44 start-page: 665 year: 2019 end-page: 679 ident: b26 article-title: Push and pull search for solving constrained multi-objective optimization problems publication-title: Swarm Evol. Comput. – volume: 55 start-page: 1822 year: 2022 end-page: 1827 ident: b2 article-title: Multi-objective inventory optimization problem for a sustainable food supply network under lateral inventory share policy publication-title: IFAC-PapersOnLine – volume: 67 year: 2024 ident: b5 article-title: An evolutionary multiobjective method based on dominance and decomposition for feature selection in classification publication-title: Sci. China Inf. Sci. – volume: 27 start-page: 1207 year: 2023 end-page: 1219 ident: b50 article-title: A multistage algorithm for solving multiobjective optimization problems with multiconstraints publication-title: IEEE Trans. Evol. Comput. – reference: A. Vodopija, A. Oyama, B. Filipič, Ensemble-based constraint handling in multiobjective optimization, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2019, pp. 2072–2075, – volume: 28 start-page: 339 year: 2020 end-page: 378 ident: b53 article-title: Difficulty adjustable and scalable constrained multiobjective test problem toolkit publication-title: Evol. Comput. – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b15 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. – volume: 13 start-page: 128 year: 2013 end-page: 148 ident: b14 article-title: A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D publication-title: Appl. Soft Comput. – volume: 52 start-page: 9559 year: 2022 end-page: 9572 ident: b29 article-title: Balancing objective optimization and constraint satisfaction in constrained evolutionary multiobjective optimization publication-title: IEEE Trans. Cybern. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b10 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – start-page: 176 year: 2018 end-page: 187 ident: b16 article-title: Landscape-aware constraint handling applied to differential evolution publication-title: Theory and Practice of Natural Computing – volume: 27 start-page: 642 year: 2023 end-page: 656 ident: b49 article-title: Dynamic auxiliary task-based evolutionary multitasking for constrained multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – reference: Q. Zhang, A. Zhou, S. Zhao, P. Suganthan, W. Liu, S. Tiwari, Multiobjective Optimization Test Instances for the CEC 2009 Special Session and Competition, Technical Report CES-487, 2008, pp. 1–30. – volume: 560 start-page: 68 year: 2021 end-page: 91 ident: b19 article-title: A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints publication-title: Inform. Sci. – volume: 274 year: 2025 ident: b33 article-title: A knowledge driven two-stage co-evolutionary algorithm for constrained multi-objective optimization publication-title: Expert Syst. Appl. – volume: 23 start-page: 972 year: 2019 end-page: 986 ident: b56 article-title: Evolutionary constrained multiobjective optimization: Test suite construction and performance comparisons publication-title: IEEE Trans. Evol. Comput. – volume: 28 start-page: 17 year: 2024 end-page: 31 ident: b30 article-title: Two-stage multiobjective evolution strategy for constrained multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 25 start-page: 448 year: 2021 end-page: 462 ident: b48 article-title: Paired offspring generation for constrained large-scale multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 2 start-page: 1 year: 2012 end-page: 7 ident: b4 article-title: Multi-objective optimization for decision-making of energy and comfort management in building automation and control publication-title: Sustain. Cities Soc. – volume: 26 start-page: 1129 year: 2022 end-page: 1143 ident: b17 article-title: A novel dual-stage dual-population evolutionary algorithm for constrained multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: vol. 2 start-page: 1388 year: 2005 end-page: 1395 ident: b1 article-title: A multiobjective approach to the portfolio optimization problem publication-title: 2005 IEEE Congress on Evolutionary Computation – volume: 103 year: 2001 ident: b44 article-title: SPEA2: Improving the strength pareto evolutionary algorithm publication-title: ETH Zur.,TIK-Rep – volume: 12 start-page: 73 year: 2017 end-page: 87 ident: b58 article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum] publication-title: IEEE Comput. Intell. Mag. – start-page: 1 year: 2010 end-page: 8 ident: b13 article-title: Efficient constrained optimization by the publication-title: IEEE Congress on Evolutionary Computation – volume: 195 year: 2022 ident: b28 article-title: A two-stage evolutionary algorithm based on three indicators for constrained multi-objective optimization publication-title: Expert Syst. Appl. – start-page: 654 year: 2022 end-page: 658 ident: b3 article-title: Multi objective optimal method for new energy power grid considering maximum demand response publication-title: 2022 7th Asia Conference on Power and Electrical Engineering – volume: 84 year: 2024 ident: b24 article-title: A constrained multi-objective evolutionary algorithm with clustering based weight vector adaptation publication-title: Swarm Evol. Comput. – year: 2018 ident: b37 article-title: Reinforcement Learning: An Introduction – year: 2014 ident: b43 article-title: Algorithms for multi-armed bandit problems – volume: 27 start-page: 1313 year: 2023 end-page: 1326 ident: b51 article-title: A competitive and cooperative swarm optimizer for constrained multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. – volume: 615 start-page: 557 year: 2022 end-page: 577 ident: b22 article-title: A dual-population and multi-stage based constrained multi-objective evolutionary publication-title: Inform. Sci. – volume: 13 start-page: 514 year: 2009 end-page: 525 ident: b12 article-title: Constraint handling in multiobjective evolutionary optimization publication-title: IEEE Trans. Evol. Comput. – start-page: 291 year: 2021 end-page: 298 ident: b47 article-title: The importance of diversity in multi-objective evolutionary algorithms publication-title: Intelligent Computing and Communication Systems – volume: 130 year: 2024 ident: b7 article-title: Optimal placement of fixed hub height wind turbines in a wind farm using twin archive guided decomposition based multi-objective evolutionary algorithm publication-title: Eng. Appl. Artif. Intell. – year: 2023 ident: b45 article-title: IcSDE+–an indicator for constrained multi-objective optimization – volume: 92 year: 2025 ident: b32 article-title: Two-stage bidirectional coevolutionary algorithm for constrained multi-objective optimization publication-title: Swarm Evol. Comput. – volume: 14 year: 2022 ident: b35 article-title: An ensemble framework of evolutionary algorithm for constrained multi-objective optimization publication-title: Symmetry – volume: 27 start-page: 201 year: 2023 end-page: 221 ident: b8 article-title: A survey on evolutionary constrained multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – start-page: 1 year: 2020 end-page: 7 ident: b27 article-title: Handling constrained multi-objective optimization with objective space mapping to decision space based on extreme learning machine publication-title: 2020 IEEE Congress on Evolutionary Computation – volume: 43 start-page: 403 year: 2011 end-page: 416 ident: b34 article-title: Constrained multi-objective optimization algorithm with an ensemble of constraint handling methods publication-title: Eng. Optim. – volume: 52 start-page: 2191 year: 2019 end-page: 2233 ident: b9 article-title: Metaheuristic research: a comprehensive survey publication-title: Artif. Intell. Rev. – volume: 25 start-page: 739 year: 2021 end-page: 753 ident: b20 article-title: A dual-population-based evolutionary algorithm for constrained multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 24 start-page: 938 year: 2020 end-page: 947 ident: b42 article-title: A constrained multiobjective evolutionary algorithm with detect-and-escape strategy publication-title: IEEE Trans. Evol. Comput. – volume: 18 start-page: 577 year: 2014 end-page: 601 ident: b55 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints