Estimation of IMU orientation using Nesterov’s accelerated gradient improved by fuzzy control rule

•The iterative approach adopts Nesterov’s accelerated gradient speeds up convergence.•The use of fuzzy control rule improves the accuracy of estimating IMU orientation.•This algorithm is able to handle the disturbance of magnetic field and non-gravity acceleration. [Display omitted] The application...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors and actuators. A. Physical. Ročník 332; s. 113062
Hlavní autoři: Tang, Liang, Fan, Yanfeng, Ye, Fangping, Lu, Wenzheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Lausanne Elsevier B.V 01.12.2021
Elsevier BV
Témata:
ISSN:0924-4247, 1873-3069
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •The iterative approach adopts Nesterov’s accelerated gradient speeds up convergence.•The use of fuzzy control rule improves the accuracy of estimating IMU orientation.•This algorithm is able to handle the disturbance of magnetic field and non-gravity acceleration. [Display omitted] The application fields put forward higher requirements for the core technology of inertial measurement unit, namely orientation estimation. Generally, estimation of inertial measurement unit orientation is carried out by the fusion of different sensors including geomagnetic sensor and motion sensor, but in some specific environments, the field of magnetic is chaotic and inertial measurement unit itself has the interference of acceleration, orientation estimation algorithm for inertial measurement unit is required to have higher accuracy and stronger robustness. In this work a new approach is presented for estimation of inertial measurement unit orientation. The approach is based on inertial measurement unit containing gyroscope, accelerometer and magnetometer, and a fusion algorithm using Nesterov’s accelerated gradient improved by fuzzy control rule is conducted to estimate inertial measurement unit orientation. Magnetometer is used for measuring the yaw angle, whereas gyroscope, accelerometer provide information for roll and pitch angles. The experimental platform is constructed using motion sensor MPU6050 and magnetometer IST8310, the accuracy and robustness of this approach using Nesterov’s accelerated gradient improved by fuzzy control rule are vertified by four groups of comparative experiments. Experimental results indicate that compared with complementary filter and gradient descent, this approach shows an improvement in estimation of inertial measurement unit orientation.
AbstractList The application fields put forward higher requirements for the core technology of inertial measurement unit, namely orientation estimation. Generally, estimation of inertial measurement unit orientation is carried out by the fusion of different sensors including geomagnetic sensor and motion sensor, but in some specific environments, the field of magnetic is chaotic and inertial measurement unit itself has the interference of acceleration, orientation estimation algorithm for inertial measurement unit is required to have higher accuracy and stronger robustness. In this work a new approach is presented for estimation of inertial measurement unit orientation. The approach is based on inertial measurement unit containing gyroscope, accelerometer and magnetometer, and a fusion algorithm using Nesterov's accelerated gradient improved by fuzzy control rule is conducted to estimate inertial measurement unit orientation. Magnetometer is used for measuring the yaw angle, whereas gyroscope, accelerometer provide information for roll and pitch angles. The experimental platform is constructed using motion sensor MPU6050 and magnetometer IST8310, the accuracy and robustness of this approach using Nesterov's accelerated gradient improved by fuzzy control rule are vertified by four groups of comparative experiments. Experimental results indicate that compared with complementary filter and gradient descent, this approach shows an improvement in estimation of inertial measurement unit orientation.
•The iterative approach adopts Nesterov’s accelerated gradient speeds up convergence.•The use of fuzzy control rule improves the accuracy of estimating IMU orientation.•This algorithm is able to handle the disturbance of magnetic field and non-gravity acceleration. [Display omitted] The application fields put forward higher requirements for the core technology of inertial measurement unit, namely orientation estimation. Generally, estimation of inertial measurement unit orientation is carried out by the fusion of different sensors including geomagnetic sensor and motion sensor, but in some specific environments, the field of magnetic is chaotic and inertial measurement unit itself has the interference of acceleration, orientation estimation algorithm for inertial measurement unit is required to have higher accuracy and stronger robustness. In this work a new approach is presented for estimation of inertial measurement unit orientation. The approach is based on inertial measurement unit containing gyroscope, accelerometer and magnetometer, and a fusion algorithm using Nesterov’s accelerated gradient improved by fuzzy control rule is conducted to estimate inertial measurement unit orientation. Magnetometer is used for measuring the yaw angle, whereas gyroscope, accelerometer provide information for roll and pitch angles. The experimental platform is constructed using motion sensor MPU6050 and magnetometer IST8310, the accuracy and robustness of this approach using Nesterov’s accelerated gradient improved by fuzzy control rule are vertified by four groups of comparative experiments. Experimental results indicate that compared with complementary filter and gradient descent, this approach shows an improvement in estimation of inertial measurement unit orientation.
ArticleNumber 113062
Author Ye, Fangping
Lu, Wenzheng
Fan, Yanfeng
Tang, Liang
Author_xml – sequence: 1
  givenname: Liang
  surname: Tang
  fullname: Tang, Liang
– sequence: 2
  givenname: Yanfeng
  orcidid: 0000-0001-9312-5838
  surname: Fan
  fullname: Fan, Yanfeng
– sequence: 3
  givenname: Fangping
  surname: Ye
  fullname: Ye, Fangping
  email: yefangping@hbut.edu.cn
– sequence: 4
  givenname: Wenzheng
  surname: Lu
  fullname: Lu, Wenzheng
BookMark eNp9kM9OAjEQhxuDiYA-gLcmnhf7B7a78WQIKgnqRc5NaWdJybLFtksCJ1_D1_NJLFlPHjh1Mv197cw3QL3GNYDQLSUjSmh-vxmFRo0YYXREKSc5u0B9WgiepbrsoT4p2Tgbs7G4QoMQNoQQzoXoIzML0W5VtK7BrsLz1yV23kITu1YbbLPGbxAieLf_-foOWGkNNXgVweC1V-YUxna7S_epszrgqj0eD1i7JnpXY9_WcI0uK1UHuPk7h2j5NPuYvmSL9-f59HGRaTaZxKykXJUFFFQwU2pmSEEAGDclrGheVJWAgpF8rCZEM1FpxkyK8VxwAComVPMhuuveTcN8tmlouXGtb9KXkuWME14yUaQU7VLauxA8VHLnkwJ_kJTIk0y5kUmmPMmUnczEiH-Mtp2i6JWtz5IPHQlp8b0FL4NOyjQY60FHaZw9Q_8CGN6SeQ
CitedBy_id crossref_primary_10_1016_j_measurement_2025_117445
crossref_primary_10_1016_j_sna_2023_114726
crossref_primary_10_1109_ACCESS_2025_3592026
Cites_doi 10.5302/J.ICROS.2017.17.0081
10.1109/TIM.2017.2668558
10.1177/0954410017723359
10.1109/TSP.2020.2988614
10.1049/iet-rsn.2019.0359
10.1134/S1064230712060147
10.1115/1.4007122
10.1007/s12555-016-0498-4
10.1016/j.sigpro.2016.10.012
10.1109/JSEN.2020.3010367
10.1109/JMEMS.2016.2564499
10.1016/j.ymssp.2019.04.064
10.1007/s11018-015-0710-6
10.1109/JSEN.2016.2589660
10.1109/TMECH.2015.2509783
10.1016/j.ast.2012.11.004
10.1016/j.measurement.2018.05.019
10.3103/S0025654419020031
10.1109/TAC.2008.923738
10.1016/j.compag.2016.12.021
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Dec 1, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Dec 1, 2021
DBID AAYXX
CITATION
7TB
7U5
8FD
FR3
L7M
DOI 10.1016/j.sna.2021.113062
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Solid State and Superconductivity Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3069
ExternalDocumentID 10_1016_j_sna_2021_113062
S0924424721005276
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSK
SSQ
SST
SSZ
T5K
TN5
YK3
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMU
HVGLF
HZ~
R2-
SCB
SCH
SET
SEW
WUQ
~HD
7TB
7U5
8FD
FR3
L7M
ID FETCH-LOGICAL-c255t-913a98e8172d9c2d080ee23d9eb168ff7e82064a50c27fc22dd9c3673ee1751c3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000700613100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-4247
IngestDate Sun Nov 09 06:31:41 EST 2025
Sat Nov 29 07:14:00 EST 2025
Tue Nov 18 21:43:21 EST 2025
Fri Feb 23 02:46:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Inertial measurement unit
Nesterov’s accelerated gradient
Motion acceleration suppression
MEMS sensor
Magnetic interference suppression
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c255t-913a98e8172d9c2d080ee23d9eb168ff7e82064a50c27fc22dd9c3673ee1751c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9312-5838
PQID 2623039278
PQPubID 2045401
ParticipantIDs proquest_journals_2623039278
crossref_primary_10_1016_j_sna_2021_113062
crossref_citationtrail_10_1016_j_sna_2021_113062
elsevier_sciencedirect_doi_10_1016_j_sna_2021_113062
PublicationCentury 2000
PublicationDate 2021-12-01
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Sensors and actuators. A. Physical.
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Khan, Tahir, Richardson (bib23) 2016; 52
Mahony, Hamel, Pflimlin (bib9) 2008; 53
Zhuravlev, Klimov, Plotnikov (bib17) 2019; 54
Peng, Zhang, Li (bib24) 2014; 34
Lee, Jeon (bib25) 2017; 32
Zhang, Xu, Wang (bib15) 2018; 232
Wang, Qu, Zhang, Zhu, Fang (bib5) 2017; 66
Wu, Zhou, Chen, Fourati, Li (bib8) 2016; 16
Antsev, Averkiev, Petukhov (bib6) 2015; 58
Veremeenko, Savel’ev (bib2) 2013; 52
Zhang, Liao (bib13) 2017; 134
Lee, Vukovich, Lee (bib14) 2017; 15
Li, De Wagter, de Visser, Chu, de Croon (bib11) 2019; 11
Wilson, Eberle, Hayashi, Madgwick, McGregor, Jing, Vaidyanathan (bib19) 2019; 130
Xu, Dogancay, Hmam (bib20) 2017; 133
Lu, Wang, Liu (bib4) 2018; 125
Wang, Cui, Guo (bib16) 2013; 28
Su, Boyd, Candes (bib22) 2014; 3
Guo, Liu, Wang (bib10) 2017; 34
Yang, Sun (bib7) 2018; 173
Hatamleh, Ma, Flores-Abad, Xie (bib1) 2013; 135
Makni, Fourati, Kibangou (bib12) 2016; 21
Florea, Vorobyov (bib21) 2020; 68
Yang, Xing, Liu, Qian, Qian, Xue, Zhu (bib3) 2020; 50
Rahgoshay, Karimaghaie (bib18) 2020; 14
Yang (10.1016/j.sna.2021.113062_bib7) 2018; 173
Makni (10.1016/j.sna.2021.113062_bib12) 2016; 21
Peng (10.1016/j.sna.2021.113062_bib24) 2014; 34
Su (10.1016/j.sna.2021.113062_bib22) 2014; 3
Wang (10.1016/j.sna.2021.113062_bib16) 2013; 28
Zhuravlev (10.1016/j.sna.2021.113062_bib17) 2019; 54
Lu (10.1016/j.sna.2021.113062_bib4) 2018; 125
Xu (10.1016/j.sna.2021.113062_bib20) 2017; 133
Rahgoshay (10.1016/j.sna.2021.113062_bib18) 2020; 14
Mahony (10.1016/j.sna.2021.113062_bib9) 2008; 53
Yang (10.1016/j.sna.2021.113062_bib3) 2020; 50
Wilson (10.1016/j.sna.2021.113062_bib19) 2019; 130
Veremeenko (10.1016/j.sna.2021.113062_bib2) 2013; 52
Li (10.1016/j.sna.2021.113062_bib11) 2019; 11
Wu (10.1016/j.sna.2021.113062_bib8) 2016; 16
Hatamleh (10.1016/j.sna.2021.113062_bib1) 2013; 135
Lee (10.1016/j.sna.2021.113062_bib25) 2017; 32
Florea (10.1016/j.sna.2021.113062_bib21) 2020; 68
Antsev (10.1016/j.sna.2021.113062_bib6) 2015; 58
Wang (10.1016/j.sna.2021.113062_bib5) 2017; 66
Zhang (10.1016/j.sna.2021.113062_bib15) 2018; 232
Guo (10.1016/j.sna.2021.113062_bib10) 2017; 34
Zhang (10.1016/j.sna.2021.113062_bib13) 2017; 134
Lee (10.1016/j.sna.2021.113062_bib14) 2017; 15
Khan (10.1016/j.sna.2021.113062_bib23) 2016; 52
References_xml – volume: 52
  start-page: 106
  year: 2013
  end-page: 116
  ident: bib2
  article-title: In-flight alignment of a strapdown inertial navigation system of an unmanned aerial vehicle
  publication-title: J. Comput. Syst. Sci. Int.
– volume: 232
  start-page: 3024
  year: 2018
  end-page: 3031
  ident: bib15
  article-title: Spacecraft attitude estimation based on matrix Kalman filter and recursive cubature Kalman filter
  publication-title: Proc. Inst. Mech. Eng. Part G – J. Aerosp. Eng.
– volume: 52
  start-page: 761
  year: 2016
  end-page: 769
  ident: bib23
  article-title: Use of self-calibration data for multifunctional MEMS sensor prognostics
  publication-title: J. Microelectromech. Syst.
– volume: 125
  start-page: 471
  year: 2018
  end-page: 475
  ident: bib4
  article-title: An integrated accelerometer for dynamic motion systems
  publication-title: Measurement
– volume: 14
  start-page: 407
  year: 2020
  end-page: 414
  ident: bib18
  article-title: Robust in-field estimation and calibration approach for str-apdown inertial navigation systems accelerometers bias acting on the vertical channel
  publication-title: IET Radar Sonar Navig.
– volume: 134
  start-page: 19
  year: 2017
  end-page: 26
  ident: bib13
  article-title: Attitude measure system based on extended Kalman filter for multi-rotors
  publication-title: Comput. Electron. Agric.
– volume: 32
  start-page: 1036
  year: 2017
  end-page: 1042
  ident: bib25
  article-title: Ellipsoid-fitting magnetometer calibration method considering misalign-ment and soft-iron distortion
  publication-title: J. Inst. Control Robot. Syst.
– volume: 173
  start-page: 279
  year: 2018
  end-page: 291
  ident: bib7
  article-title: A fuzzy complementary Kalman filter based on visual and IMU data for UAV landing
  publication-title: Meas. Tech.
– volume: 66
  start-page: 1743
  year: 2017
  end-page: 1750
  ident: bib5
  article-title: A fast calibration method for magnetometer array and the application of ferromagnetic target localization
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 68
  start-page: 3033
  year: 2020
  end-page: 3048
  ident: bib21
  article-title: A generalized accelerated composite gradient method: uniting Ne-sterov’s fast gradient method and FISTA
  publication-title: IEEE Trans. Signal Process.
– volume: 21
  start-page: 1366
  year: 2016
  end-page: 1375
  ident: bib12
  article-title: Energy-aware adaptive attitude estimation under external acceleration for pedestrian navigation
  publication-title: IEEE/ASME Trans. Mech.
– volume: 28
  start-page: 242
  year: 2013
  end-page: 248
  ident: bib16
  article-title: INS/VisNav/GPS relative navigation system for UAV
  publication-title: Aerosp. Sci. Technol.
– volume: 133
  start-page: 64
  year: 2017
  end-page: 78
  ident: bib20
  article-title: Distributed pseudolinear estimation and UAV path optimization for 3D AOA target tracking
  publication-title: Signal Process.
– volume: 53
  start-page: 1203
  year: 2008
  end-page: 1218
  ident: bib9
  article-title: Nonlinear complementary filters on the special orthogonal group
  publication-title: IEEE Trans. Autom. Control
– volume: 15
  start-page: 2161
  year: 2017
  end-page: 2173
  ident: bib14
  article-title: Robust unscented kalman filter for nanosat attitude Estimation
  publication-title: Int. J. Control Autom. Syst.
– volume: 135
  year: 2013
  ident: bib1
  article-title: Development of a special inertial measurement unit for UAV applications
  publication-title: J. Dyn. Syst. Meas. Control – Trans. Asme
– volume: 3
  start-page: 2510
  year: 2014
  end-page: 2518
  ident: bib22
  article-title: A differential equation for modeling Nesterov’s accelerated gra-dient method: theory and insights
  publication-title: J. Mach. Learn. Res.
– volume: 16
  start-page: 6997
  year: 2016
  end-page: 7007
  ident: bib8
  article-title: Fast complementary filter for attitude estimation using low-cost MARG sensors
  publication-title: IEEE Sens. J.
– volume: 34
  start-page: 544
  year: 2014
  end-page: 554
  ident: bib24
  article-title: Field calibration of three-axis MEMS digital acceleration
  publication-title: J. Vib.
– volume: 34
  start-page: 680
  year: 2017
  end-page: 687
  ident: bib10
  article-title: Gradient descent algorithm for small UAV parameter estimation system
  publication-title: Trans. Nanjing Univ. Aeronaut. Astronaut.
– volume: 50
  start-page: 14950
  year: 2020
  end-page: 14957
  ident: bib3
  article-title: Robust navigation method for wearable human-machine interaction system based on deep learning
  publication-title: IEEE Sens. J.
– volume: 58
  start-page: 332
  year: 2015
  end-page: 335
  ident: bib6
  article-title: A nonlinear compensator of the magnetic interference of an aviation magnetometer system
  publication-title: Meas. Tech.
– volume: 11
  year: 2019
  ident: bib11
  article-title: In-flight model parameter and state estimation using gradient descent for high-speed flight
  publication-title: Int. J. Micro Air Veh.
– volume: 130(
  start-page: 183
  year: 2019
  end-page: 200
  ident: bib19
  article-title: Formulation of a new gradient descent MARG orientation algorithm: Case study on robot teleoperation
  publication-title: Mech. Syst. Signal Process.
– volume: 54
  start-page: 400
  year: 2019
  end-page: 411
  ident: bib17
  article-title: Usage of computer mechanics in the theory of inertial navigation systems
  publication-title: J. Mech. Phys. Solids
– volume: 32
  start-page: 1036
  year: 2017
  ident: 10.1016/j.sna.2021.113062_bib25
  article-title: Ellipsoid-fitting magnetometer calibration method considering misalign-ment and soft-iron distortion
  publication-title: J. Inst. Control Robot. Syst.
  doi: 10.5302/J.ICROS.2017.17.0081
– volume: 66
  start-page: 1743
  year: 2017
  ident: 10.1016/j.sna.2021.113062_bib5
  article-title: A fast calibration method for magnetometer array and the application of ferromagnetic target localization
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2017.2668558
– volume: 232
  start-page: 3024
  year: 2018
  ident: 10.1016/j.sna.2021.113062_bib15
  article-title: Spacecraft attitude estimation based on matrix Kalman filter and recursive cubature Kalman filter
  publication-title: Proc. Inst. Mech. Eng. Part G – J. Aerosp. Eng.
  doi: 10.1177/0954410017723359
– volume: 34
  start-page: 544
  year: 2014
  ident: 10.1016/j.sna.2021.113062_bib24
  article-title: Field calibration of three-axis MEMS digital acceleration
  publication-title: J. Vib.
– volume: 68
  start-page: 3033
  year: 2020
  ident: 10.1016/j.sna.2021.113062_bib21
  article-title: A generalized accelerated composite gradient method: uniting Ne-sterov’s fast gradient method and FISTA
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2020.2988614
– volume: 14
  start-page: 407
  year: 2020
  ident: 10.1016/j.sna.2021.113062_bib18
  article-title: Robust in-field estimation and calibration approach for str-apdown inertial navigation systems accelerometers bias acting on the vertical channel
  publication-title: IET Radar Sonar Navig.
  doi: 10.1049/iet-rsn.2019.0359
– volume: 52
  start-page: 106
  year: 2013
  ident: 10.1016/j.sna.2021.113062_bib2
  article-title: In-flight alignment of a strapdown inertial navigation system of an unmanned aerial vehicle
  publication-title: J. Comput. Syst. Sci. Int.
  doi: 10.1134/S1064230712060147
– volume: 135
  year: 2013
  ident: 10.1016/j.sna.2021.113062_bib1
  article-title: Development of a special inertial measurement unit for UAV applications
  publication-title: J. Dyn. Syst. Meas. Control – Trans. Asme
  doi: 10.1115/1.4007122
– volume: 15
  start-page: 2161
  year: 2017
  ident: 10.1016/j.sna.2021.113062_bib14
  article-title: Robust unscented kalman filter for nanosat attitude Estimation
  publication-title: Int. J. Control Autom. Syst.
  doi: 10.1007/s12555-016-0498-4
– volume: 133
  start-page: 64
  year: 2017
  ident: 10.1016/j.sna.2021.113062_bib20
  article-title: Distributed pseudolinear estimation and UAV path optimization for 3D AOA target tracking
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.10.012
– volume: 50
  start-page: 14950
  year: 2020
  ident: 10.1016/j.sna.2021.113062_bib3
  article-title: Robust navigation method for wearable human-machine interaction system based on deep learning
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3010367
– volume: 52
  start-page: 761
  year: 2016
  ident: 10.1016/j.sna.2021.113062_bib23
  article-title: Use of self-calibration data for multifunctional MEMS sensor prognostics
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2016.2564499
– volume: 130(
  start-page: 183
  year: 2019
  ident: 10.1016/j.sna.2021.113062_bib19
  article-title: Formulation of a new gradient descent MARG orientation algorithm: Case study on robot teleoperation
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.04.064
– volume: 58
  start-page: 332
  year: 2015
  ident: 10.1016/j.sna.2021.113062_bib6
  article-title: A nonlinear compensator of the magnetic interference of an aviation magnetometer system
  publication-title: Meas. Tech.
  doi: 10.1007/s11018-015-0710-6
– volume: 173
  start-page: 279
  year: 2018
  ident: 10.1016/j.sna.2021.113062_bib7
  article-title: A fuzzy complementary Kalman filter based on visual and IMU data for UAV landing
  publication-title: Meas. Tech.
– volume: 11
  year: 2019
  ident: 10.1016/j.sna.2021.113062_bib11
  article-title: In-flight model parameter and state estimation using gradient descent for high-speed flight
  publication-title: Int. J. Micro Air Veh.
– volume: 3
  start-page: 2510
  year: 2014
  ident: 10.1016/j.sna.2021.113062_bib22
  article-title: A differential equation for modeling Nesterov’s accelerated gra-dient method: theory and insights
  publication-title: J. Mach. Learn. Res.
– volume: 16
  start-page: 6997
  year: 2016
  ident: 10.1016/j.sna.2021.113062_bib8
  article-title: Fast complementary filter for attitude estimation using low-cost MARG sensors
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2016.2589660
– volume: 34
  start-page: 680
  year: 2017
  ident: 10.1016/j.sna.2021.113062_bib10
  article-title: Gradient descent algorithm for small UAV parameter estimation system
  publication-title: Trans. Nanjing Univ. Aeronaut. Astronaut.
– volume: 21
  start-page: 1366
  year: 2016
  ident: 10.1016/j.sna.2021.113062_bib12
  article-title: Energy-aware adaptive attitude estimation under external acceleration for pedestrian navigation
  publication-title: IEEE/ASME Trans. Mech.
  doi: 10.1109/TMECH.2015.2509783
– volume: 28
  start-page: 242
  year: 2013
  ident: 10.1016/j.sna.2021.113062_bib16
  article-title: INS/VisNav/GPS relative navigation system for UAV
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2012.11.004
– volume: 125
  start-page: 471
  year: 2018
  ident: 10.1016/j.sna.2021.113062_bib4
  article-title: An integrated accelerometer for dynamic motion systems
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.05.019
– volume: 54
  start-page: 400
  year: 2019
  ident: 10.1016/j.sna.2021.113062_bib17
  article-title: Usage of computer mechanics in the theory of inertial navigation systems
  publication-title: J. Mech. Phys. Solids
  doi: 10.3103/S0025654419020031
– volume: 53
  start-page: 1203
  year: 2008
  ident: 10.1016/j.sna.2021.113062_bib9
  article-title: Nonlinear complementary filters on the special orthogonal group
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2008.923738
– volume: 134
  start-page: 19
  year: 2017
  ident: 10.1016/j.sna.2021.113062_bib13
  article-title: Attitude measure system based on extended Kalman filter for multi-rotors
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.12.021
SSID ssj0003377
Score 2.3729215
Snippet •The iterative approach adopts Nesterov’s accelerated gradient speeds up convergence.•The use of fuzzy control rule improves the accuracy of estimating IMU...
The application fields put forward higher requirements for the core technology of inertial measurement unit, namely orientation estimation. Generally,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113062
SubjectTerms Accelerometers
Algorithms
Estimating techniques
Fuzzy control
Fuzzy logic
Gyroscopes
Inertial measurement unit
Inertial platforms
Kalman filters
Magnetic interference suppression
Magnetometers
Measurement
MEMS sensor
Motion acceleration suppression
Motion sensors
Nesterov’s accelerated gradient
Orientation
Pitch (inclination)
Robustness (mathematics)
Rolling motion
Sensors
Yaw
Title Estimation of IMU orientation using Nesterov’s accelerated gradient improved by fuzzy control rule
URI https://dx.doi.org/10.1016/j.sna.2021.113062
https://www.proquest.com/docview/2623039278
Volume 332
WOSCitedRecordID wos000700613100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3069
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003377
  issn: 0924-4247
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jj9MwFLZKhwMcEKsYGJAPCCSqVK2dNM6xQh0xqBQkWtQ5WY7jDB2VtKSLZvo_-L88L1mmggoOXKLqxWkrv89vy1sQeiWFCpNuHHgyTKXnSyG9yCexRxKwPkSQxGFs-swOw9GITafR50bjZ1ELs52HWcaurqLlf2U10IDZunT2H9hdfikQ4DMwHa7Adrj-FeMHcGi_l4bg2cdJa5HPXIVR1tqY2MDI9EdYbE20XkgJuke3jEhaF7lJAVvr6km4b83TdLPbXZdJ7flmfiN96As4wnpij-n6qstR9PyedqvfNnN1NAbaVXjASpYhYPKiRI4NwZ6LLFUV9dymHcO65ayiDjcmJ1Blu2_FWhexIN297I-qlOZrPRxJfM8ntvtmW1lhzELqgUsT1aU1deFQK2-7v9UCNiBx2V5lurMU6erBNR0n9G903B594qeT4ZCPB9Px6-UPTw8j0y_t3WSWW-iIhEHEmuiofzaYfihVPKVmpGf5p4vX5SZxcO9X_2Tw7Kl-Y8-M76N7zhHBfQugB6ihsofobq095SMUV1DCixQDlHANSthACRdQerPCNSDhAki4ABKOr7EBEnZAwhpIj9HkdDB-995zMzk8Cc7nWidqiIgpBnZvEkmSgMOhFKFJBDq_x9I0VHoggC-CjiRw-glJYBnthVQpMFS7kj5BzWyRqacIxwnzRY_2FBPgNtBAiEDGfsoE1VRJj1Gn2DguXcN6PTdlzovMxEsOe831XnO718fobfnI0nZrObTYL7jBnblpzUgOODr02EnBOe6O_YoT8CI64GqE7Nnh28_RnepInKDmOt-oF-i23K5nq_ylw9kvVeOqaA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+IMU+orientation+using+Nesterov%27s+accelerated+gradient+improved+by+fuzzy+control+rule&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Tang%2C+Liang&rft.au=Fan%2C+Yanfeng&rft.au=Ye%2C+Fangping&rft.au=Lu%2C+Wenzheng&rft.date=2021-12-01&rft.pub=Elsevier+BV&rft.issn=0924-4247&rft.eissn=1873-3069&rft.volume=332&rft.spage=1&rft_id=info:doi/10.1016%2Fj.sna.2021.113062&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon