Anti-diagonalization theory and algorithm of matrices—from skew-symmetric matrices to arbitrary matrices

In this paper, a novel algorithm for anti-diagonalization of skew symmetric matrices via using orthogonal similarity transformations has been introduced. The theory and algorithm about the anti-triangular factorization of skew-symmetric matrices are proved. In the case of skew-symmetric matrices, we...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics and computers in simulation Ročník 209; s. 44 - 54
Hlavní autoři: Wu, Yunyun, Li, Yayun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.07.2023
Témata:
ISSN:0378-4754
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, a novel algorithm for anti-diagonalization of skew symmetric matrices via using orthogonal similarity transformations has been introduced. The theory and algorithm about the anti-triangular factorization of skew-symmetric matrices are proved. In the case of skew-symmetric matrices, we prove that the anti-diagonal form is always obtained, resulting in developing a new factorization scheme. Moreover, a theoretical algorithm is given based on the theory of double eigenvector system, which provides all the information for the factorization of arbitrary matrices. Finally, the proposed algorithm is verified effective and efficient through the numerical experiments of anti-diagonalization of matrices over a general number field.
ISSN:0378-4754
DOI:10.1016/j.matcom.2023.01.045