From spatial to spectral: Network renormalization via dynamical correlations

Network renormalization has traditionally relied on spatial adjacency—grouping nearby nodes together—but this approach fails to capture the dynamical correlations that govern system-wide behavior in scale-free networks. We present a spectral-space renormalization framework that enables coarse-graini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos, solitons and fractals Jg. 201; S. 117398
Hauptverfasser: Kim, Cook Hyun, Kahng, B.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.12.2025
Schlagworte:
ISSN:0960-0779
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Network renormalization has traditionally relied on spatial adjacency—grouping nearby nodes together—but this approach fails to capture the dynamical correlations that govern system-wide behavior in scale-free networks. We present a spectral-space renormalization framework that enables coarse-graining based on dynamical coherence rather than geometric proximity. Within this framework, diffusion processes naturally constitute renormalization transformations in spectral space, yielding scaling relations that connect network dimensions with critical exponents. Building on this foundation, we develop a meta-graph reconstruction algorithm that systematically maps spectral information back into explicit topology while preserving dynamical correlations. The resulting renormalized networks uncover organizational structures that remain invisible to adjacency-based methods, including long-range correlations between structurally distant nodes that reflect coherent dynamical responses. Applications to Internet topologies, yeast regulatory networks, and European power grids demonstrate the broad applicability of this framework. The algorithm consistently extracts fractal (df), spectral (ds), and random-walk (dw) dimensions with theoretical consistency across diverse systems. In power grids, it further reveals hidden failure pathways, exposing transcontinental correlations that match documented cascade patterns. In Internet networks, it reveals multiscaling behavior as the topology evolves over time. By shifting network renormalization from spatial geometry to dynamical flow, this work provides a unified foundation for understanding how information, energy, and failures propagate through complex systems, with direct implications for infrastructure resilience and network vulnerability assessment. •Spectral RG coarse-grains by dynamical coherence rather than spatial adjacency.•Diffusion on networks is proven to be an RG transformation in spectral space.•The meta-graph algorithm reconstructs topology and extracts network dimensions.•Internet AS networks show hub cores and scale-free peripheries with distinct scaling.•Denmark–Spain correlation reveals hidden cascade pathways in European power grids.
AbstractList Network renormalization has traditionally relied on spatial adjacency—grouping nearby nodes together—but this approach fails to capture the dynamical correlations that govern system-wide behavior in scale-free networks. We present a spectral-space renormalization framework that enables coarse-graining based on dynamical coherence rather than geometric proximity. Within this framework, diffusion processes naturally constitute renormalization transformations in spectral space, yielding scaling relations that connect network dimensions with critical exponents. Building on this foundation, we develop a meta-graph reconstruction algorithm that systematically maps spectral information back into explicit topology while preserving dynamical correlations. The resulting renormalized networks uncover organizational structures that remain invisible to adjacency-based methods, including long-range correlations between structurally distant nodes that reflect coherent dynamical responses. Applications to Internet topologies, yeast regulatory networks, and European power grids demonstrate the broad applicability of this framework. The algorithm consistently extracts fractal (df), spectral (ds), and random-walk (dw) dimensions with theoretical consistency across diverse systems. In power grids, it further reveals hidden failure pathways, exposing transcontinental correlations that match documented cascade patterns. In Internet networks, it reveals multiscaling behavior as the topology evolves over time. By shifting network renormalization from spatial geometry to dynamical flow, this work provides a unified foundation for understanding how information, energy, and failures propagate through complex systems, with direct implications for infrastructure resilience and network vulnerability assessment. •Spectral RG coarse-grains by dynamical coherence rather than spatial adjacency.•Diffusion on networks is proven to be an RG transformation in spectral space.•The meta-graph algorithm reconstructs topology and extracts network dimensions.•Internet AS networks show hub cores and scale-free peripheries with distinct scaling.•Denmark–Spain correlation reveals hidden cascade pathways in European power grids.
ArticleNumber 117398
Author Kahng, B.
Kim, Cook Hyun
Author_xml – sequence: 1
  givenname: Cook Hyun
  orcidid: 0009-0001-1062-9094
  surname: Kim
  fullname: Kim, Cook Hyun
– sequence: 2
  givenname: B.
  surname: Kahng
  fullname: Kahng, B.
  email: bkahng@kentech.ac.kr
BookMark eNp9kE1OwzAQRr0oEm3hBGxygQT_J0ZigSoKSBVsYG259li4JHFlR0Xl9KQNa1Yz0nxvNPMWaNbHHhC6IbgimMjbXWU_TcwVxVRUhNRMNTM0x0riEte1ukSLnHcYY4IlnaPNOsWuyHszBNMWQxxbsEMy7V3xCsN3TF9Fgj6mzrThZwzFvjgEU7hjb7pgR8TGlKA9T_IVuvCmzXD9V5foY_34vnouN29PL6uHTWmpEEMpHbeSOEGdV5hwyyhVnnIi6daDlZwZUStwije-gS1jlmFlam4bwQVYz9kSsWmvTTHnBF7vU-hMOmqC9UmC3umzBH2SoCcJI3U_UTCedgiQdLYBegsupPFn7WL4l_8FBKNriA
Cites_doi 10.1002/bies.20294
10.1038/238413a0
10.1137/S003614450342480
10.1038/nature03248
10.1016/j.physrep.2012.03.001
10.1103/PhysRevLett.91.148701
10.1038/nphys266
10.1038/nature08932
10.1126/science.1173299
10.1038/s41567-023-02330-x
10.1073/pnas.082090499
10.1016/j.physrep.2005.10.009
10.1016/j.physrep.2014.07.001
10.1126/science.1173644
10.1103/RevModPhys.47.773
10.1103/PhysRevE.64.046118
10.1088/1367-2630/9/6/177
10.1103/PhysRevLett.96.018701
10.1103/PhysRevLett.90.058701
10.1080/00018738700101072
10.1103/RevModPhys.74.47
10.1103/RevModPhys.55.583
10.1103/PhysRevE.65.056101
10.1103/PhysRevE.67.026112
10.1103/PhysRevResearch.7.013065
10.1051/jphyslet:019820043017062500
10.1088/1742-5468/ad57b1
10.1371/journal.pone.0213550
10.1038/30918
10.1093/nar/gkj013
10.1126/science.1075090
10.1103/PhysRevE.69.025103
10.1016/j.automatica.2014.04.012
10.1103/PhysRevLett.134.057401
10.1103/PhysRevResearch.4.033196
10.1126/science.231.4740.814
10.1038/35065725
10.1038/35075138
10.1093/comnet/cnu016
10.1016/j.physrep.2008.09.002
10.1038/s41567-022-01866-8
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.chaos.2025.117398
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
ExternalDocumentID 10_1016_j_chaos_2025_117398
S0960077925014110
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9DU
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ABNEU
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLZ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG9
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WUQ
XPP
ZY4
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c255t-6d4c61d52df9014c3229f24162bfec643a579ed948f8eb33c309a74c8545ecf43
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001599100300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-0779
IngestDate Sat Nov 29 06:51:07 EST 2025
Wed Dec 10 14:26:10 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Multiscaling behaviors
Dynamical Correlations
Long-Range Connections
Spectral space renormalization
Meta-graph algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c255t-6d4c61d52df9014c3229f24162bfec643a579ed948f8eb33c309a74c8545ecf43
ORCID 0009-0001-1062-9094
ParticipantIDs crossref_primary_10_1016_j_chaos_2025_117398
elsevier_sciencedirect_doi_10_1016_j_chaos_2025_117398
PublicationCentury 2000
PublicationDate December 2025
2025-12-00
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: December 2025
PublicationDecade 2020
PublicationTitle Chaos, solitons and fractals
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References [Accessed 01 January 2025].
Ravasz, Barabási (b6) 2003; 67
Kim, Goh, Salvi, Oh, Kahng, Kim (b24) 2007; 75
Villegas, Gabrielli, Poggialini, Gili (b28) 2025; 7
Kadanoff (b13) 1966; 2
May (b54) 1972; 238
Song, Havlin, Makse (b21) 2006; 2
Buzsáki (b53) 2006
Davidson (b11) 2010
Ghavasieh, De Domenico (b29) 2024; 20
Boccaletti, Latora, Moreno, Chavez, Hwang (b48) 2006; 424
Alexander, Orbach (b38) 1982; 43
Teixeira, Monteiro, Jain, Tenreiro, Fernandes, Mira, Alenquer, Freitas, Oliveira, Sa-Correia (b41) 2006; 34
Kim (b34) 1984; 17
Alon (b12) 2019
Newman (b47) 2004; 70
Watts (b51) 2002; 99
Lepek M, Makulski K, Fronczak A, Fronczak P. 2025, arXiv preprint
The CAIDA Project. 2024
Pagnier, Jacquod (b42) 2019; 14
Dörfler, Bullo (b50) 2014; 50
Barabási (b18) 2009; 325
.
Burda, Correia, Krzywicki (b35) 2001; 64
Kivelä, Arenas, Barthelemy, Gleeson, Moreno, Porter (b45) 2014; 2
Nurisso, Morandini, Lucas, Vaccarino, Gili, Petri (b31) 2025
Jung, Kim, Kahng (b43) 2002; 65
Jeong, Mason, Barabási, Oltvai (b5) 2001; 411
Arenas, Díaz-Guilera, Kurths, Moreno, Zhou (b49) 2008; 469
Albert, Barabási (b2) 2002; 74
Wilson (b16) 1983; 55
Sporns (b4) 2016
Lee, Rinaldi, Robert, Odom, Bar-Joseph, Gerber, Hannett, Harbison, Thompson, Simon (b10) 2002; 298
Cohen, Havlin (b19) 2003; 90
Fox Keller (b17) 2005; 27
Goh, Lee, Kahng, Kim (b36) 2003; 91
Strogatz (b1) 2001; 410
Kim, Goh, Kahng, Kim (b23) 2007; 9
Migdal (b14) 1996
Wilson (b15) 1975; 47
Gabrielli, Garlaschelli, Patil, Serrano (b33) 2025
Holme, Saramäki (b44) 2012; 519
Schweitzer, Fagiolo, Sornette, Vega-Redondo, Vespignani, White (b55) 2009; 325
Albert, Albert, Nakarado (b7) 2004; 69
Buldyrev, Parshani, Paul, Stanley, Havlin (b52) 2010; 464
Newman (b3) 2003; 45
Havlin, Ben-Avraham (b37) 1987; 36
Villegas, Gabrielli, Santucci, Caldarelli, Gili (b26) 2022; 4
Watts, Strogatz (b8) 1998; 393
Goh, Salvi, Kahng, Kim (b22) 2006; 96
Pastor-Satorras, Vespignani (b9) 2004
Poggialini, Villegas, Muñoz, Gabrielli (b30) 2025; 134
Caldarelli, Gabrielli, Gili, Villegas (b32) 2024; 2024
Orbach (b39) 1986; 231
Boccaletti, Bianconi, Criado, Del Genio, Gómez-Gardenes, Romance, Sendina-Nadal, Wang, Zanin (b46) 2014; 544
Villegas, Gili, Caldarelli, Gabrielli (b27) 2023; 19
Song, Havlin, Makse (b20) 2005; 433
Migdal (10.1016/j.chaos.2025.117398_b14) 1996
10.1016/j.chaos.2025.117398_b40
Boccaletti (10.1016/j.chaos.2025.117398_b48) 2006; 424
Fox Keller (10.1016/j.chaos.2025.117398_b17) 2005; 27
Villegas (10.1016/j.chaos.2025.117398_b27) 2023; 19
Kim (10.1016/j.chaos.2025.117398_b34) 1984; 17
Cohen (10.1016/j.chaos.2025.117398_b19) 2003; 90
Albert (10.1016/j.chaos.2025.117398_b2) 2002; 74
Pagnier (10.1016/j.chaos.2025.117398_b42) 2019; 14
Kadanoff (10.1016/j.chaos.2025.117398_b13) 1966; 2
Kim (10.1016/j.chaos.2025.117398_b23) 2007; 9
Burda (10.1016/j.chaos.2025.117398_b35) 2001; 64
Poggialini (10.1016/j.chaos.2025.117398_b30) 2025; 134
Newman (10.1016/j.chaos.2025.117398_b47) 2004; 70
Albert (10.1016/j.chaos.2025.117398_b7) 2004; 69
Song (10.1016/j.chaos.2025.117398_b21) 2006; 2
Kim (10.1016/j.chaos.2025.117398_b24) 2007; 75
Villegas (10.1016/j.chaos.2025.117398_b26) 2022; 4
Strogatz (10.1016/j.chaos.2025.117398_b1) 2001; 410
Kivelä (10.1016/j.chaos.2025.117398_b45) 2014; 2
Lee (10.1016/j.chaos.2025.117398_b10) 2002; 298
Buzsáki (10.1016/j.chaos.2025.117398_b53) 2006
Wilson (10.1016/j.chaos.2025.117398_b15) 1975; 47
Teixeira (10.1016/j.chaos.2025.117398_b41) 2006; 34
Dörfler (10.1016/j.chaos.2025.117398_b50) 2014; 50
Goh (10.1016/j.chaos.2025.117398_b36) 2003; 91
Alon (10.1016/j.chaos.2025.117398_b12) 2019
Davidson (10.1016/j.chaos.2025.117398_b11) 2010
10.1016/j.chaos.2025.117398_b25
Ravasz (10.1016/j.chaos.2025.117398_b6) 2003; 67
Orbach (10.1016/j.chaos.2025.117398_b39) 1986; 231
Ghavasieh (10.1016/j.chaos.2025.117398_b29) 2024; 20
Goh (10.1016/j.chaos.2025.117398_b22) 2006; 96
Watts (10.1016/j.chaos.2025.117398_b8) 1998; 393
Villegas (10.1016/j.chaos.2025.117398_b28) 2025; 7
Alexander (10.1016/j.chaos.2025.117398_b38) 1982; 43
Buldyrev (10.1016/j.chaos.2025.117398_b52) 2010; 464
Jung (10.1016/j.chaos.2025.117398_b43) 2002; 65
May (10.1016/j.chaos.2025.117398_b54) 1972; 238
Barabási (10.1016/j.chaos.2025.117398_b18) 2009; 325
Song (10.1016/j.chaos.2025.117398_b20) 2005; 433
Havlin (10.1016/j.chaos.2025.117398_b37) 1987; 36
Wilson (10.1016/j.chaos.2025.117398_b16) 1983; 55
Holme (10.1016/j.chaos.2025.117398_b44) 2012; 519
Arenas (10.1016/j.chaos.2025.117398_b49) 2008; 469
Schweitzer (10.1016/j.chaos.2025.117398_b55) 2009; 325
Newman (10.1016/j.chaos.2025.117398_b3) 2003; 45
Caldarelli (10.1016/j.chaos.2025.117398_b32) 2024; 2024
Pastor-Satorras (10.1016/j.chaos.2025.117398_b9) 2004
Jeong (10.1016/j.chaos.2025.117398_b5) 2001; 411
Nurisso (10.1016/j.chaos.2025.117398_b31) 2025
Boccaletti (10.1016/j.chaos.2025.117398_b46) 2014; 544
Gabrielli (10.1016/j.chaos.2025.117398_b33) 2025
Sporns (10.1016/j.chaos.2025.117398_b4) 2016
Watts (10.1016/j.chaos.2025.117398_b51) 2002; 99
References_xml – volume: 96
  year: 2006
  ident: b22
  publication-title: Phys Rev Lett
– reference: The CAIDA Project. 2024,
– volume: 2
  start-page: 263
  year: 1966
  ident: b13
  publication-title: Phys Phys Fiz
– volume: 27
  start-page: 1060
  year: 2005
  end-page: 1068
  ident: b17
  publication-title: BioEssays
– volume: 67
  year: 2003
  ident: b6
  publication-title: Phys Rev E
– volume: 519
  start-page: 97
  year: 2012
  end-page: 125
  ident: b44
  publication-title: Phys Rep
– volume: 433
  start-page: 392
  year: 2005
  end-page: 395
  ident: b20
  publication-title: Nature
– volume: 9
  start-page: 177
  year: 2007
  ident: b23
  publication-title: New J Phys
– volume: 70
  year: 2004
  ident: b47
  publication-title: Phys Rev E
– volume: 134
  year: 2025
  ident: b30
  publication-title: Phys Rev Lett
– volume: 75
  year: 2007
  ident: b24
  publication-title: Phys Rev E
– volume: 34
  start-page: D446
  year: 2006
  end-page: D451
  ident: b41
  publication-title: Nucleic Acids Res
– volume: 47
  start-page: 773
  year: 1975
  ident: b15
  publication-title: Rev Modern Phys
– start-page: 114
  year: 1996
  end-page: 119
  ident: b14
  publication-title: 30 years of the Landau institute—selected papers
– volume: 69
  year: 2004
  ident: b7
  publication-title: Phys Rev E
– volume: 7
  year: 2025
  ident: b28
  publication-title: Phys Rev Res
– volume: 99
  start-page: 5766
  year: 2002
  end-page: 5771
  ident: b51
  publication-title: Proc Natl Acad Sci
– year: 2010
  ident: b11
  publication-title: The regulatory genome: gene regulatory networks in development and evolution
– volume: 2024
  year: 2024
  ident: b32
  publication-title: J Stat Mech Theory Exp
– volume: 50
  start-page: 1539
  year: 2014
  end-page: 1564
  ident: b50
  publication-title: Automatica
– volume: 64
  year: 2001
  ident: b35
  publication-title: Phys Rev E
– volume: 36
  start-page: 695
  year: 1987
  end-page: 798
  ident: b37
  publication-title: Adv Phys
– volume: 469
  start-page: 93
  year: 2008
  end-page: 153
  ident: b49
  publication-title: Phys Rep
– volume: 424
  start-page: 175
  year: 2006
  end-page: 308
  ident: b48
  publication-title: Phys Rep
– year: 2019
  ident: b12
  publication-title: An introduction to systems biology: design principles of biological circuits
– year: 2006
  ident: b53
  publication-title: Rhythms of the brain
– volume: 45
  start-page: 167
  year: 2003
  end-page: 256
  ident: b3
  publication-title: SIAM Rev
– volume: 43
  start-page: 625
  year: 1982
  end-page: 631
  ident: b38
  publication-title: J Physique Lett
– volume: 411
  start-page: 41
  year: 2001
  end-page: 42
  ident: b5
  publication-title: Nature
– volume: 90
  year: 2003
  ident: b19
  publication-title: Phys Rev Lett
– reference: . [Accessed 01 January 2025].
– volume: 231
  start-page: 814
  year: 1986
  end-page: 819
  ident: b39
  publication-title: Science
– volume: 2
  start-page: 203
  year: 2014
  end-page: 271
  ident: b45
  publication-title: J Complex Netw
– volume: 14
  year: 2019
  ident: b42
  publication-title: PLoS One
– volume: 91
  year: 2003
  ident: b36
  publication-title: Phys Rev Lett
– volume: 238
  start-page: 413
  year: 1972
  end-page: 414
  ident: b54
  publication-title: Nature
– volume: 298
  start-page: 799
  year: 2002
  end-page: 804
  ident: b10
  publication-title: Science
– volume: 74
  start-page: 47
  year: 2002
  ident: b2
  publication-title: Rev Modern Phys
– year: 2004
  ident: b9
  publication-title: Evolution and structure of the internet: A statistical physics approach
– volume: 4
  year: 2022
  ident: b26
  publication-title: Phys Rev Res
– volume: 55
  start-page: 583
  year: 1983
  ident: b16
  publication-title: Rev Modern Phys
– volume: 393
  start-page: 440
  year: 1998
  end-page: 442
  ident: b8
  publication-title: Nature
– volume: 17
  start-page: 272
  year: 1984
  ident: b34
  publication-title: J Korean Phys Soc
– reference: Lepek M, Makulski K, Fronczak A, Fronczak P. 2025, arXiv preprint
– volume: 19
  start-page: 445
  year: 2023
  end-page: 450
  ident: b27
  publication-title: Nat Phys
– volume: 544
  start-page: 1
  year: 2014
  end-page: 122
  ident: b46
  publication-title: Phys Rep
– volume: 410
  start-page: 268
  year: 2001
  end-page: 276
  ident: b1
  publication-title: Nature
– reference: .
– year: 2016
  ident: b4
  publication-title: Networks of the brain
– start-page: 1
  year: 2025
  end-page: 8
  ident: b31
  publication-title: Nat Phys
– start-page: 1
  year: 2025
  end-page: 17
  ident: b33
  publication-title: Nat Rev Phys
– volume: 2
  start-page: 275
  year: 2006
  end-page: 281
  ident: b21
  publication-title: Nat Phys
– volume: 65
  year: 2002
  ident: b43
  publication-title: Phys Rev E
– volume: 464
  start-page: 1025
  year: 2010
  end-page: 1028
  ident: b52
  publication-title: Nature
– volume: 325
  start-page: 422
  year: 2009
  end-page: 425
  ident: b55
  publication-title: Science
– volume: 325
  start-page: 412
  year: 2009
  end-page: 413
  ident: b18
  publication-title: Science
– volume: 20
  start-page: 512
  year: 2024
  end-page: 519
  ident: b29
  publication-title: Nat Phys
– volume: 27
  start-page: 1060
  issue: 10
  year: 2005
  ident: 10.1016/j.chaos.2025.117398_b17
  publication-title: BioEssays
  doi: 10.1002/bies.20294
– volume: 238
  start-page: 413
  issue: 5364
  year: 1972
  ident: 10.1016/j.chaos.2025.117398_b54
  publication-title: Nature
  doi: 10.1038/238413a0
– volume: 45
  start-page: 167
  issue: 2
  year: 2003
  ident: 10.1016/j.chaos.2025.117398_b3
  publication-title: SIAM Rev
  doi: 10.1137/S003614450342480
– volume: 433
  start-page: 392
  issue: 7024
  year: 2005
  ident: 10.1016/j.chaos.2025.117398_b20
  publication-title: Nature
  doi: 10.1038/nature03248
– year: 2016
  ident: 10.1016/j.chaos.2025.117398_b4
– volume: 519
  start-page: 97
  issue: 3
  year: 2012
  ident: 10.1016/j.chaos.2025.117398_b44
  publication-title: Phys Rep
  doi: 10.1016/j.physrep.2012.03.001
– volume: 91
  issue: 14
  year: 2003
  ident: 10.1016/j.chaos.2025.117398_b36
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.91.148701
– volume: 2
  start-page: 275
  issue: 4
  year: 2006
  ident: 10.1016/j.chaos.2025.117398_b21
  publication-title: Nat Phys
  doi: 10.1038/nphys266
– volume: 464
  start-page: 1025
  issue: 7291
  year: 2010
  ident: 10.1016/j.chaos.2025.117398_b52
  publication-title: Nature
  doi: 10.1038/nature08932
– volume: 325
  start-page: 412
  issue: 5939
  year: 2009
  ident: 10.1016/j.chaos.2025.117398_b18
  publication-title: Science
  doi: 10.1126/science.1173299
– volume: 20
  start-page: 512
  issue: 3
  year: 2024
  ident: 10.1016/j.chaos.2025.117398_b29
  publication-title: Nat Phys
  doi: 10.1038/s41567-023-02330-x
– volume: 99
  start-page: 5766
  issue: 9
  year: 2002
  ident: 10.1016/j.chaos.2025.117398_b51
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.082090499
– volume: 17
  start-page: 272
  issue: 3
  year: 1984
  ident: 10.1016/j.chaos.2025.117398_b34
  publication-title: J Korean Phys Soc
– volume: 424
  start-page: 175
  issue: 4–5
  year: 2006
  ident: 10.1016/j.chaos.2025.117398_b48
  publication-title: Phys Rep
  doi: 10.1016/j.physrep.2005.10.009
– volume: 544
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.chaos.2025.117398_b46
  publication-title: Phys Rep
  doi: 10.1016/j.physrep.2014.07.001
– year: 2010
  ident: 10.1016/j.chaos.2025.117398_b11
– volume: 325
  start-page: 422
  issue: 5939
  year: 2009
  ident: 10.1016/j.chaos.2025.117398_b55
  publication-title: Science
  doi: 10.1126/science.1173644
– volume: 47
  start-page: 773
  issue: 4
  year: 1975
  ident: 10.1016/j.chaos.2025.117398_b15
  publication-title: Rev Modern Phys
  doi: 10.1103/RevModPhys.47.773
– ident: 10.1016/j.chaos.2025.117398_b25
– volume: 64
  issue: 4
  year: 2001
  ident: 10.1016/j.chaos.2025.117398_b35
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.64.046118
– volume: 9
  start-page: 177
  issue: 6
  year: 2007
  ident: 10.1016/j.chaos.2025.117398_b23
  publication-title: New J Phys
  doi: 10.1088/1367-2630/9/6/177
– volume: 96
  issue: 1
  year: 2006
  ident: 10.1016/j.chaos.2025.117398_b22
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.96.018701
– volume: 90
  issue: 5
  year: 2003
  ident: 10.1016/j.chaos.2025.117398_b19
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.90.058701
– volume: 2
  start-page: 263
  issue: 6
  year: 1966
  ident: 10.1016/j.chaos.2025.117398_b13
  publication-title: Phys Phys Fiz
– volume: 36
  start-page: 695
  issue: 6
  year: 1987
  ident: 10.1016/j.chaos.2025.117398_b37
  publication-title: Adv Phys
  doi: 10.1080/00018738700101072
– volume: 74
  start-page: 47
  issue: 1
  year: 2002
  ident: 10.1016/j.chaos.2025.117398_b2
  publication-title: Rev Modern Phys
  doi: 10.1103/RevModPhys.74.47
– volume: 55
  start-page: 583
  issue: 3
  year: 1983
  ident: 10.1016/j.chaos.2025.117398_b16
  publication-title: Rev Modern Phys
  doi: 10.1103/RevModPhys.55.583
– year: 2004
  ident: 10.1016/j.chaos.2025.117398_b9
– volume: 65
  issue: 5
  year: 2002
  ident: 10.1016/j.chaos.2025.117398_b43
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.65.056101
– ident: 10.1016/j.chaos.2025.117398_b40
– volume: 67
  issue: 2
  year: 2003
  ident: 10.1016/j.chaos.2025.117398_b6
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.67.026112
– volume: 7
  issue: 1
  year: 2025
  ident: 10.1016/j.chaos.2025.117398_b28
  publication-title: Phys Rev Res
  doi: 10.1103/PhysRevResearch.7.013065
– volume: 43
  start-page: 625
  issue: 17
  year: 1982
  ident: 10.1016/j.chaos.2025.117398_b38
  publication-title: J Physique Lett
  doi: 10.1051/jphyslet:019820043017062500
– volume: 2024
  issue: 8
  year: 2024
  ident: 10.1016/j.chaos.2025.117398_b32
  publication-title: J Stat Mech Theory Exp
  doi: 10.1088/1742-5468/ad57b1
– start-page: 114
  year: 1996
  ident: 10.1016/j.chaos.2025.117398_b14
– volume: 14
  issue: 3
  year: 2019
  ident: 10.1016/j.chaos.2025.117398_b42
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0213550
– year: 2006
  ident: 10.1016/j.chaos.2025.117398_b53
– volume: 393
  start-page: 440
  issue: 6684
  year: 1998
  ident: 10.1016/j.chaos.2025.117398_b8
  publication-title: Nature
  doi: 10.1038/30918
– volume: 34
  start-page: D446
  issue: suppl_1
  year: 2006
  ident: 10.1016/j.chaos.2025.117398_b41
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj013
– volume: 298
  start-page: 799
  issue: 5594
  year: 2002
  ident: 10.1016/j.chaos.2025.117398_b10
  publication-title: Science
  doi: 10.1126/science.1075090
– volume: 69
  issue: 2
  year: 2004
  ident: 10.1016/j.chaos.2025.117398_b7
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.69.025103
– volume: 50
  start-page: 1539
  issue: 6
  year: 2014
  ident: 10.1016/j.chaos.2025.117398_b50
  publication-title: Automatica
  doi: 10.1016/j.automatica.2014.04.012
– volume: 134
  issue: 5
  year: 2025
  ident: 10.1016/j.chaos.2025.117398_b30
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.134.057401
– volume: 4
  issue: 3
  year: 2022
  ident: 10.1016/j.chaos.2025.117398_b26
  publication-title: Phys Rev Res
  doi: 10.1103/PhysRevResearch.4.033196
– volume: 75
  issue: 1
  year: 2007
  ident: 10.1016/j.chaos.2025.117398_b24
  publication-title: Phys Rev E
– volume: 231
  start-page: 814
  issue: 4740
  year: 1986
  ident: 10.1016/j.chaos.2025.117398_b39
  publication-title: Science
  doi: 10.1126/science.231.4740.814
– volume: 410
  start-page: 268
  issue: 6825
  year: 2001
  ident: 10.1016/j.chaos.2025.117398_b1
  publication-title: Nature
  doi: 10.1038/35065725
– volume: 70
  issue: 5
  year: 2004
  ident: 10.1016/j.chaos.2025.117398_b47
  publication-title: Phys Rev E
– start-page: 1
  year: 2025
  ident: 10.1016/j.chaos.2025.117398_b31
  publication-title: Nat Phys
– start-page: 1
  year: 2025
  ident: 10.1016/j.chaos.2025.117398_b33
  publication-title: Nat Rev Phys
– volume: 411
  start-page: 41
  issue: 6833
  year: 2001
  ident: 10.1016/j.chaos.2025.117398_b5
  publication-title: Nature
  doi: 10.1038/35075138
– volume: 2
  start-page: 203
  issue: 3
  year: 2014
  ident: 10.1016/j.chaos.2025.117398_b45
  publication-title: J Complex Netw
  doi: 10.1093/comnet/cnu016
– volume: 469
  start-page: 93
  issue: 3
  year: 2008
  ident: 10.1016/j.chaos.2025.117398_b49
  publication-title: Phys Rep
  doi: 10.1016/j.physrep.2008.09.002
– year: 2019
  ident: 10.1016/j.chaos.2025.117398_b12
– volume: 19
  start-page: 445
  issue: 3
  year: 2023
  ident: 10.1016/j.chaos.2025.117398_b27
  publication-title: Nat Phys
  doi: 10.1038/s41567-022-01866-8
SSID ssj0001062
Score 2.4723918
Snippet Network renormalization has traditionally relied on spatial adjacency—grouping nearby nodes together—but this approach fails to capture the dynamical...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 117398
SubjectTerms Dynamical Correlations
Long-Range Connections
Meta-graph algorithm
Multiscaling behaviors
Spectral space renormalization
Title From spatial to spectral: Network renormalization via dynamical correlations
URI https://dx.doi.org/10.1016/j.chaos.2025.117398
Volume 201
WOSCitedRecordID wos001599100300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0960-0779
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001062
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Ra9swEBYj3UP3UNauY-26oYc9tKQOtmVb1t660NKNNgzWQd6MLEukJTjFTkL373tnyU5Ix-gGezHBINncJ18-6b67I-QT1wGTzPiekEx6kQoKLy8K30sVfB6axdoEedNsgo9G6XgsvruOgnXTToCXZfrwIO7_K9RwD8DG1Nm_gLubFG7AbwAdrgA7XJ8F_AUmjNQolEYd-azf5FJWcop7_5EVffcrXSJXnbokzP7yVvYL25u-qRdSVa1Gbp28DifSivJqFM2hxgZP3Q3mWcnpKihk-zMPMYni8tdiFeWXE-tXvgzWjxrCeEO20eXArARHzUFi4ns-ty1hWp8a2mFP_LM9KrgbKHzhAT4Do8bMNqLeKHz9A2fGiUOMfQaYR7cV8likPbJ19vV8_K37x4VtbRMtat-krS7V6PiePOr3DGSNVdy8JjtuO0DPLIy75IUu98ir666Wbr1Hdp37remxqxF-8oZcIcrUoUznM9qi_Jk6jOkGxhQwph3GdB3jffLz4vxmeOm5xhiegh3g3EuKSCVBEYeFwSi4AqcsDFCxJMyNVsAxZcyFLkSUmlTnjCnmC8kjlQJd1spE7C3plbNSvyNUqhy-1tBEHJgz0E0ZGQOUk3NuRBoEyQE5bY2V3dv6J1krDLzLGttmaNvM2vaAJK1BM0fhLDXLYAX8aeDhvw58T7ZXS_WI9ObVQn8gL9VyfltXH91KeQQFXWxX
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+spatial+to+spectral%3A+Network+renormalization+via+dynamical+correlations&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Kim%2C+Cook+Hyun&rft.au=Kahng%2C+B.&rft.date=2025-12-01&rft.pub=Elsevier+Ltd&rft.issn=0960-0779&rft.volume=201&rft_id=info:doi/10.1016%2Fj.chaos.2025.117398&rft.externalDocID=S0960077925014110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon