On strong uniform distribution III
Let a = ( a i i=1 ∞ be a strictly increasing sequence of natural numbers and let A be a space of Lebesgue measurable functions defined on [0,1). Let < y> denote the fractional part of the real number y. We say that a is an A ∗ sequence if for each f ϵ A lim N→∞ 1 N ∑ i=1 N f(<a ix>)= ∫ 0...
Gespeichert in:
| Veröffentlicht in: | Indagationes mathematicae Jg. 14; H. 2; S. 233 - 240 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
23.06.2003
|
| ISSN: | 0019-3577, 1872-6100 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Let
a = (
a
i
i=1
∞ be a strictly increasing sequence of natural numbers and let
A
be a space of Lebesgue measurable functions defined on [0,1). Let <
y> denote the fractional part of the real number
y. We say that
a is an
A
∗ sequence if for each f ϵ
A
lim
N→∞
1
N
∑
i=1
N
f(<a
ix>)=
∫
0
1
f(t)dt,
almost everywhere with respect to Lebesgue measure. Let
a
i=(a
1,i)
∞
i=1, …,a
k=(a
k,i)
∞
i=1,
denote finitely many (
L
1)
∗ sequences, and for a sequence
a, let
G
a(u)=|{i:a
i ≤ u}|,
where for a finite set
A we have used |
A| to denote its cardinality. Also let
a
1 ∘ … ∘
a
k
denote the set
{b
1…b
k : b
1ϵa
k},
counted with multiplicity and ordered by absolute value. Suppose there exists
K > 0 such that for all
u ≥ 1
|G
a
1
(u)|…|G
a
k
(u)|≤|G
a
1
compfn;…compfn;
a
k
(u)|.
Then if log
+|
x| = log max(1,|
x|) we show that
a
1 ∘ … ∘
a
k
is an (
L(
log
+
L)
k−1
)
∗ sequence. |
|---|---|
| AbstractList | Let
a = (
a
i
i=1
∞ be a strictly increasing sequence of natural numbers and let
A
be a space of Lebesgue measurable functions defined on [0,1). Let <
y> denote the fractional part of the real number
y. We say that
a is an
A
∗ sequence if for each f ϵ
A
lim
N→∞
1
N
∑
i=1
N
f(<a
ix>)=
∫
0
1
f(t)dt,
almost everywhere with respect to Lebesgue measure. Let
a
i=(a
1,i)
∞
i=1, …,a
k=(a
k,i)
∞
i=1,
denote finitely many (
L
1)
∗ sequences, and for a sequence
a, let
G
a(u)=|{i:a
i ≤ u}|,
where for a finite set
A we have used |
A| to denote its cardinality. Also let
a
1 ∘ … ∘
a
k
denote the set
{b
1…b
k : b
1ϵa
k},
counted with multiplicity and ordered by absolute value. Suppose there exists
K > 0 such that for all
u ≥ 1
|G
a
1
(u)|…|G
a
k
(u)|≤|G
a
1
compfn;…compfn;
a
k
(u)|.
Then if log
+|
x| = log max(1,|
x|) we show that
a
1 ∘ … ∘
a
k
is an (
L(
log
+
L)
k−1
)
∗ sequence. |
| Author | Nair, R. |
| Author_xml | – sequence: 1 givenname: R. surname: Nair fullname: Nair, R. organization: Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, U.K |
| BookMark | eNqFj09LAzEQxYMo2FY_grB40sPqTNLsmJNI8c9CoQf1HHazE4nYrCRbwW_vthWvnoY3vPd4v6k4jH1kIc4QrhCwun4GQFMqTXQB6tIAAJXqQEzwhmRZIcChmPxZjsU05_dREshqIs5XschD6uNbsYnB92lddGF8hHYzhD4WdV2fiCPffGQ-_b0z8fpw_7J4Kperx3pxtyyd1HooCWVjZCs7h61WSB6NauZGGgRtlGPtDDnkOVfSEZH0DXcVEHpjWu2Z1Ezofa9Lfc6Jvf1MYd2kb4tgt6B2B2q3FBaU3YFaNeZu9zkex30FTja7wNFxFxK7wXZ9-KfhBz9OWo8 |
| Cites_doi | 10.1007/PL00010091 10.1007/BF02566244 10.2307/1970516 10.4064/aa-56-3-183-193 10.1007/BF01470064 10.1007/BF01475864 10.4064/sm-42-3-271-288 |
| ContentType | Journal Article |
| Copyright | 2003 |
| Copyright_xml | – notice: 2003 |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/S0019-3577(03)90007-3 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1872-6100 |
| EndPage | 240 |
| ExternalDocumentID | 10_1016_S0019_3577_03_90007_3 S0019357703900073 |
| GroupedDBID | --K --M --Z .~1 0R~ 0SF 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 6OB 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM L7B M25 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OHT OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSW SSZ T5K UPT VH1 WUQ ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ADNMO ADVLN AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c255t-712a92b2dc1b5317f193a492910593ce5c97c1e4e62c7772faed6071f99b5fe73 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000187115700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0019-3577 |
| IngestDate | Sat Nov 29 06:31:12 EST 2025 Fri Feb 23 02:33:39 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c255t-712a92b2dc1b5317f193a492910593ce5c97c1e4e62c7772faed6071f99b5fe73 |
| OpenAccessLink | https://dx.doi.org/10.1016/S0019-3577(03)90007-3 |
| PageCount | 8 |
| ParticipantIDs | crossref_primary_10_1016_S0019_3577_03_90007_3 elsevier_sciencedirect_doi_10_1016_S0019_3577_03_90007_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2003-06-23 |
| PublicationDateYYYYMMDD | 2003-06-23 |
| PublicationDate_xml | – month: 06 year: 2003 text: 2003-06-23 day: 23 |
| PublicationDecade | 2000 |
| PublicationTitle | Indagationes mathematicae |
| PublicationYear | 2003 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Marstrand (BIB2) 1970; 21 Nair (BIB5) 2001; 132 Nair (BIB4) 1995; 120 Weyl (BIB8) 1916; 77 Zygmund (BIB9) 1951; 14 Fava (BIB1) 1972; XLII Sawyer (BIB7) 1966; 84 Nair (BIB3) 1990; 56 Riesz (BIB6) 1945; 17 Weyl (10.1016/S0019-3577(03)90007-3_BIB8) 1916; 77 Nair (10.1016/S0019-3577(03)90007-3_BIB4) 1995; 120 Riesz (10.1016/S0019-3577(03)90007-3_BIB6) 1945; 17 Nair (10.1016/S0019-3577(03)90007-3_BIB3) 1990; 56 Nair (10.1016/S0019-3577(03)90007-3_BIB5) 2001; 132 Zygmund (10.1016/S0019-3577(03)90007-3_BIB9) 1951; 14 Marstrand (10.1016/S0019-3577(03)90007-3_BIB2) 1970; 21 Fava (10.1016/S0019-3577(03)90007-3_BIB1) 1972; XLII Sawyer (10.1016/S0019-3577(03)90007-3_BIB7) 1966; 84 |
| References_xml | – volume: 132 start-page: 341 year: 2001 end-page: 348 ident: BIB5 article-title: On strong uniform distribution II publication-title: Mh. Math. – volume: 56 start-page: 183 year: 1990 end-page: 193 ident: BIB3 article-title: On strong uniform distribution publication-title: Acta. Arith. – volume: 77 start-page: 313 year: 1916 end-page: 352 ident: BIB8 article-title: Über die Gleichverteilung von Zahlen mod Eins publication-title: Math. Ann. – volume: XLII start-page: 271 year: 1972 end-page: 288 ident: BIB1 article-title: Weak type inequalities for product operators publication-title: Studia. Math. – volume: 17 start-page: 221 year: 1945 end-page: 239 ident: BIB6 article-title: Sur la theorie ergodique publication-title: Comment. Math. Helv. – volume: 14 start-page: 103 year: 1951 end-page: 110 ident: BIB9 article-title: An individual ergodic theorem for non-commutative transformations publication-title: Acta Sci. Math. (Szeged) – volume: 21 start-page: 540 year: 1970 end-page: 556 ident: BIB2 article-title: On Khinchine's conjecture about strong uniform distribution publication-title: Proc. Lond. Math. Soc. – volume: 120 start-page: 49 year: 1995 end-page: 54 ident: BIB4 article-title: On Riemann sums and Lebesgue integrals publication-title: Mh. Math. – volume: 84 start-page: 157 year: 1966 end-page: 174 ident: BIB7 article-title: Maximal inequalities of weak type publication-title: Ann. Math. – volume: 132 start-page: 341 year: 2001 ident: 10.1016/S0019-3577(03)90007-3_BIB5 article-title: On strong uniform distribution II publication-title: Mh. Math. doi: 10.1007/PL00010091 – volume: 17 start-page: 221 year: 1945 ident: 10.1016/S0019-3577(03)90007-3_BIB6 article-title: Sur la theorie ergodique publication-title: Comment. Math. Helv. doi: 10.1007/BF02566244 – volume: 14 start-page: 103 year: 1951 ident: 10.1016/S0019-3577(03)90007-3_BIB9 article-title: An individual ergodic theorem for non-commutative transformations publication-title: Acta Sci. Math. (Szeged) – volume: 84 start-page: 157 issue: 2 year: 1966 ident: 10.1016/S0019-3577(03)90007-3_BIB7 article-title: Maximal inequalities of weak type publication-title: Ann. Math. doi: 10.2307/1970516 – volume: 21 start-page: 540 year: 1970 ident: 10.1016/S0019-3577(03)90007-3_BIB2 article-title: On Khinchine's conjecture about strong uniform distribution – volume: 56 start-page: 183 issue: no. 3 year: 1990 ident: 10.1016/S0019-3577(03)90007-3_BIB3 article-title: On strong uniform distribution publication-title: Acta. Arith. doi: 10.4064/aa-56-3-183-193 – volume: 120 start-page: 49 year: 1995 ident: 10.1016/S0019-3577(03)90007-3_BIB4 article-title: On Riemann sums and Lebesgue integrals publication-title: Mh. Math. doi: 10.1007/BF01470064 – volume: 77 start-page: 313 year: 1916 ident: 10.1016/S0019-3577(03)90007-3_BIB8 article-title: Über die Gleichverteilung von Zahlen mod Eins publication-title: Math. Ann. doi: 10.1007/BF01475864 – volume: XLII start-page: 271 year: 1972 ident: 10.1016/S0019-3577(03)90007-3_BIB1 article-title: Weak type inequalities for product operators publication-title: Studia. Math. doi: 10.4064/sm-42-3-271-288 |
| SSID | ssj0017026 |
| Score | 1.5883198 |
| Snippet | Let
a = (
a
i
i=1
∞ be a strictly increasing sequence of natural numbers and let
A
be a space of Lebesgue measurable functions defined on [0,1). Let <
y>... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 233 |
| Title | On strong uniform distribution III |
| URI | https://dx.doi.org/10.1016/S0019-3577(03)90007-3 |
| Volume | 14 |
| WOSCitedRecordID | wos000187115700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6100 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0017026 issn: 0019-3577 databaseCode: AIEXJ dateStart: 19900101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFA46fdAH8Yp3ijhQRufatE3zKDKxopvglL2VNk1lDyvDbbKf70mTpvXCcA--lBLoSZuvPflOk3M-hM49HKXUYamJcZSYDo09MyIQ8_jM8RjQhZjmon2vD6TT8ft9-qS0-ca5nADJMn82o6N_hRraAGyROrsA3NooNMA5gA5HgB2OfwK-m4kEECEhNM1E2tVQLMJoXatGEARVQhpASP6Wo8PHjaGu4RppvDvRQG7Bbn75QSDEGkyZw1s4PYua2FVqKYXTcyrg2lUPJutSqMnQlrWUfvhZGfI_a9N1IXJVF1Ob-PWJy8mlWFD_NufonYDlJjMwFQpTYQuHuZkQL6MVm7jUr6GV66Ddv9fLQ6SV6-jp7svUrKvyni5a-FLdz--ko0IkeptoQ0UAxrVEbgst8WwbrT_qoR_voLNuZkgMDYWhUcXQAAx30cttu3dzZyoxC5NB1DYxiWVH1I7thFkx-D2SAnOOHCCnguBixl1GCbO4wz2bEQh50ognovZfSmnsppzgPVTL4F3YRwajlk9s-PRcF_gXb1EOnjWNIRQmGCfMO0DN4mnDkaxZEs4d5wPkF2MSKuIlCVUIeM-_9HDRvo7QWvmSHqPa5H3KT9Aq-5gMxu-nCuhPE-9EBw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+strong+uniform+distribution+III&rft.jtitle=Indagationes+mathematicae&rft.au=Nair%2C+R.&rft.date=2003-06-23&rft.issn=0019-3577&rft.volume=14&rft.issue=2&rft.spage=233&rft.epage=240&rft_id=info:doi/10.1016%2FS0019-3577%2803%2990007-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0019_3577_03_90007_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-3577&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-3577&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-3577&client=summon |