From spatial to spectral: Network renormalization via dynamical correlations
Network renormalization has traditionally relied on spatial adjacency—grouping nearby nodes together—but this approach fails to capture the dynamical correlations that govern system-wide behavior in scale-free networks. We present a spectral-space renormalization framework that enables coarse-graini...
Gespeichert in:
| Veröffentlicht in: | Chaos, solitons and fractals Jg. 201; S. 117398 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.12.2025
|
| Schlagworte: | |
| ISSN: | 0960-0779 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Network renormalization has traditionally relied on spatial adjacency—grouping nearby nodes together—but this approach fails to capture the dynamical correlations that govern system-wide behavior in scale-free networks. We present a spectral-space renormalization framework that enables coarse-graining based on dynamical coherence rather than geometric proximity. Within this framework, diffusion processes naturally constitute renormalization transformations in spectral space, yielding scaling relations that connect network dimensions with critical exponents. Building on this foundation, we develop a meta-graph reconstruction algorithm that systematically maps spectral information back into explicit topology while preserving dynamical correlations. The resulting renormalized networks uncover organizational structures that remain invisible to adjacency-based methods, including long-range correlations between structurally distant nodes that reflect coherent dynamical responses. Applications to Internet topologies, yeast regulatory networks, and European power grids demonstrate the broad applicability of this framework. The algorithm consistently extracts fractal (df), spectral (ds), and random-walk (dw) dimensions with theoretical consistency across diverse systems. In power grids, it further reveals hidden failure pathways, exposing transcontinental correlations that match documented cascade patterns. In Internet networks, it reveals multiscaling behavior as the topology evolves over time. By shifting network renormalization from spatial geometry to dynamical flow, this work provides a unified foundation for understanding how information, energy, and failures propagate through complex systems, with direct implications for infrastructure resilience and network vulnerability assessment.
•Spectral RG coarse-grains by dynamical coherence rather than spatial adjacency.•Diffusion on networks is proven to be an RG transformation in spectral space.•The meta-graph algorithm reconstructs topology and extracts network dimensions.•Internet AS networks show hub cores and scale-free peripheries with distinct scaling.•Denmark–Spain correlation reveals hidden cascade pathways in European power grids. |
|---|---|
| AbstractList | Network renormalization has traditionally relied on spatial adjacency—grouping nearby nodes together—but this approach fails to capture the dynamical correlations that govern system-wide behavior in scale-free networks. We present a spectral-space renormalization framework that enables coarse-graining based on dynamical coherence rather than geometric proximity. Within this framework, diffusion processes naturally constitute renormalization transformations in spectral space, yielding scaling relations that connect network dimensions with critical exponents. Building on this foundation, we develop a meta-graph reconstruction algorithm that systematically maps spectral information back into explicit topology while preserving dynamical correlations. The resulting renormalized networks uncover organizational structures that remain invisible to adjacency-based methods, including long-range correlations between structurally distant nodes that reflect coherent dynamical responses. Applications to Internet topologies, yeast regulatory networks, and European power grids demonstrate the broad applicability of this framework. The algorithm consistently extracts fractal (df), spectral (ds), and random-walk (dw) dimensions with theoretical consistency across diverse systems. In power grids, it further reveals hidden failure pathways, exposing transcontinental correlations that match documented cascade patterns. In Internet networks, it reveals multiscaling behavior as the topology evolves over time. By shifting network renormalization from spatial geometry to dynamical flow, this work provides a unified foundation for understanding how information, energy, and failures propagate through complex systems, with direct implications for infrastructure resilience and network vulnerability assessment.
•Spectral RG coarse-grains by dynamical coherence rather than spatial adjacency.•Diffusion on networks is proven to be an RG transformation in spectral space.•The meta-graph algorithm reconstructs topology and extracts network dimensions.•Internet AS networks show hub cores and scale-free peripheries with distinct scaling.•Denmark–Spain correlation reveals hidden cascade pathways in European power grids. |
| ArticleNumber | 117398 |
| Author | Kahng, B. Kim, Cook Hyun |
| Author_xml | – sequence: 1 givenname: Cook Hyun orcidid: 0009-0001-1062-9094 surname: Kim fullname: Kim, Cook Hyun – sequence: 2 givenname: B. surname: Kahng fullname: Kahng, B. email: bkahng@kentech.ac.kr |
| BookMark | eNp9kE1OwzAQRr0oEm3hBGxygQT_J0ZigSoKSBVsYG259li4JHFlR0Xl9KQNa1Yz0nxvNPMWaNbHHhC6IbgimMjbXWU_TcwVxVRUhNRMNTM0x0riEte1ukSLnHcYY4IlnaPNOsWuyHszBNMWQxxbsEMy7V3xCsN3TF9Fgj6mzrThZwzFvjgEU7hjb7pgR8TGlKA9T_IVuvCmzXD9V5foY_34vnouN29PL6uHTWmpEEMpHbeSOEGdV5hwyyhVnnIi6daDlZwZUStwije-gS1jlmFlam4bwQVYz9kSsWmvTTHnBF7vU-hMOmqC9UmC3umzBH2SoCcJI3U_UTCedgiQdLYBegsupPFn7WL4l_8FBKNriA |
| Cites_doi | 10.1002/bies.20294 10.1038/238413a0 10.1137/S003614450342480 10.1038/nature03248 10.1016/j.physrep.2012.03.001 10.1103/PhysRevLett.91.148701 10.1038/nphys266 10.1038/nature08932 10.1126/science.1173299 10.1038/s41567-023-02330-x 10.1073/pnas.082090499 10.1016/j.physrep.2005.10.009 10.1016/j.physrep.2014.07.001 10.1126/science.1173644 10.1103/RevModPhys.47.773 10.1103/PhysRevE.64.046118 10.1088/1367-2630/9/6/177 10.1103/PhysRevLett.96.018701 10.1103/PhysRevLett.90.058701 10.1080/00018738700101072 10.1103/RevModPhys.74.47 10.1103/RevModPhys.55.583 10.1103/PhysRevE.65.056101 10.1103/PhysRevE.67.026112 10.1103/PhysRevResearch.7.013065 10.1051/jphyslet:019820043017062500 10.1088/1742-5468/ad57b1 10.1371/journal.pone.0213550 10.1038/30918 10.1093/nar/gkj013 10.1126/science.1075090 10.1103/PhysRevE.69.025103 10.1016/j.automatica.2014.04.012 10.1103/PhysRevLett.134.057401 10.1103/PhysRevResearch.4.033196 10.1126/science.231.4740.814 10.1038/35065725 10.1038/35075138 10.1093/comnet/cnu016 10.1016/j.physrep.2008.09.002 10.1038/s41567-022-01866-8 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.chaos.2025.117398 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| ExternalDocumentID | 10_1016_j_chaos_2025_117398 S0960077925014110 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9DU 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ABNEU ABWVN ABXDB ACDAQ ACFVG ACGFS ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLZ HMV HVGLF HZ~ IHE J1W KOM LG9 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSQ SSZ T5K WUQ XPP ZY4 ~G- ~HD AAYXX CITATION |
| ID | FETCH-LOGICAL-c255t-6d4c61d52df9014c3229f24162bfec643a579ed948f8eb33c309a74c8545ecf43 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001599100300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-0779 |
| IngestDate | Sat Nov 29 06:51:07 EST 2025 Wed Dec 10 14:26:10 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multiscaling behaviors Dynamical Correlations Long-Range Connections Spectral space renormalization Meta-graph algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c255t-6d4c61d52df9014c3229f24162bfec643a579ed948f8eb33c309a74c8545ecf43 |
| ORCID | 0009-0001-1062-9094 |
| ParticipantIDs | crossref_primary_10_1016_j_chaos_2025_117398 elsevier_sciencedirect_doi_10_1016_j_chaos_2025_117398 |
| PublicationCentury | 2000 |
| PublicationDate | December 2025 2025-12-00 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: December 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Chaos, solitons and fractals |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | [Accessed 01 January 2025]. Ravasz, Barabási (b6) 2003; 67 Kim, Goh, Salvi, Oh, Kahng, Kim (b24) 2007; 75 Villegas, Gabrielli, Poggialini, Gili (b28) 2025; 7 Kadanoff (b13) 1966; 2 May (b54) 1972; 238 Song, Havlin, Makse (b21) 2006; 2 Buzsáki (b53) 2006 Davidson (b11) 2010 Ghavasieh, De Domenico (b29) 2024; 20 Boccaletti, Latora, Moreno, Chavez, Hwang (b48) 2006; 424 Alexander, Orbach (b38) 1982; 43 Teixeira, Monteiro, Jain, Tenreiro, Fernandes, Mira, Alenquer, Freitas, Oliveira, Sa-Correia (b41) 2006; 34 Kim (b34) 1984; 17 Alon (b12) 2019 Newman (b47) 2004; 70 Watts (b51) 2002; 99 Lepek M, Makulski K, Fronczak A, Fronczak P. 2025, arXiv preprint The CAIDA Project. 2024 Pagnier, Jacquod (b42) 2019; 14 Dörfler, Bullo (b50) 2014; 50 Barabási (b18) 2009; 325 . Burda, Correia, Krzywicki (b35) 2001; 64 Kivelä, Arenas, Barthelemy, Gleeson, Moreno, Porter (b45) 2014; 2 Nurisso, Morandini, Lucas, Vaccarino, Gili, Petri (b31) 2025 Jung, Kim, Kahng (b43) 2002; 65 Jeong, Mason, Barabási, Oltvai (b5) 2001; 411 Arenas, Díaz-Guilera, Kurths, Moreno, Zhou (b49) 2008; 469 Albert, Barabási (b2) 2002; 74 Wilson (b16) 1983; 55 Sporns (b4) 2016 Lee, Rinaldi, Robert, Odom, Bar-Joseph, Gerber, Hannett, Harbison, Thompson, Simon (b10) 2002; 298 Cohen, Havlin (b19) 2003; 90 Fox Keller (b17) 2005; 27 Goh, Lee, Kahng, Kim (b36) 2003; 91 Strogatz (b1) 2001; 410 Kim, Goh, Kahng, Kim (b23) 2007; 9 Migdal (b14) 1996 Wilson (b15) 1975; 47 Gabrielli, Garlaschelli, Patil, Serrano (b33) 2025 Holme, Saramäki (b44) 2012; 519 Schweitzer, Fagiolo, Sornette, Vega-Redondo, Vespignani, White (b55) 2009; 325 Albert, Albert, Nakarado (b7) 2004; 69 Buldyrev, Parshani, Paul, Stanley, Havlin (b52) 2010; 464 Newman (b3) 2003; 45 Havlin, Ben-Avraham (b37) 1987; 36 Villegas, Gabrielli, Santucci, Caldarelli, Gili (b26) 2022; 4 Watts, Strogatz (b8) 1998; 393 Goh, Salvi, Kahng, Kim (b22) 2006; 96 Pastor-Satorras, Vespignani (b9) 2004 Poggialini, Villegas, Muñoz, Gabrielli (b30) 2025; 134 Caldarelli, Gabrielli, Gili, Villegas (b32) 2024; 2024 Orbach (b39) 1986; 231 Boccaletti, Bianconi, Criado, Del Genio, Gómez-Gardenes, Romance, Sendina-Nadal, Wang, Zanin (b46) 2014; 544 Villegas, Gili, Caldarelli, Gabrielli (b27) 2023; 19 Song, Havlin, Makse (b20) 2005; 433 Migdal (10.1016/j.chaos.2025.117398_b14) 1996 10.1016/j.chaos.2025.117398_b40 Boccaletti (10.1016/j.chaos.2025.117398_b48) 2006; 424 Fox Keller (10.1016/j.chaos.2025.117398_b17) 2005; 27 Villegas (10.1016/j.chaos.2025.117398_b27) 2023; 19 Kim (10.1016/j.chaos.2025.117398_b34) 1984; 17 Cohen (10.1016/j.chaos.2025.117398_b19) 2003; 90 Albert (10.1016/j.chaos.2025.117398_b2) 2002; 74 Pagnier (10.1016/j.chaos.2025.117398_b42) 2019; 14 Kadanoff (10.1016/j.chaos.2025.117398_b13) 1966; 2 Kim (10.1016/j.chaos.2025.117398_b23) 2007; 9 Burda (10.1016/j.chaos.2025.117398_b35) 2001; 64 Poggialini (10.1016/j.chaos.2025.117398_b30) 2025; 134 Newman (10.1016/j.chaos.2025.117398_b47) 2004; 70 Albert (10.1016/j.chaos.2025.117398_b7) 2004; 69 Song (10.1016/j.chaos.2025.117398_b21) 2006; 2 Kim (10.1016/j.chaos.2025.117398_b24) 2007; 75 Villegas (10.1016/j.chaos.2025.117398_b26) 2022; 4 Strogatz (10.1016/j.chaos.2025.117398_b1) 2001; 410 Kivelä (10.1016/j.chaos.2025.117398_b45) 2014; 2 Lee (10.1016/j.chaos.2025.117398_b10) 2002; 298 Buzsáki (10.1016/j.chaos.2025.117398_b53) 2006 Wilson (10.1016/j.chaos.2025.117398_b15) 1975; 47 Teixeira (10.1016/j.chaos.2025.117398_b41) 2006; 34 Dörfler (10.1016/j.chaos.2025.117398_b50) 2014; 50 Goh (10.1016/j.chaos.2025.117398_b36) 2003; 91 Alon (10.1016/j.chaos.2025.117398_b12) 2019 Davidson (10.1016/j.chaos.2025.117398_b11) 2010 10.1016/j.chaos.2025.117398_b25 Ravasz (10.1016/j.chaos.2025.117398_b6) 2003; 67 Orbach (10.1016/j.chaos.2025.117398_b39) 1986; 231 Ghavasieh (10.1016/j.chaos.2025.117398_b29) 2024; 20 Goh (10.1016/j.chaos.2025.117398_b22) 2006; 96 Watts (10.1016/j.chaos.2025.117398_b8) 1998; 393 Villegas (10.1016/j.chaos.2025.117398_b28) 2025; 7 Alexander (10.1016/j.chaos.2025.117398_b38) 1982; 43 Buldyrev (10.1016/j.chaos.2025.117398_b52) 2010; 464 Jung (10.1016/j.chaos.2025.117398_b43) 2002; 65 May (10.1016/j.chaos.2025.117398_b54) 1972; 238 Barabási (10.1016/j.chaos.2025.117398_b18) 2009; 325 Song (10.1016/j.chaos.2025.117398_b20) 2005; 433 Havlin (10.1016/j.chaos.2025.117398_b37) 1987; 36 Wilson (10.1016/j.chaos.2025.117398_b16) 1983; 55 Holme (10.1016/j.chaos.2025.117398_b44) 2012; 519 Arenas (10.1016/j.chaos.2025.117398_b49) 2008; 469 Schweitzer (10.1016/j.chaos.2025.117398_b55) 2009; 325 Newman (10.1016/j.chaos.2025.117398_b3) 2003; 45 Caldarelli (10.1016/j.chaos.2025.117398_b32) 2024; 2024 Pastor-Satorras (10.1016/j.chaos.2025.117398_b9) 2004 Jeong (10.1016/j.chaos.2025.117398_b5) 2001; 411 Nurisso (10.1016/j.chaos.2025.117398_b31) 2025 Boccaletti (10.1016/j.chaos.2025.117398_b46) 2014; 544 Gabrielli (10.1016/j.chaos.2025.117398_b33) 2025 Sporns (10.1016/j.chaos.2025.117398_b4) 2016 Watts (10.1016/j.chaos.2025.117398_b51) 2002; 99 |
| References_xml | – volume: 96 year: 2006 ident: b22 publication-title: Phys Rev Lett – reference: The CAIDA Project. 2024, – volume: 2 start-page: 263 year: 1966 ident: b13 publication-title: Phys Phys Fiz – volume: 27 start-page: 1060 year: 2005 end-page: 1068 ident: b17 publication-title: BioEssays – volume: 67 year: 2003 ident: b6 publication-title: Phys Rev E – volume: 519 start-page: 97 year: 2012 end-page: 125 ident: b44 publication-title: Phys Rep – volume: 433 start-page: 392 year: 2005 end-page: 395 ident: b20 publication-title: Nature – volume: 9 start-page: 177 year: 2007 ident: b23 publication-title: New J Phys – volume: 70 year: 2004 ident: b47 publication-title: Phys Rev E – volume: 134 year: 2025 ident: b30 publication-title: Phys Rev Lett – volume: 75 year: 2007 ident: b24 publication-title: Phys Rev E – volume: 34 start-page: D446 year: 2006 end-page: D451 ident: b41 publication-title: Nucleic Acids Res – volume: 47 start-page: 773 year: 1975 ident: b15 publication-title: Rev Modern Phys – start-page: 114 year: 1996 end-page: 119 ident: b14 publication-title: 30 years of the Landau institute—selected papers – volume: 69 year: 2004 ident: b7 publication-title: Phys Rev E – volume: 7 year: 2025 ident: b28 publication-title: Phys Rev Res – volume: 99 start-page: 5766 year: 2002 end-page: 5771 ident: b51 publication-title: Proc Natl Acad Sci – year: 2010 ident: b11 publication-title: The regulatory genome: gene regulatory networks in development and evolution – volume: 2024 year: 2024 ident: b32 publication-title: J Stat Mech Theory Exp – volume: 50 start-page: 1539 year: 2014 end-page: 1564 ident: b50 publication-title: Automatica – volume: 64 year: 2001 ident: b35 publication-title: Phys Rev E – volume: 36 start-page: 695 year: 1987 end-page: 798 ident: b37 publication-title: Adv Phys – volume: 469 start-page: 93 year: 2008 end-page: 153 ident: b49 publication-title: Phys Rep – volume: 424 start-page: 175 year: 2006 end-page: 308 ident: b48 publication-title: Phys Rep – year: 2019 ident: b12 publication-title: An introduction to systems biology: design principles of biological circuits – year: 2006 ident: b53 publication-title: Rhythms of the brain – volume: 45 start-page: 167 year: 2003 end-page: 256 ident: b3 publication-title: SIAM Rev – volume: 43 start-page: 625 year: 1982 end-page: 631 ident: b38 publication-title: J Physique Lett – volume: 411 start-page: 41 year: 2001 end-page: 42 ident: b5 publication-title: Nature – volume: 90 year: 2003 ident: b19 publication-title: Phys Rev Lett – reference: . [Accessed 01 January 2025]. – volume: 231 start-page: 814 year: 1986 end-page: 819 ident: b39 publication-title: Science – volume: 2 start-page: 203 year: 2014 end-page: 271 ident: b45 publication-title: J Complex Netw – volume: 14 year: 2019 ident: b42 publication-title: PLoS One – volume: 91 year: 2003 ident: b36 publication-title: Phys Rev Lett – volume: 238 start-page: 413 year: 1972 end-page: 414 ident: b54 publication-title: Nature – volume: 298 start-page: 799 year: 2002 end-page: 804 ident: b10 publication-title: Science – volume: 74 start-page: 47 year: 2002 ident: b2 publication-title: Rev Modern Phys – year: 2004 ident: b9 publication-title: Evolution and structure of the internet: A statistical physics approach – volume: 4 year: 2022 ident: b26 publication-title: Phys Rev Res – volume: 55 start-page: 583 year: 1983 ident: b16 publication-title: Rev Modern Phys – volume: 393 start-page: 440 year: 1998 end-page: 442 ident: b8 publication-title: Nature – volume: 17 start-page: 272 year: 1984 ident: b34 publication-title: J Korean Phys Soc – reference: Lepek M, Makulski K, Fronczak A, Fronczak P. 2025, arXiv preprint – volume: 19 start-page: 445 year: 2023 end-page: 450 ident: b27 publication-title: Nat Phys – volume: 544 start-page: 1 year: 2014 end-page: 122 ident: b46 publication-title: Phys Rep – volume: 410 start-page: 268 year: 2001 end-page: 276 ident: b1 publication-title: Nature – reference: . – year: 2016 ident: b4 publication-title: Networks of the brain – start-page: 1 year: 2025 end-page: 8 ident: b31 publication-title: Nat Phys – start-page: 1 year: 2025 end-page: 17 ident: b33 publication-title: Nat Rev Phys – volume: 2 start-page: 275 year: 2006 end-page: 281 ident: b21 publication-title: Nat Phys – volume: 65 year: 2002 ident: b43 publication-title: Phys Rev E – volume: 464 start-page: 1025 year: 2010 end-page: 1028 ident: b52 publication-title: Nature – volume: 325 start-page: 422 year: 2009 end-page: 425 ident: b55 publication-title: Science – volume: 325 start-page: 412 year: 2009 end-page: 413 ident: b18 publication-title: Science – volume: 20 start-page: 512 year: 2024 end-page: 519 ident: b29 publication-title: Nat Phys – volume: 27 start-page: 1060 issue: 10 year: 2005 ident: 10.1016/j.chaos.2025.117398_b17 publication-title: BioEssays doi: 10.1002/bies.20294 – volume: 238 start-page: 413 issue: 5364 year: 1972 ident: 10.1016/j.chaos.2025.117398_b54 publication-title: Nature doi: 10.1038/238413a0 – volume: 45 start-page: 167 issue: 2 year: 2003 ident: 10.1016/j.chaos.2025.117398_b3 publication-title: SIAM Rev doi: 10.1137/S003614450342480 – volume: 433 start-page: 392 issue: 7024 year: 2005 ident: 10.1016/j.chaos.2025.117398_b20 publication-title: Nature doi: 10.1038/nature03248 – year: 2016 ident: 10.1016/j.chaos.2025.117398_b4 – volume: 519 start-page: 97 issue: 3 year: 2012 ident: 10.1016/j.chaos.2025.117398_b44 publication-title: Phys Rep doi: 10.1016/j.physrep.2012.03.001 – volume: 91 issue: 14 year: 2003 ident: 10.1016/j.chaos.2025.117398_b36 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.91.148701 – volume: 2 start-page: 275 issue: 4 year: 2006 ident: 10.1016/j.chaos.2025.117398_b21 publication-title: Nat Phys doi: 10.1038/nphys266 – volume: 464 start-page: 1025 issue: 7291 year: 2010 ident: 10.1016/j.chaos.2025.117398_b52 publication-title: Nature doi: 10.1038/nature08932 – volume: 325 start-page: 412 issue: 5939 year: 2009 ident: 10.1016/j.chaos.2025.117398_b18 publication-title: Science doi: 10.1126/science.1173299 – volume: 20 start-page: 512 issue: 3 year: 2024 ident: 10.1016/j.chaos.2025.117398_b29 publication-title: Nat Phys doi: 10.1038/s41567-023-02330-x – volume: 99 start-page: 5766 issue: 9 year: 2002 ident: 10.1016/j.chaos.2025.117398_b51 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.082090499 – volume: 17 start-page: 272 issue: 3 year: 1984 ident: 10.1016/j.chaos.2025.117398_b34 publication-title: J Korean Phys Soc – volume: 424 start-page: 175 issue: 4–5 year: 2006 ident: 10.1016/j.chaos.2025.117398_b48 publication-title: Phys Rep doi: 10.1016/j.physrep.2005.10.009 – volume: 544 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.chaos.2025.117398_b46 publication-title: Phys Rep doi: 10.1016/j.physrep.2014.07.001 – year: 2010 ident: 10.1016/j.chaos.2025.117398_b11 – volume: 325 start-page: 422 issue: 5939 year: 2009 ident: 10.1016/j.chaos.2025.117398_b55 publication-title: Science doi: 10.1126/science.1173644 – volume: 47 start-page: 773 issue: 4 year: 1975 ident: 10.1016/j.chaos.2025.117398_b15 publication-title: Rev Modern Phys doi: 10.1103/RevModPhys.47.773 – ident: 10.1016/j.chaos.2025.117398_b25 – volume: 64 issue: 4 year: 2001 ident: 10.1016/j.chaos.2025.117398_b35 publication-title: Phys Rev E doi: 10.1103/PhysRevE.64.046118 – volume: 9 start-page: 177 issue: 6 year: 2007 ident: 10.1016/j.chaos.2025.117398_b23 publication-title: New J Phys doi: 10.1088/1367-2630/9/6/177 – volume: 96 issue: 1 year: 2006 ident: 10.1016/j.chaos.2025.117398_b22 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.96.018701 – volume: 90 issue: 5 year: 2003 ident: 10.1016/j.chaos.2025.117398_b19 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.90.058701 – volume: 2 start-page: 263 issue: 6 year: 1966 ident: 10.1016/j.chaos.2025.117398_b13 publication-title: Phys Phys Fiz – volume: 36 start-page: 695 issue: 6 year: 1987 ident: 10.1016/j.chaos.2025.117398_b37 publication-title: Adv Phys doi: 10.1080/00018738700101072 – volume: 74 start-page: 47 issue: 1 year: 2002 ident: 10.1016/j.chaos.2025.117398_b2 publication-title: Rev Modern Phys doi: 10.1103/RevModPhys.74.47 – volume: 55 start-page: 583 issue: 3 year: 1983 ident: 10.1016/j.chaos.2025.117398_b16 publication-title: Rev Modern Phys doi: 10.1103/RevModPhys.55.583 – year: 2004 ident: 10.1016/j.chaos.2025.117398_b9 – volume: 65 issue: 5 year: 2002 ident: 10.1016/j.chaos.2025.117398_b43 publication-title: Phys Rev E doi: 10.1103/PhysRevE.65.056101 – ident: 10.1016/j.chaos.2025.117398_b40 – volume: 67 issue: 2 year: 2003 ident: 10.1016/j.chaos.2025.117398_b6 publication-title: Phys Rev E doi: 10.1103/PhysRevE.67.026112 – volume: 7 issue: 1 year: 2025 ident: 10.1016/j.chaos.2025.117398_b28 publication-title: Phys Rev Res doi: 10.1103/PhysRevResearch.7.013065 – volume: 43 start-page: 625 issue: 17 year: 1982 ident: 10.1016/j.chaos.2025.117398_b38 publication-title: J Physique Lett doi: 10.1051/jphyslet:019820043017062500 – volume: 2024 issue: 8 year: 2024 ident: 10.1016/j.chaos.2025.117398_b32 publication-title: J Stat Mech Theory Exp doi: 10.1088/1742-5468/ad57b1 – start-page: 114 year: 1996 ident: 10.1016/j.chaos.2025.117398_b14 – volume: 14 issue: 3 year: 2019 ident: 10.1016/j.chaos.2025.117398_b42 publication-title: PLoS One doi: 10.1371/journal.pone.0213550 – year: 2006 ident: 10.1016/j.chaos.2025.117398_b53 – volume: 393 start-page: 440 issue: 6684 year: 1998 ident: 10.1016/j.chaos.2025.117398_b8 publication-title: Nature doi: 10.1038/30918 – volume: 34 start-page: D446 issue: suppl_1 year: 2006 ident: 10.1016/j.chaos.2025.117398_b41 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkj013 – volume: 298 start-page: 799 issue: 5594 year: 2002 ident: 10.1016/j.chaos.2025.117398_b10 publication-title: Science doi: 10.1126/science.1075090 – volume: 69 issue: 2 year: 2004 ident: 10.1016/j.chaos.2025.117398_b7 publication-title: Phys Rev E doi: 10.1103/PhysRevE.69.025103 – volume: 50 start-page: 1539 issue: 6 year: 2014 ident: 10.1016/j.chaos.2025.117398_b50 publication-title: Automatica doi: 10.1016/j.automatica.2014.04.012 – volume: 134 issue: 5 year: 2025 ident: 10.1016/j.chaos.2025.117398_b30 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.134.057401 – volume: 4 issue: 3 year: 2022 ident: 10.1016/j.chaos.2025.117398_b26 publication-title: Phys Rev Res doi: 10.1103/PhysRevResearch.4.033196 – volume: 75 issue: 1 year: 2007 ident: 10.1016/j.chaos.2025.117398_b24 publication-title: Phys Rev E – volume: 231 start-page: 814 issue: 4740 year: 1986 ident: 10.1016/j.chaos.2025.117398_b39 publication-title: Science doi: 10.1126/science.231.4740.814 – volume: 410 start-page: 268 issue: 6825 year: 2001 ident: 10.1016/j.chaos.2025.117398_b1 publication-title: Nature doi: 10.1038/35065725 – volume: 70 issue: 5 year: 2004 ident: 10.1016/j.chaos.2025.117398_b47 publication-title: Phys Rev E – start-page: 1 year: 2025 ident: 10.1016/j.chaos.2025.117398_b31 publication-title: Nat Phys – start-page: 1 year: 2025 ident: 10.1016/j.chaos.2025.117398_b33 publication-title: Nat Rev Phys – volume: 411 start-page: 41 issue: 6833 year: 2001 ident: 10.1016/j.chaos.2025.117398_b5 publication-title: Nature doi: 10.1038/35075138 – volume: 2 start-page: 203 issue: 3 year: 2014 ident: 10.1016/j.chaos.2025.117398_b45 publication-title: J Complex Netw doi: 10.1093/comnet/cnu016 – volume: 469 start-page: 93 issue: 3 year: 2008 ident: 10.1016/j.chaos.2025.117398_b49 publication-title: Phys Rep doi: 10.1016/j.physrep.2008.09.002 – year: 2019 ident: 10.1016/j.chaos.2025.117398_b12 – volume: 19 start-page: 445 issue: 3 year: 2023 ident: 10.1016/j.chaos.2025.117398_b27 publication-title: Nat Phys doi: 10.1038/s41567-022-01866-8 |
| SSID | ssj0001062 |
| Score | 2.4723918 |
| Snippet | Network renormalization has traditionally relied on spatial adjacency—grouping nearby nodes together—but this approach fails to capture the dynamical... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 117398 |
| SubjectTerms | Dynamical Correlations Long-Range Connections Meta-graph algorithm Multiscaling behaviors Spectral space renormalization |
| Title | From spatial to spectral: Network renormalization via dynamical correlations |
| URI | https://dx.doi.org/10.1016/j.chaos.2025.117398 |
| Volume | 201 |
| WOSCitedRecordID | wos001599100300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0960-0779 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0001062 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Ra9swEBYj3UP3UNauY-26oYc9tKQOtmVb1t660NKNNgzWQd6MLEukJTjFTkL373tnyU5Ix-gGezHBINncJ18-6b67I-QT1wGTzPiekEx6kQoKLy8K30sVfB6axdoEedNsgo9G6XgsvruOgnXTToCXZfrwIO7_K9RwD8DG1Nm_gLubFG7AbwAdrgA7XJ8F_AUmjNQolEYd-azf5FJWcop7_5EVffcrXSJXnbokzP7yVvYL25u-qRdSVa1Gbp28DifSivJqFM2hxgZP3Q3mWcnpKihk-zMPMYni8tdiFeWXE-tXvgzWjxrCeEO20eXArARHzUFi4ns-ty1hWp8a2mFP_LM9KrgbKHzhAT4Do8bMNqLeKHz9A2fGiUOMfQaYR7cV8likPbJ19vV8_K37x4VtbRMtat-krS7V6PiePOr3DGSNVdy8JjtuO0DPLIy75IUu98ir666Wbr1Hdp37remxqxF-8oZcIcrUoUznM9qi_Jk6jOkGxhQwph3GdB3jffLz4vxmeOm5xhiegh3g3EuKSCVBEYeFwSi4AqcsDFCxJMyNVsAxZcyFLkSUmlTnjCnmC8kjlQJd1spE7C3plbNSvyNUqhy-1tBEHJgz0E0ZGQOUk3NuRBoEyQE5bY2V3dv6J1krDLzLGttmaNvM2vaAJK1BM0fhLDXLYAX8aeDhvw58T7ZXS_WI9ObVQn8gL9VyfltXH91KeQQFXWxX |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+spatial+to+spectral%3A+Network+renormalization+via+dynamical+correlations&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Kim%2C+Cook+Hyun&rft.au=Kahng%2C+B.&rft.date=2025-12-01&rft.pub=Elsevier+Ltd&rft.issn=0960-0779&rft.volume=201&rft_id=info:doi/10.1016%2Fj.chaos.2025.117398&rft.externalDocID=S0960077925014110 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon |