DRN-DSA: A hybrid deep learning network model for precipitation nowcasting using time series data

Precipitation nowcasting involves short-term weather forecasting, predicting rain or snow within the next two hours. By analyzing current atmospheric conditions, it aids meteorologists in identifying weather patterns and preparing for severe events such as flooding. These nowcasts are typically disp...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge-based systems Vol. 306; p. 112679
Main Authors: Rudrappa, Gujanatti, Vijapur, Nataraj
Format: Journal Article
Language:English
Published: Elsevier B.V 20.12.2024
Subjects:
ISSN:0950-7051
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Precipitation nowcasting involves short-term weather forecasting, predicting rain or snow within the next two hours. By analyzing current atmospheric conditions, it aids meteorologists in identifying weather patterns and preparing for severe events such as flooding. These nowcasts are typically displayed on geographical maps by weather services. However, the rapidly changing climate conditions make precipitation nowcasting a formidable challenge, as accurate short-term forecasts are hindered by immediate weather fluctuations. Traditional nowcasting methods, like numerical models and radar extrapolation, have limitations in delivering highly detailed and timely precipitation nowcasts. To overcome this issue, an effective solution is framed for precipitation nowcasting using a hybrid network approach named Deep Residual Network-Deep Stacked Autoencoder (DRN-DSA). Initially, the input time series data is acquired from the dataset. Thereafter, the effective technical indicators are extracted at the feature extraction stage. Later on, precipitation-type nowcasting is carried out using the proposed hybrid DRN-DSA, which is developed by incorporating a Deep Stacked Autoencoder (DSA) and Deep Residual Network (DRN). Finally, Weather nowcasting is carried out using the same proposed hybrid DSA-DRN. Moreover, when compared to other traditional models, the proposed DRN-DSA has gained superior results with a Relative Absolute Error (RAE) of 0.295, Root Mean Square Error (RMSE) of 0.154, low Mean Square Error (MSE) of 0.0236, Mean Absolute Percentage Error (MAPE) of 0.295, and False Acceptance Rate (FAR) of 0.0118.
AbstractList Precipitation nowcasting involves short-term weather forecasting, predicting rain or snow within the next two hours. By analyzing current atmospheric conditions, it aids meteorologists in identifying weather patterns and preparing for severe events such as flooding. These nowcasts are typically displayed on geographical maps by weather services. However, the rapidly changing climate conditions make precipitation nowcasting a formidable challenge, as accurate short-term forecasts are hindered by immediate weather fluctuations. Traditional nowcasting methods, like numerical models and radar extrapolation, have limitations in delivering highly detailed and timely precipitation nowcasts. To overcome this issue, an effective solution is framed for precipitation nowcasting using a hybrid network approach named Deep Residual Network-Deep Stacked Autoencoder (DRN-DSA). Initially, the input time series data is acquired from the dataset. Thereafter, the effective technical indicators are extracted at the feature extraction stage. Later on, precipitation-type nowcasting is carried out using the proposed hybrid DRN-DSA, which is developed by incorporating a Deep Stacked Autoencoder (DSA) and Deep Residual Network (DRN). Finally, Weather nowcasting is carried out using the same proposed hybrid DSA-DRN. Moreover, when compared to other traditional models, the proposed DRN-DSA has gained superior results with a Relative Absolute Error (RAE) of 0.295, Root Mean Square Error (RMSE) of 0.154, low Mean Square Error (MSE) of 0.0236, Mean Absolute Percentage Error (MAPE) of 0.295, and False Acceptance Rate (FAR) of 0.0118.
ArticleNumber 112679
Author Rudrappa, Gujanatti
Vijapur, Nataraj
Author_xml – sequence: 1
  givenname: Gujanatti
  orcidid: 0009-0003-0743-7520
  surname: Rudrappa
  fullname: Rudrappa, Gujanatti
  email: rudraguj@gmail.com
  organization: Assistant Professor, Department of Electronics and Communication Engineering, KLE Technological University Dr. M S Sheshgiri Campus, Belagavi, Research Centre: Department of Electronics and Communication Engineering, RV Institute of Technology and Management, Bangalore, Visvesvaraya Technological University, Belagavi, Karnataka, 590018, India
– sequence: 2
  givenname: Nataraj
  surname: Vijapur
  fullname: Vijapur, Nataraj
  email: nvijapur@gmail.com
  organization: Associate Professor, Department of Electronics and Communication Engineering, RV Institute of Technology and Management, Bangalore, Visvesvaraya Technological University, Belgavi, Karantaka 590018, India
BookMark eNp9kMtOwzAURL0oEm3hD1j4BxJsJ3YSFkhVy0uqQOKxtpz4BtyHHdmGKn9PorBmM3czM7pzFmhmnQWErihJKaHiepfurQt9SBlheUopE0U1Q3NScZIUhNNztAhhRwhhjJZzpDavz8nmbXWDV_irr73RWAN0-ADKW2M_sYV4cn6Pj07DAbfO485DYzoTVTTOYutOjQpxtH6HUaM5Ag7gDQSsVVQX6KxVhwCXf3eJPu7v3tePyfbl4Wm92iYN4zwmAhQrATKVl6IuylbTOuO0oFnLiK6AV4prxtuyzlsmmsFEBLCMcSJImWtRZ0uUT72NdyF4aGXnzVH5XlIiRzRyJyc0ckQjJzRD7HaKwfDbjwEvQ2PANqDNsDNK7cz_Bb-CfnMs
Cites_doi 10.1016/j.enconman.2019.111793
10.3390/rs13214285
10.1016/j.engappai.2010.09.007
10.1002/ett.4640
10.1038/s41586-021-03854-z
10.1016/j.jag.2024.103962
10.3390/w14162570
10.1016/j.patrec.2021.01.036
10.1016/j.neucom.2021.02.072
10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2
10.3390/rs11192303
10.3390/axioms11030107
10.1016/j.bspc.2024.106177
10.1016/j.procs.2019.02.036
10.1016/j.dibe.2023.100128
10.3390/rs15010142
10.1080/15481603.2023.2203363
10.1109/JSEN.2018.2831082
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
DOI 10.1016/j.knosys.2024.112679
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_knosys_2024_112679
S0950705124013133
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY7
R2-
SBC
SET
UHS
WUQ
~HD
ID FETCH-LOGICAL-c255t-6ea28ee3a486b78fd1b351713f20d9e59a5d25f8b4f26c48606e232506084d6b3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001361693700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Sat Nov 29 01:33:43 EST 2025
Wed Dec 04 16:49:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep Residual Network (DRN)
time series data
Deep Learning (DL)
Precipitation Nowcasting
Deep Stacked Autoencoder (DSA)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c255t-6ea28ee3a486b78fd1b351713f20d9e59a5d25f8b4f26c48606e232506084d6b3
ORCID 0009-0003-0743-7520
ParticipantIDs crossref_primary_10_1016_j_knosys_2024_112679
elsevier_sciencedirect_doi_10_1016_j_knosys_2024_112679
PublicationCentury 2000
PublicationDate 2024-12-20
PublicationDateYYYYMMDD 2024-12-20
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-20
  day: 20
PublicationDecade 2020
PublicationTitle Knowledge-based systems
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – sequence: 0
  name: Elsevier B.V
References Niu, Huang, Zang, Xu, Che, Tang (bib0028) 2021; 13
Hansun (bib0002) November 2013
Choma, M., Šimánek, P. and Bartel, J., “Improving deep learning precipitation nowcasting by using prior knowledge”, arXiv preprint arXiv:2301.11707, 2023.
Wang, Zhao, Zhang, Guan, Zhu (bib0030) 2024
Ehsani, M.R., Zarei, A., Gupta, H.V., Barnard, K. and Behrangi, A., “Nowcasting-Nets: deep neural network structures for precipitation nowcasting using IMERG”, arXiv preprint arXiv:2108.06868, 2021.
Shi, Chen, Wang, Yeung, Wong, Woo (bib0021) 2015; 28
Yu, Li, Li, Xia, Ding, Samali (bib0035) 2023; 14
Patel, M., Patel, A. and Ghosh, D.R., “Precipitation nowcasting: leveraging bidirectional LSTM and 1D CNN”, arXiv preprint arXiv:1810.10485, 2018.
Tran, Song (bib0020) 2019; 11
Chen, Li, Zhang, Du, Zhao (bib0034) July 2023
The technical indicators are available at
Muthumeenakshi, Singh, Sapkale, Mukhedkar (bib0013) 2022
Piran, Wang, Kim, Kwon (bib0031) 2024
The weather dataset will be taken from
Chen, Chen, Wu, Cheng, Lin (bib0026) 2019; 198
Han, Choo, Im, Shin, Lee, Jung (bib0011) 2023; 6
Fang, Zhang, Sheng, Ding (bib0022) 2021; 448
Dairi, Harrou, Sun, Senouci (bib0027) 2018; 18
Germann, Zawadzki (bib0012) 2002; 130
Balasubramaniam, Kadry, Kumar (bib0024) 2024
Kadry, Dhanaraj, SK, Manthiramoorthy (bib0025) 2024
Fu (bib0004) 2011; 24
Ravuri, Lenc, Willson, Kangin, Lam, Mirowski, Fitzsimons, Athanassiadou, Kashem, Madge, Prudden, Mandhane, Clark, Brock, Simonyan, Hadsell, Robinson, Clancy, Arribas, Mohamed (bib0029) 2021
Trebing, Staǹczyk, Mehrkanoon (bib0015) 2021; 145
accessed on June 2023.
Wang, Liu, Lin, Hu, Kaur, Hossain (bib0019) 2022
Subhadra Sarngadharan, Narasimhamurthy, Sankaramoorthy, Singh, Singh (bib0017) 2022
Yan, B.Y., Yang, C., Chen, F., Takeda, K. and Wang, C., “FDNet: a deep learning approach with two parallel cross encoding pathways for precipitation nowcasting”, arXiv preprint arXiv:2105.02585, 2021.
Huang, Chen, Tan (bib0010) 2022; 15
Hering, Morel, Galli, Sénési, Ambrosetti, Boscacci (bib0014) September 2004; 1
Wang, Garg, Lin, Hu, Kaddoum, Piran, Hossain (bib0018) 2021
Tuyen, Tuan, Le, Tung, Chau, Van Hai, Gerogiannis, Son (bib0007) 2022; 11
accessed on May 2023.
Wu, Chen, Jung (bib0001) 2022; 14
Vaiz, Ramaswami (bib0003) 2016; 5
Ayzel, Heistermann, Sorokin, Nikitin, Lukyanova (bib0023) 2019; 150
Balasubramaniam, Kumar (bib0016) 2022
Fu (10.1016/j.knosys.2024.112679_bib0004) 2011; 24
10.1016/j.knosys.2024.112679_bib0009
Balasubramaniam (10.1016/j.knosys.2024.112679_bib0016) 2022
10.1016/j.knosys.2024.112679_bib0005
Piran (10.1016/j.knosys.2024.112679_bib0031) 2024
10.1016/j.knosys.2024.112679_bib0006
10.1016/j.knosys.2024.112679_bib0008
Germann (10.1016/j.knosys.2024.112679_bib0012) 2002; 130
Dairi (10.1016/j.knosys.2024.112679_bib0027) 2018; 18
Wang (10.1016/j.knosys.2024.112679_bib0019) 2022
Ayzel (10.1016/j.knosys.2024.112679_bib0023) 2019; 150
Balasubramaniam (10.1016/j.knosys.2024.112679_bib0024) 2024
Vaiz (10.1016/j.knosys.2024.112679_bib0003) 2016; 5
Wu (10.1016/j.knosys.2024.112679_bib0001) 2022; 14
Tran (10.1016/j.knosys.2024.112679_bib0020) 2019; 11
Wang (10.1016/j.knosys.2024.112679_bib0018) 2021
Han (10.1016/j.knosys.2024.112679_bib0011) 2023; 6
Tuyen (10.1016/j.knosys.2024.112679_bib0007) 2022; 11
Ravuri (10.1016/j.knosys.2024.112679_bib0029) 2021
Chen (10.1016/j.knosys.2024.112679_bib0026) 2019; 198
Subhadra Sarngadharan (10.1016/j.knosys.2024.112679_bib0017) 2022
Trebing (10.1016/j.knosys.2024.112679_bib0015) 2021; 145
Kadry (10.1016/j.knosys.2024.112679_bib0025) 2024
Chen (10.1016/j.knosys.2024.112679_bib0034) 2023
Fang (10.1016/j.knosys.2024.112679_bib0022) 2021; 448
10.1016/j.knosys.2024.112679_bib0032
Wang (10.1016/j.knosys.2024.112679_bib0030) 2024
10.1016/j.knosys.2024.112679_bib0033
Hering (10.1016/j.knosys.2024.112679_bib0014) 2004; 1
Shi (10.1016/j.knosys.2024.112679_bib0021) 2015; 28
Muthumeenakshi (10.1016/j.knosys.2024.112679_bib0013) 2022
Huang (10.1016/j.knosys.2024.112679_bib0010) 2022; 15
Yu (10.1016/j.knosys.2024.112679_bib0035) 2023; 14
Hansun (10.1016/j.knosys.2024.112679_bib0002) 2013
Niu (10.1016/j.knosys.2024.112679_bib0028) 2021; 13
References_xml – year: 2024
  ident: bib0025
  article-title: Res-Unet based blood vessel segmentation and cardiovascular disease prediction using chronological chef-based optimization algorithm based deep residual network from retinal fundus images
  publication-title: Multimed. Tools. Appl.
– reference: Yan, B.Y., Yang, C., Chen, F., Takeda, K. and Wang, C., “FDNet: a deep learning approach with two parallel cross encoding pathways for precipitation nowcasting”, arXiv preprint arXiv:2105.02585, 2021.
– volume: 145
  start-page: 178
  year: 2021
  end-page: 186
  ident: bib0015
  article-title: SmaAt-UNet: precipitation nowcasting using a small attention-UNet architecture
  publication-title: Pattern. Recognit. Lett.
– volume: 150
  start-page: 186
  year: 2019
  end-page: 192
  ident: bib0023
  article-title: All convolutional neural networks for radar-based precipitation nowcasting
  publication-title: Procedia Comput. Sci.
– reference: Patel, M., Patel, A. and Ghosh, D.R., “Precipitation nowcasting: leveraging bidirectional LSTM and 1D CNN”, arXiv preprint arXiv:1810.10485, 2018.
– reference: ”, accessed on May 2023.
– volume: 130
  start-page: 2859
  year: 2002
  end-page: 2873
  ident: bib0012
  article-title: Scale-dependence of the predictability of precipitation from continental radar images. Part I: description of the methodology
  publication-title: Mon. Weather. Rev.
– year: 2022
  ident: bib0019
  article-title: AI-empowered trajectory anomaly detection for intelligent transportation systems: a hierarchical federated learning approach
  publication-title: IEEE Transact. Intellig. Transport. Syst.
– volume: 5
  start-page: 207
  year: 2016
  end-page: 212
  ident: bib0003
  article-title: A study on technical indicators in stock price movement prediction using decision tree algorithms
  publication-title: Am. J. Eng. Res. (AJER)
– volume: 11
  start-page: 2303
  year: 2019
  ident: bib0020
  article-title: Multi-channel weather radar echo extrapolation with convolutional recurrent neural networks
  publication-title: Remote Sens.
– volume: 24
  start-page: 164
  year: 2011
  end-page: 181
  ident: bib0004
  article-title: A review on time series data mining
  publication-title: Eng. Appl. Artif. Intell.
– reference: Ehsani, M.R., Zarei, A., Gupta, H.V., Barnard, K. and Behrangi, A., “Nowcasting-Nets: deep neural network structures for precipitation nowcasting using IMERG”, arXiv preprint arXiv:2108.06868, 2021.
– year: 2024
  ident: bib0031
  article-title: Precipitation nowcasting using transformer-based generative models and transfer learning for improved disaster preparedness
  publication-title: Internat. J. Appl. Earth Observ. Geoinform.
– reference: The technical indicators are available at “
– reference: Choma, M., Šimánek, P. and Bartel, J., “Improving deep learning precipitation nowcasting by using prior knowledge”, arXiv preprint arXiv:2301.11707, 2023.
– volume: 11
  start-page: 107
  year: 2022
  ident: bib0007
  article-title: RainPredRNN: a new approach for precipitation nowcasting with weather radar echo images based on deep learning
  publication-title: Axioms
– year: 2022
  ident: bib0013
  article-title: An efficient and secure authentication approach in VANET using location and signature-based services
– volume: 14
  year: 2023
  ident: bib0035
  article-title: Automated damage diagnosis of concrete jack arch beam using optimized deep stacked autoencoders and multi-sensor fusion
  publication-title: Developm. Built Environ.
– year: 2021
  ident: bib0018
  article-title: Toward accurate anomaly detection in the industrial internet of things using hierarchical federated learning
  publication-title: IEEe Internet. Things. J.
– volume: 1
  year: September 2004
  ident: bib0014
  article-title: Nowcasting thunderstorms in the Alpine region using a radar-based adaptive thresholding scheme
  publication-title: Proceedings of ERAD
– year: 2022
  ident: bib0016
  article-title: Fractional feedback political optimizer with prioritization-based charge scheduling in cloud-assisted electric vehicular network
– reference: The weather dataset will be taken from “
– volume: 14
  start-page: 2570
  year: 2022
  ident: bib0001
  article-title: Gated attention recurrent neural network: a deeping learning approach for radar-based precipitation nowcasting
  publication-title: Water.
– volume: 198
  year: 2019
  ident: bib0026
  article-title: Deep residual network based fault detection and diagnosis of photovoltaic arrays using current-voltage curves and ambient conditions
  publication-title: Energy Convers. Manage
– start-page: 4764
  year: July 2023
  end-page: 4803
  ident: bib0034
  article-title: Bidirectional looking with a novel double exponential moving average to adaptive and non-adaptive momentum optimizers
  publication-title: International conference on machine learning
– year: 2024
  ident: bib0030
  article-title: Spatiotemporal predictive learning for radar-based precipitation nowcasting
  publication-title: Atmosphere
– reference: ”, accessed on June 2023.
– year: 2021
  ident: bib0029
  article-title: Skilful precipitation nowcasting using deep generative models of radar
  publication-title: Nature
– volume: 6
  year: 2023
  ident: bib0011
  article-title: Precipitation nowcasting using ground radar data and simpler yet better video prediction deep learning
  publication-title: GISci. Remote Sens.
– volume: 13
  start-page: 4285
  year: 2021
  ident: bib0028
  article-title: Two-stage spatiotemporal context refinement network for precipitation nowcasting
  publication-title: Remote Sens.
– volume: 15
  start-page: 142
  year: 2022
  ident: bib0010
  article-title: TSRC: a deep learning model for precipitation short-term forecasting over china using radar echo data
  publication-title: Remote Sens.
– year: 2022
  ident: bib0017
  article-title: Hybrid optimization model for design and optimization of microstrip patch antenna
  publication-title: Transact. Emerg. Telecommun. Techn.
– year: 2024
  ident: bib0024
  article-title: Osprey gannet optimization enabled CNN based Transfer learning for optic disc detection and cardiovascular risk prediction using retinal fundus images
  publication-title: Biomed. Signal. Process. Control
– volume: 448
  start-page: 10
  year: 2021
  end-page: 20
  ident: bib0022
  article-title: SCENT: a new precipitation nowcasting method based on sparse correspondence and deep neural network
  publication-title: Neurocomputing.
– volume: 28
  year: 2015
  ident: bib0021
  article-title: Convolutional LSTM network: a machine learning approach for precipitation nowcasting
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 1
  year: November 2013
  end-page: 4
  ident: bib0002
  article-title: A new approach of moving average method in time series analysis
  publication-title: 2013 conference on new media studies (CoNMedia)
– volume: 18
  start-page: 5122
  year: 2018
  end-page: 5132
  ident: bib0027
  article-title: Obstacle detection for intelligent transportation systems using deep stacked autoencoder and k-nearest neighbor scheme
  publication-title: IEEe Sens. J.
– volume: 5
  start-page: 207
  issue: 12
  year: 2016
  ident: 10.1016/j.knosys.2024.112679_bib0003
  article-title: A study on technical indicators in stock price movement prediction using decision tree algorithms
  publication-title: Am. J. Eng. Res. (AJER)
– year: 2022
  ident: 10.1016/j.knosys.2024.112679_bib0013
– year: 2024
  ident: 10.1016/j.knosys.2024.112679_bib0025
  article-title: Res-Unet based blood vessel segmentation and cardiovascular disease prediction using chronological chef-based optimization algorithm based deep residual network from retinal fundus images
– volume: 1
  year: 2004
  ident: 10.1016/j.knosys.2024.112679_bib0014
  article-title: Nowcasting thunderstorms in the Alpine region using a radar-based adaptive thresholding scheme
– year: 2022
  ident: 10.1016/j.knosys.2024.112679_bib0019
  article-title: AI-empowered trajectory anomaly detection for intelligent transportation systems: a hierarchical federated learning approach
  publication-title: IEEE Transact. Intellig. Transport. Syst.
– volume: 198
  year: 2019
  ident: 10.1016/j.knosys.2024.112679_bib0026
  article-title: Deep residual network based fault detection and diagnosis of photovoltaic arrays using current-voltage curves and ambient conditions
  publication-title: Energy Convers. Manage
  doi: 10.1016/j.enconman.2019.111793
– volume: 13
  start-page: 4285
  issue: 21
  year: 2021
  ident: 10.1016/j.knosys.2024.112679_bib0028
  article-title: Two-stage spatiotemporal context refinement network for precipitation nowcasting
  publication-title: Remote Sens.
  doi: 10.3390/rs13214285
– volume: 24
  start-page: 164
  issue: 1
  year: 2011
  ident: 10.1016/j.knosys.2024.112679_bib0004
  article-title: A review on time series data mining
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2010.09.007
– year: 2022
  ident: 10.1016/j.knosys.2024.112679_bib0017
  article-title: Hybrid optimization model for design and optimization of microstrip patch antenna
  publication-title: Transact. Emerg. Telecommun. Techn.
  doi: 10.1002/ett.4640
– year: 2024
  ident: 10.1016/j.knosys.2024.112679_bib0030
  article-title: Spatiotemporal predictive learning for radar-based precipitation nowcasting
  publication-title: Atmosphere
– ident: 10.1016/j.knosys.2024.112679_bib0006
– ident: 10.1016/j.knosys.2024.112679_bib0008
– ident: 10.1016/j.knosys.2024.112679_bib0033
– year: 2021
  ident: 10.1016/j.knosys.2024.112679_bib0029
  article-title: Skilful precipitation nowcasting using deep generative models of radar
  publication-title: Nature
  doi: 10.1038/s41586-021-03854-z
– year: 2024
  ident: 10.1016/j.knosys.2024.112679_bib0031
  article-title: Precipitation nowcasting using transformer-based generative models and transfer learning for improved disaster preparedness
  publication-title: Internat. J. Appl. Earth Observ. Geoinform.
  doi: 10.1016/j.jag.2024.103962
– volume: 14
  start-page: 2570
  issue: 16
  year: 2022
  ident: 10.1016/j.knosys.2024.112679_bib0001
  article-title: Gated attention recurrent neural network: a deeping learning approach for radar-based precipitation nowcasting
  publication-title: Water.
  doi: 10.3390/w14162570
– volume: 145
  start-page: 178
  year: 2021
  ident: 10.1016/j.knosys.2024.112679_bib0015
  article-title: SmaAt-UNet: precipitation nowcasting using a small attention-UNet architecture
  publication-title: Pattern. Recognit. Lett.
  doi: 10.1016/j.patrec.2021.01.036
– volume: 448
  start-page: 10
  year: 2021
  ident: 10.1016/j.knosys.2024.112679_bib0022
  article-title: SCENT: a new precipitation nowcasting method based on sparse correspondence and deep neural network
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2021.02.072
– volume: 130
  start-page: 2859
  issue: 12
  year: 2002
  ident: 10.1016/j.knosys.2024.112679_bib0012
  article-title: Scale-dependence of the predictability of precipitation from continental radar images. Part I: description of the methodology
  publication-title: Mon. Weather. Rev.
  doi: 10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2
– year: 2022
  ident: 10.1016/j.knosys.2024.112679_bib0016
– year: 2021
  ident: 10.1016/j.knosys.2024.112679_bib0018
  article-title: Toward accurate anomaly detection in the industrial internet of things using hierarchical federated learning
  publication-title: IEEe Internet. Things. J.
– volume: 11
  start-page: 2303
  issue: 19
  year: 2019
  ident: 10.1016/j.knosys.2024.112679_bib0020
  article-title: Multi-channel weather radar echo extrapolation with convolutional recurrent neural networks
  publication-title: Remote Sens.
  doi: 10.3390/rs11192303
– volume: 11
  start-page: 107
  issue: 3
  year: 2022
  ident: 10.1016/j.knosys.2024.112679_bib0007
  article-title: RainPredRNN: a new approach for precipitation nowcasting with weather radar echo images based on deep learning
  publication-title: Axioms
  doi: 10.3390/axioms11030107
– start-page: 1
  year: 2013
  ident: 10.1016/j.knosys.2024.112679_bib0002
  article-title: A new approach of moving average method in time series analysis
– year: 2024
  ident: 10.1016/j.knosys.2024.112679_bib0024
  article-title: Osprey gannet optimization enabled CNN based Transfer learning for optic disc detection and cardiovascular risk prediction using retinal fundus images
  publication-title: Biomed. Signal. Process. Control
  doi: 10.1016/j.bspc.2024.106177
– ident: 10.1016/j.knosys.2024.112679_bib0005
– volume: 150
  start-page: 186
  year: 2019
  ident: 10.1016/j.knosys.2024.112679_bib0023
  article-title: All convolutional neural networks for radar-based precipitation nowcasting
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2019.02.036
– volume: 14
  year: 2023
  ident: 10.1016/j.knosys.2024.112679_bib0035
  article-title: Automated damage diagnosis of concrete jack arch beam using optimized deep stacked autoencoders and multi-sensor fusion
  publication-title: Developm. Built Environ.
  doi: 10.1016/j.dibe.2023.100128
– ident: 10.1016/j.knosys.2024.112679_bib0032
– ident: 10.1016/j.knosys.2024.112679_bib0009
– volume: 15
  start-page: 142
  issue: 1
  year: 2022
  ident: 10.1016/j.knosys.2024.112679_bib0010
  article-title: TSRC: a deep learning model for precipitation short-term forecasting over china using radar echo data
  publication-title: Remote Sens.
  doi: 10.3390/rs15010142
– volume: 6
  issue: 01
  year: 2023
  ident: 10.1016/j.knosys.2024.112679_bib0011
  article-title: Precipitation nowcasting using ground radar data and simpler yet better video prediction deep learning
  publication-title: GISci. Remote Sens.
  doi: 10.1080/15481603.2023.2203363
– volume: 28
  year: 2015
  ident: 10.1016/j.knosys.2024.112679_bib0021
  article-title: Convolutional LSTM network: a machine learning approach for precipitation nowcasting
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 4764
  year: 2023
  ident: 10.1016/j.knosys.2024.112679_bib0034
  article-title: Bidirectional looking with a novel double exponential moving average to adaptive and non-adaptive momentum optimizers
– volume: 18
  start-page: 5122
  issue: 12
  year: 2018
  ident: 10.1016/j.knosys.2024.112679_bib0027
  article-title: Obstacle detection for intelligent transportation systems using deep stacked autoencoder and k-nearest neighbor scheme
  publication-title: IEEe Sens. J.
  doi: 10.1109/JSEN.2018.2831082
SSID ssj0002218
Score 2.411189
Snippet Precipitation nowcasting involves short-term weather forecasting, predicting rain or snow within the next two hours. By analyzing current atmospheric...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 112679
SubjectTerms Deep Learning (DL)
Deep Residual Network (DRN)
Deep Stacked Autoencoder (DSA)
Precipitation Nowcasting
time series data
Title DRN-DSA: A hybrid deep learning network model for precipitation nowcasting using time series data
URI https://dx.doi.org/10.1016/j.knosys.2024.112679
Volume 306
WOSCitedRecordID wos001361693700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002218
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Jj9MwFICt0uHAhR0xbPKBW-SR6yx2uKCKGVapQsyAeovs2IEG5EZpOgz_Hq9toQgBEpeoShXHep_18t7TWwB4jCUriShrJDjLUKYERZyl2Pg8mGNKyyYTwg2boLMZm8_Lt6PR01gLc_6Fas0uLsruv6I29wxsWzr7F7g3i5ob5reBbq4Gu7n-EfjjdzN0fDr1JeefvtmKrEQq1cUBER8T7VO__RQcl2fY2R4XXWjXnejl15qvXD702oUS7AD6xG5erZJQzLaxaN_EoByyH0QZWkPvZNDLnnedM1FfrFuu-TAs4p8fFi3v1r3X8gPvebsbhCCu1SHB28jYXnVMCDFiRHFoKBu0beoaDOxrbh9EaI8-66XZ6JF9iStv8qNmfuqJfWqXtisT6x4aN_sSOCA0L9kYHExfncxfbz7GhLgQ72YrsXrSpfjtv-vX1smOxXF2HVwNrgKcesQ3wEjpm-BaHMMBg1a-BXgg_gROoecNLW8YecPAGzre0PCGP_CGW97Q8YaWN_S8oeV9G7x_fnL27CUKkzNQbVzEARWKE6ZUyjNWCMoaORFpPqGTtCFYlioveS5J3jCRNaSo7RyyQhnT2jabZJksRHoHjPVSq7sAZpgbtc5lTpjMeF6wWrFGEcZJYzz3VB0CFCVWdb5BShUzB9vKS7iyEq68hA8BjWKtgpHnjbfKnITfPnnvn5-8D65sD-0DMB76tXoILtfnw2LVPwpH5jsaNHpS
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DRN-DSA%3A+A+hybrid+deep+learning+network+model+for+precipitation+nowcasting+using+time+series+data&rft.jtitle=Knowledge-based+systems&rft.au=Rudrappa%2C+Gujanatti&rft.au=Vijapur%2C+Nataraj&rft.date=2024-12-20&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.volume=306&rft_id=info:doi/10.1016%2Fj.knosys.2024.112679&rft.externalDocID=S0950705124013133
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon