On strong uniform distribution III

Let a = ( a i i=1 ∞ be a strictly increasing sequence of natural numbers and let A be a space of Lebesgue measurable functions defined on [0,1). Let < y> denote the fractional part of the real number y. We say that a is an A ∗ sequence if for each f ϵ A lim N→∞ 1 N ∑ i=1 N f(<a ix>)= ∫ 0...

Full description

Saved in:
Bibliographic Details
Published in:Indagationes mathematicae Vol. 14; no. 2; pp. 233 - 240
Main Author: Nair, R.
Format: Journal Article
Language:English
Published: Elsevier B.V 23.06.2003
ISSN:0019-3577, 1872-6100
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Be the first to leave a comment!
You must be logged in first