publication-title: IEEE Trans. Evol. Comput. – volume: 23 start-page: 303 year: 2019 end-page: 315 ident: b11 article-title: Two-archive evolutionary algorithm for constrained multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: b41 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. – volume: 65 year: 2025 ident: b57 article-title: Collaborative path planning of multi-unmanned surface vehicles via multi-stage constrained multi-objective optimization publication-title: Adv. Eng. Inform. – volume: 67 year: 2024 ident: b6 article-title: Reducing idleness in financial cloud services via multi-objective evolutionary reinforcement learning based load balancer publication-title: Sci. China Inf. Sci. – volume: 27 start-page: 1207 year: 2023 end-page: 1219 ident: b18 article-title: A multistage algorithm for solving multiobjective optimization problems with multiconstraints publication-title: IEEE Trans. Evol. Comput. – reference: . – volume: 10 start-page: 29 year: 2006 end-page: 38 ident: b38 article-title: A faster algorithm for calculating hypervolume publication-title: IEEE Trans. Evol. Comput. – volume: 579 start-page: 89 year: 2021 end-page: 102 ident: b23 article-title: A dual-population algorithm based on alternative evolution and degeneration for solving constrained multi-objective optimization problems publication-title: Inform. Sci. – start-page: 1187 year: 2007 end-page: 1194 ident: b40 article-title: Self-adaptive simulated binary crossover for real-parameter optimization publication-title: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation – volume: 70 year: 2022 ident: b21 article-title: A tri-population based co-evolutionary framework for constrained multi-objective optimization problems publication-title: Swarm Evol. Comput. – volume: 23 start-page: 12491 year: 2019 end-page: 12510 ident: b54 article-title: An improved epsilon constraint-handling method in MOEA/D for CMOPs with Large Infeasible Regions publication-title: Soft Comput. – volume: 13 start-page: 284 year: 2009 end-page: 302 ident: b39 article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II publication-title: IEEE Trans. Evol. Comput. – volume: 27 start-page: 1207 issue: 5 year: 2023 ident: 10.1016/j.swevo.2025.102213_b18 article-title: A multistage algorithm for solving multiobjective optimization problems with multiconstraints publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2022.3224600 – volume: 27 start-page: 642 issue: 3 year: 2023 ident: 10.1016/j.swevo.2025.102213_b49 article-title: Dynamic auxiliary task-based evolutionary multitasking for constrained multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2022.3175065 – start-page: 1 year: 2010 ident: 10.1016/j.swevo.2025.102213_b13 article-title: Efficient constrained optimization by the ϵ constrained adaptive differential evolution – volume: 26 start-page: 1129 issue: 5 year: 2022 ident: 10.1016/j.swevo.2025.102213_b17 article-title: A novel dual-stage dual-population evolutionary algorithm for constrained multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2021.3131124 – volume: 67 issue: 2 year: 2024 ident: 10.1016/j.swevo.2025.102213_b5 article-title: An evolutionary multiobjective method based on dominance and decomposition for feature selection in classification publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-023-3864-6 – volume: vol. 2 start-page: 1388 year: 2005 ident: 10.1016/j.swevo.2025.102213_b1 article-title: A multiobjective approach to the portfolio optimization problem – volume: 274 year: 2025 ident: 10.1016/j.swevo.2025.102213_b33 article-title: A knowledge driven two-stage co-evolutionary algorithm for constrained multi-objective optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2025.126908 – year: 2023 ident: 10.1016/j.swevo.2025.102213_b45 – volume: 10 start-page: 29 issue: 1 year: 2006 ident: 10.1016/j.swevo.2025.102213_b38 article-title: A faster algorithm for calculating hypervolume publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.851275 – volume: 44 start-page: 665 year: 2019 ident: 10.1016/j.swevo.2025.102213_b26 article-title: Push and pull search for solving constrained multi-objective optimization problems publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.08.017 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.swevo.2025.102213_b15 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 43 start-page: 403 issue: 4 year: 2011 ident: 10.1016/j.swevo.2025.102213_b34 article-title: Constrained multi-objective optimization algorithm with an ensemble of constraint handling methods publication-title: Eng. Optim. doi: 10.1080/0305215X.2010.493937 – volume: 52 start-page: 9559 issue: 9 year: 2022 ident: 10.1016/j.swevo.2025.102213_b29 article-title: Balancing objective optimization and constraint satisfaction in constrained evolutionary multiobjective optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.3021138 – volume: 23 start-page: 972 issue: 6 year: 2019 ident: 10.1016/j.swevo.2025.102213_b56 article-title: Evolutionary constrained multiobjective optimization: Test suite construction and performance comparisons publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2896967 – volume: 579 start-page: 89 year: 2021 ident: 10.1016/j.swevo.2025.102213_b23 article-title: A dual-population algorithm based on alternative evolution and degeneration for solving constrained multi-objective optimization problems publication-title: Inform. Sci. doi: 10.1016/j.ins.2021.07.078 – year: 2014 ident: 10.1016/j.swevo.2025.102213_b43 – volume: 160 year: 2024 ident: 10.1016/j.swevo.2025.102213_b31 article-title: Dual-stage and dual-population cooperative evolutionary algorithm for solving constrained multiobjective problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.111703 – volume: 27 start-page: 1207 issue: 5 year: 2023 ident: 10.1016/j.swevo.2025.102213_b50 article-title: A multistage algorithm for solving multiobjective optimization problems with multiconstraints publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2022.3224600 – volume: 2 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.swevo.2025.102213_b4 article-title: Multi-objective optimization for decision-making of energy and comfort management in building automation and control publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2011.09.001 – volume: 560 start-page: 68 year: 2021 ident: 10.1016/j.swevo.2025.102213_b19 article-title: A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints publication-title: Inform. Sci. doi: 10.1016/j.ins.2021.01.029 – volume: 615 start-page: 557 year: 2022 ident: 10.1016/j.swevo.2025.102213_b22 article-title: A dual-population and multi-stage based constrained multi-objective evolutionary publication-title: Inform. Sci. doi: 10.1016/j.ins.2022.10.046 – volume: 92 year: 2025 ident: 10.1016/j.swevo.2025.102213_b32 article-title: Two-stage bidirectional coevolutionary algorithm for constrained multi-objective optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2024.101784 – volume: 27 start-page: 1313 issue: 5 year: 2023 ident: 10.1016/j.swevo.2025.102213_b51 article-title: A competitive and cooperative swarm optimizer for constrained multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2022.3199775 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 10.1016/j.swevo.2025.102213_b41 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.892759 – volume: 25 start-page: 448 issue: 3 year: 2021 ident: 10.1016/j.swevo.2025.102213_b48 article-title: Paired offspring generation for constrained large-scale multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2020.3047835 – volume: 27 start-page: 201 issue: 2 year: 2023 ident: 10.1016/j.swevo.2025.102213_b8 article-title: A survey on evolutionary constrained multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2022.3155533 – start-page: 291 year: 2021 ident: 10.1016/j.swevo.2025.102213_b47 article-title: The importance of diversity in multi-objective evolutionary algorithms – volume: 24 start-page: 938 issue: 5 year: 2020 ident: 10.1016/j.swevo.2025.102213_b42 article-title: A constrained multiobjective evolutionary algorithm with detect-and-escape strategy publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2020.2981949 – volume: 13 start-page: 514 issue: 3 year: 2009 ident: 10.1016/j.swevo.2025.102213_b12 article-title: Constraint handling in multiobjective evolutionary optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.2009032 – volume: 25 start-page: 739 issue: 4 year: 2021 ident: 10.1016/j.swevo.2025.102213_b20 article-title: A dual-population-based evolutionary algorithm for constrained multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2021.3066301 – volume: 84 year: 2024 ident: 10.1016/j.swevo.2025.102213_b24 article-title: A constrained multi-objective evolutionary algorithm with clustering based weight vector adaptation publication-title: Swarm Evol. Comput. – volume: 28 start-page: 17 issue: 1 year: 2024 ident: 10.1016/j.swevo.2025.102213_b30 article-title: Two-stage multiobjective evolution strategy for constrained multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2022.3202723 – volume: 23 start-page: 12491 year: 2019 ident: 10.1016/j.swevo.2025.102213_b54 article-title: An improved epsilon constraint-handling method in MOEA/D for CMOPs with Large Infeasible Regions publication-title: Soft Comput. doi: 10.1007/s00500-019-03794-x – volume: 52 start-page: 2191 year: 2019 ident: 10.1016/j.swevo.2025.102213_b9 article-title: Metaheuristic research: a comprehensive survey publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-017-9605-z – start-page: 176 year: 2018 ident: 10.1016/j.swevo.2025.102213_b16 article-title: Landscape-aware constraint handling applied to differential evolution – volume: 13 start-page: 128 issue: 1 year: 2013 ident: 10.1016/j.swevo.2025.102213_b14 article-title: A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.07.027 – start-page: 1187 year: 2007 ident: 10.1016/j.swevo.2025.102213_b40 article-title: Self-adaptive simulated binary crossover for real-parameter optimization – volume: 55 start-page: 1822 issue: 10 year: 2022 ident: 10.1016/j.swevo.2025.102213_b2 article-title: Multi-objective inventory optimization problem for a sustainable food supply network under lateral inventory share policy publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2022.09.663 – start-page: 1 year: 2020 ident: 10.1016/j.swevo.2025.102213_b27 article-title: Handling constrained multi-objective optimization with objective space mapping to decision space based on extreme learning machine – volume: 18 start-page: 577 issue: 4 year: 2014 ident: 10.1016/j.swevo.2025.102213_b55 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281535 – volume: 13 start-page: 284 issue: 2 year: 2009 ident: 10.1016/j.swevo.2025.102213_b39 article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.925798 – volume: 12 start-page: 73 issue: 4 year: 2017 ident: 10.1016/j.swevo.2025.102213_b58 article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum] publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2017.2742868 – volume: 28 start-page: 339 issue: 3 year: 2020 ident: 10.1016/j.swevo.2025.102213_b53 article-title: Difficulty adjustable and scalable constrained multiobjective test problem toolkit publication-title: Evol. Comput. doi: 10.1162/evco_a_00259 – volume: 10 start-page: 1951 issue: 10 year: 2023 ident: 10.1016/j.swevo.2025.102213_b25 article-title: Evolutionary multitasking with global and local auxiliary tasks for constrained multi-objective optimization publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2023.123336 – ident: 10.1016/j.swevo.2025.102213_b36 doi: 10.1145/3319619.3326909 – ident: 10.1016/j.swevo.2025.102213_b52 – volume: 67 issue: 2 year: 2024 ident: 10.1016/j.swevo.2025.102213_b6 article-title: Reducing idleness in financial cloud services via multi-objective evolutionary reinforcement learning based load balancer publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-023-3895-3 – start-page: 654 year: 2022 ident: 10.1016/j.swevo.2025.102213_b3 article-title: Multi objective optimal method for new energy power grid considering maximum demand response – volume: 70 year: 2022 ident: 10.1016/j.swevo.2025.102213_b21 article-title: A tri-population based co-evolutionary framework for constrained multi-objective optimization problems publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2022.101055 – volume: 14 issue: 1 year: 2022 ident: 10.1016/j.swevo.2025.102213_b35 article-title: An ensemble framework of evolutionary algorithm for constrained multi-objective optimization publication-title: Symmetry doi: 10.3390/sym14010116 – volume: 65 year: 2025 ident: 10.1016/j.swevo.2025.102213_b57 article-title: Collaborative path planning of multi-unmanned surface vehicles via multi-stage constrained multi-objective optimization publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2025.103115 – volume: 130 year: 2024 ident: 10.1016/j.swevo.2025.102213_b7 article-title: Optimal placement of fixed hub height wind turbines in a wind farm using twin archive guided decomposition based multi-objective evolutionary algorithm publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.107735 – volume: 23 start-page: 303 issue: 2 year: 2019 ident: 10.1016/j.swevo.2025.102213_b11 article-title: Two-archive evolutionary algorithm for constrained multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2018.2855411 – volume: 195 year: 2022 ident: 10.1016/j.swevo.2025.102213_b28 article-title: A two-stage evolutionary algorithm based on three indicators for constrained multi-objective optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116499 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.swevo.2025.102213_b10 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – year: 2018 ident: 10.1016/j.swevo.2025.102213_b37 – volume: 103 year: 2001 ident: 10.1016/j.swevo.2025.102213_b44 article-title: SPEA2: Improving the strength pareto evolutionary algorithm publication-title: ETH Zur.,TIK-Rep – volume: 25 start-page: 102 issue: 1 year: 2021 ident: 10.1016/j.swevo.2025.102213_b46 article-title: A coevolutionary framework for constrained multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2020.3004012 |
| SSID | ssj0000602559 |
| Score | 2.3746579 |
| Snippet | In constrained multi-objective evolutionary algorithms (CMOEAs), selecting appropriate constraint-handling techniques (CHTs) is challenging without prior... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 102213 |
| SubjectTerms | Constrained multi-objective optimization problem Constraint handling technique Ensemble framework Evolutionary algorithm Multi-armed bandit |
| Title | A two-stage ensemble evolutionary algorithm for constrained multi-objective optimization |
| URI | https://dx.doi.org/10.1016/j.swevo.2025.102213 |
| Volume | 99 |
| WOSCitedRecordID | wos001615508600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 2210-6502 databaseCode: AIEXJ dateStart: 20110301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000602559 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdg48AFGAMxxpAP3DpPaZwvHys0NCYxIdpDd4psx9lS0WRKs3Z__p4_kqUtQgNph0SRpdjJez-9_J7zPhD64sEnd-jzjKhQBSSQiSAiEx4JRJIwyXQ9g9w0m4gvLpLplP10GdcL004gLsvk7o7dPKmqYQyUrVNn_0Hd3aQwANegdDiD2uH8KMWPBs2qIkD6rtQAfFQ117lRaunW1EFy_PdVVRfN9dzEGErNEHWjCKCeJryQVGJmzeCgAoMyd5mafRo7XvHa9tZYm1iaFhFr__Z_VBmHQZvPPq4LfZTFki_44Bef3Xbwsfuw5wW_5tXDjyozeMlLB2G3O-GHG5Ee22kz2rL54GcSoIZrZtj2Sdqy6HZzYXayWMELnegldLUJ3yawbpTKHuuJ9bzA6zwae95ztOvHIQNrtzv6fjo973bfvMj4UrrzYPssbUkqE_y3tdqfaUuPikzeoFfOh8Ajq_s99EyVb9Hrtj8HduZ6H01HuIMCbqGA-xrDHRQwQAH3oIA3oID7UHiHJt9OJ1_PiOukQSS8ZgNfNE4lDyJOoxz4oo6VlyyUYZznNBYRo1L5QOwF5V6SU-lJ7dmKMPe5imiW0fdop6xK9QFhGikGjHmopMgCpjjLA577iaTZMAtCRg_QcSun9MbWS0nbQMJZasSaarGmVqwHKGplmTrKZ6lcCvr_240f__fGQ_TyAaef0E5T36oj9EIum2JRf3Y4uQcU1YI6 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+two-stage+ensemble+evolutionary+algorithm+for+constrained+multi-objective+optimization&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Modampuri%2C+Sri+Srinivasa+Raju&rft.au=Fan%2C+Jiahao&rft.au=Sun%2C+Yanan&rft.date=2025-12-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=99&rft_id=info:doi/10.1016%2Fj.swevo.2025.102213&rft.externalDocID=S2210650225003700 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon |