Misinformation mitigation in online social networks using continual learning with graph neural networks
In today’s digital landscape, online social networks (OSNs) facilitate rapid information dissemination. However, they also serve as conduits for misinformation, leading to severe real-world consequences such as public panic, social unrest, and the erosion of institutional trust. Existing rumor influ...
Gespeichert in:
| Veröffentlicht in: | Online social networks and media Jg. 50; S. 100340 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.12.2025
|
| Schlagworte: | |
| ISSN: | 2468-6964, 2468-6964 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In today’s digital landscape, online social networks (OSNs) facilitate rapid information dissemination. However, they also serve as conduits for misinformation, leading to severe real-world consequences such as public panic, social unrest, and the erosion of institutional trust. Existing rumor influence minimization strategies predominantly rely on static models or specific diffusion mechanisms, restricting their ability to dynamically adapt to the evolving nature of misinformation. To address this gap, this paper proposes a novel misinformation influence mitigation framework that integrates Graph Neural Networks (GNNs) with continual learning and employs a Node Blocking strategy as its intervention approach. The framework comprises three key components: (1) a Dataset Generator, (2) a GNN Model Trainer, and (3) an Influential Node Identifier. Given the scarcity of real-world data on misinformation propagation, the first component simulates misinformation diffusion processes within social networks, leveraging the Human Individual and Social Behavior (HISB) model as a case study. The second component employs GNNs to learn from these synthetic datasets and predict the most influential nodes susceptible to misinformation. Subsequently, these nodes are strategically targeted and blocked to minimize further misinformation spread. Finally, the continual learning mechanism ensures the model dynamically adapts to evolving network structures and propagation patterns. Beyond evaluating the Human Individual and Social Behavior (HISB) propagation model, we empirically demonstrate that our framework is propagation-model agnostic by reproducing the pipeline under Independent Cascade and Linear Threshold with consistent gains over baselines. Finally, we introduce a truth-aware intervention rule that gates and weights actions by an external veracity score at detection time, selecting most influential nodes. This addition ensures interventions are enacted only when content is likely false, aligning the method with responsible deployment. Experimental evaluations conducted on multiple benchmark datasets demonstrate the superiority of the proposed node blocking framework over state-of-the-art methods. Our results indicate a statistically significant reduction in misinformation spread, with non-parametric statistical tests yielding p-values below 0.001 (p<0.001), confirming the robustness of our approach. This work presents a scalable and adaptable solution for misinformation containment, contributing to the development of more reliable and trustworthy online information ecosystems. |
|---|---|
| AbstractList | In today’s digital landscape, online social networks (OSNs) facilitate rapid information dissemination. However, they also serve as conduits for misinformation, leading to severe real-world consequences such as public panic, social unrest, and the erosion of institutional trust. Existing rumor influence minimization strategies predominantly rely on static models or specific diffusion mechanisms, restricting their ability to dynamically adapt to the evolving nature of misinformation. To address this gap, this paper proposes a novel misinformation influence mitigation framework that integrates Graph Neural Networks (GNNs) with continual learning and employs a Node Blocking strategy as its intervention approach. The framework comprises three key components: (1) a Dataset Generator, (2) a GNN Model Trainer, and (3) an Influential Node Identifier. Given the scarcity of real-world data on misinformation propagation, the first component simulates misinformation diffusion processes within social networks, leveraging the Human Individual and Social Behavior (HISB) model as a case study. The second component employs GNNs to learn from these synthetic datasets and predict the most influential nodes susceptible to misinformation. Subsequently, these nodes are strategically targeted and blocked to minimize further misinformation spread. Finally, the continual learning mechanism ensures the model dynamically adapts to evolving network structures and propagation patterns. Beyond evaluating the Human Individual and Social Behavior (HISB) propagation model, we empirically demonstrate that our framework is propagation-model agnostic by reproducing the pipeline under Independent Cascade and Linear Threshold with consistent gains over baselines. Finally, we introduce a truth-aware intervention rule that gates and weights actions by an external veracity score at detection time, selecting most influential nodes. This addition ensures interventions are enacted only when content is likely false, aligning the method with responsible deployment. Experimental evaluations conducted on multiple benchmark datasets demonstrate the superiority of the proposed node blocking framework over state-of-the-art methods. Our results indicate a statistically significant reduction in misinformation spread, with non-parametric statistical tests yielding p-values below 0.001 (p<0.001), confirming the robustness of our approach. This work presents a scalable and adaptable solution for misinformation containment, contributing to the development of more reliable and trustworthy online information ecosystems. |
| ArticleNumber | 100340 |
| Author | Merini, Hichem Hosni, Adil Imad Eddine Baira, Islem Lomonaco, Vincenzo Podda, Marco Beghdad Bey, Kadda |
| Author_xml | – sequence: 1 givenname: Hichem orcidid: 0009-0004-4150-3533 surname: Merini fullname: Merini, Hichem organization: Department of Computer Science, Ecole Militaire Polytechnique, Bordj El-Bahri, Algiers, 16046, Algeria – sequence: 2 givenname: Adil Imad Eddine orcidid: 0000-0001-5393-1157 surname: Hosni fullname: Hosni, Adil Imad Eddine email: hosni.adil.emp@emp.mdn.dz, hosni.adil.emp@gmail.com organization: Department of Computer Science, Ecole Militaire Polytechnique, Bordj El-Bahri, Algiers, 16046, Algeria – sequence: 3 givenname: Kadda surname: Beghdad Bey fullname: Beghdad Bey, Kadda organization: Department of Computer Science, Ecole Militaire Polytechnique, Bordj El-Bahri, Algiers, 16046, Algeria – sequence: 4 givenname: Vincenzo surname: Lomonaco fullname: Lomonaco, Vincenzo organization: Department of Computer Science, University of Pisa, Largo Bruno Pontecorvo, 3, Pisa, 56127, Italy – sequence: 5 givenname: Marco surname: Podda fullname: Podda, Marco organization: Department of Computer Science, University of Pisa, Largo Bruno Pontecorvo, 3, Pisa, 56127, Italy – sequence: 6 givenname: Islem surname: Baira fullname: Baira, Islem organization: Department of Computer Science, Ecole Militaire Polytechnique, Bordj El-Bahri, Algiers, 16046, Algeria |
| BookMark | eNp9kE1OwzAQhS0EEqX0BGxygRQ7Tpx4wQJV_ElFbGBtue44nZLYlZ1ScXtcwqIrVvM0b77RzLsi5847IOSG0TmjTNxu5z466OcFLarUobykZ2RSlKLJhRTl-Ym-JLMYt5RSJnlZ8WJC2leM6KwPvR7Qu6zHAdtRosu869BBFr1B3WUOhoMPnzHbJ6TNjHcDun0yOtDBHVsHHDZZG_Ruk4b34YS5JhdWdxFmf3VKPh4f3hfP-fLt6WVxv8xNUVVDLrQQptaGWmGtqNcNY5WgjKefdFNaENI29UqWwK3mkFyghmoua2PlqpaWTwkf95rgYwxg1S5gr8O3YlQd41Jb9RuXOsalxrgSdTdSkE77QggqGgRnYI0BzKDWHv_lfwDLr3kJ |
| Cites_doi | 10.1016/j.neucom.2020.07.028 10.3390/su9122188 10.1002/asi.21015 10.1016/j.knosys.2019.105452 10.1038/nphys1746 10.1016/j.physa.2019.123262 10.1016/j.neucom.2018.07.044 10.1109/TSMC.2023.3237933 10.1007/BF02289527 10.1016/j.neunet.2019.01.012 10.1145/3219819.3220077 10.1016/j.ins.2019.10.063 10.1016/j.neucom.2022.07.057 10.1016/j.knosys.2020.105893 10.1145/3563388 10.4086/toc.2015.v011a004 10.1145/3097983.3098069 10.2307/3033543 10.1016/j.tics.2016.05.004 10.1609/aaai.v32i1.11268 10.1016/j.neucom.2015.02.047 10.1103/PhysRevE.71.056103 10.1016/j.ipm.2024.103878 10.1177/0272684X211022155 10.1016/j.jnca.2021.103094 10.1016/j.ipm.2021.102712 10.1016/j.socnet.2007.11.001 10.1145/3627673.3679675 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.osnem.2025.100340 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2468-6964 |
| ExternalDocumentID | 10_1016_j_osnem_2025_100340 S2468696425000412 |
| GroupedDBID | 0R~ AAEDW AAKOC AALRI AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ACDAQ ACGFS ACLOT ACRLP ACVFH ADBBV ADCNI ADVLN AEBSH AEIPS AEUPX AFJKZ AFPUW AFTJW AGUBO AHJVU AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BJAXD BKOJK EBS EFJIC EFKBS EFLBG EJD FDB FIRID FYGXN KOM ROL SPC SPCBC SST SSV SSZ T5K ~G- AAYXX CITATION |
| ID | FETCH-LOGICAL-c255t-6a66c7ac0f6ff67d81156013340a84fe69f87b94e3fa3e811e0c0a397cf9b79f3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001614760800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2468-6964 |
| IngestDate | Sat Nov 29 06:50:03 EST 2025 Wed Dec 10 14:24:27 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Rumor influence minimization Misinformation containment Continual learning Graph neural network Online social networks |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c255t-6a66c7ac0f6ff67d81156013340a84fe69f87b94e3fa3e811e0c0a397cf9b79f3 |
| ORCID | 0000-0001-5393-1157 0009-0004-4150-3533 |
| ParticipantIDs | crossref_primary_10_1016_j_osnem_2025_100340 elsevier_sciencedirect_doi_10_1016_j_osnem_2025_100340 |
| PublicationCentury | 2000 |
| PublicationDate | December 2025 2025-12-00 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: December 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Online social networks and media |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Sabidussi (b21) 1966; 31 Estrada, Rodriguez-Velazquez (b22) 2005; 71 Hosni, Li (b38) 2020; 193 Rozemberczki, Allen (b46) 2019 Merini, Hosni, Baghdad Bey, Baira (b1) 2024 Sheng, Dai, Wang, Duan, Long, Zhang, Guan, Hu, Chen, Guan (b19) 2020; 541 Song, Teng, Zhu, Wei, Wu (b16) 2022; 505 M. Kimura, K. Saito, H. Motoda, Minimizing the spread of contamination by blocking links in a network, in: Aaai, Vol. 8, 2008, p. 1321. J. Qiu, J. Tang, H. Ma, Y. Dong, K. Wang, J. Tang, Deepinf: Social influence prediction with deep learning, in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 2110–2119. Zhu, Ni, Wang (b35) 2020 H. Yin, A.R. Benson, J. Leskovec, D.F. Gleich, Local higher-order graph clustering, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 555–564. Fan, Lu, Wu, Thuraisingham, Ma, Bi (b30) 2013 Wang, Chen, Fu, Song, Wang (b31) 2017 Lopez-Paz, Ranzato (b42) 2017; 30 Taghipour, Ashrafi-Rizi, Soleymani (b3) 2023; 43 Panzarasa, Opsahl, Carley (b48) 2009; 60 Hamilton, Ying, Leskovec (b12) 2017; 30 Zhao, Jia, Zhou, Zhang (b11) 2020; 414 Sun, Rao, Wu, Zhang, Lan, Nazir (b5) 2023; 55 Inuwa-Dutse, Liptrott, Korkontzelos (b24) 2018; 315 Zheng, Zeng, Chen, Yu, Rong (b26) 2015; 159 Zareie, Sakellariou (b4) 2021; 186 Kim, Kim (b2) 2017; 9 Ding, Guo, Liu, Jing, Yin, Li, Wang, Yu (b18) 2025; 62 Ma, Gao, Wong (b44) 2017 Hosni, Li, Ahmed (b40) 2018 Wang, Deng, Li, Yu, Jensen, Yang (b29) 2020 Hosni, Li, Ahmad (b37) 2020; 512 Brandes (b6) 2008; 30 Kempe, Kleinberg, Tardos (b8) 2015; 11 L. Page, The PageRank Citation Ranking: Bringing Order to the Web, Tech. rep., Technical Report, 1999. Lu, Li (b43) 2020 Kumaran, Hassabis, McClelland (b14) 2016; 20 Yan, Li, Wu, Li, Wang (b28) 2019 Song, Shu, Wu (b15) 2021; 58 Shi, Wang, Ye, Chen, Feng, Chen (b33) 2019 Kitsak, Gallos, Havlin, Liljeros, Muchnik, Stanley, Makse (b23) 2010; 6 Do, Park, Shin (b39) 2022 Yang, Ma, Li, Giua (b49) 2023; 53 Parisi, Kemker, Part, Kanan, Wermter (b13) 2019; 113 Freeman (b20) 1977 Y.-T. Chang, Z. Hu, X. Li, S. Yang, J. Jiang, N. Sun, Dihan: A novel dynamic hierarchical graph attention network for fake news detection, in: Proceedings of the 33rd ACM International Conference on Information and Knowledge Management, 2024, pp. 197–206. Tong, Wu, Guo, Li, Liu, Liu, Du (b32) 2017 Yu, Wang, Fu, Chen, Xie (b9) 2020; 198 Jiang, Chen, Huang, Li, Du (b36) 2023 Ramírez-de-la Rosa, Villatoro-Tello, Jiménez-Salazar, Sánchez-Sánchez (b25) 2014 Y. Liu, Y.-F. Wu, Early detection of fake news on social media through propagation path classification with recurrent and convolutional networks, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32, 2018, pp. 512–534. Leskovec, Mcauley (b45) 2012 Yan, Li, Wu, Du, Wang (b34) 2019 Fan (10.1016/j.osnem.2025.100340_b30) 2013 Panzarasa (10.1016/j.osnem.2025.100340_b48) 2009; 60 Tong (10.1016/j.osnem.2025.100340_b32) 2017 Song (10.1016/j.osnem.2025.100340_b15) 2021; 58 Wang (10.1016/j.osnem.2025.100340_b31) 2017 Jiang (10.1016/j.osnem.2025.100340_b36) 2023 Ramírez-de-la Rosa (10.1016/j.osnem.2025.100340_b25) 2014 10.1016/j.osnem.2025.100340_b27 Wang (10.1016/j.osnem.2025.100340_b29) 2020 Zareie (10.1016/j.osnem.2025.100340_b4) 2021; 186 Ding (10.1016/j.osnem.2025.100340_b18) 2025; 62 Hosni (10.1016/j.osnem.2025.100340_b40) 2018 Freeman (10.1016/j.osnem.2025.100340_b20) 1977 Taghipour (10.1016/j.osnem.2025.100340_b3) 2023; 43 Brandes (10.1016/j.osnem.2025.100340_b6) 2008; 30 Hamilton (10.1016/j.osnem.2025.100340_b12) 2017; 30 10.1016/j.osnem.2025.100340_b7 Zhao (10.1016/j.osnem.2025.100340_b11) 2020; 414 10.1016/j.osnem.2025.100340_b10 Kim (10.1016/j.osnem.2025.100340_b2) 2017; 9 Zheng (10.1016/j.osnem.2025.100340_b26) 2015; 159 Hosni (10.1016/j.osnem.2025.100340_b38) 2020; 193 Yu (10.1016/j.osnem.2025.100340_b9) 2020; 198 Hosni (10.1016/j.osnem.2025.100340_b37) 2020; 512 10.1016/j.osnem.2025.100340_b17 Rozemberczki (10.1016/j.osnem.2025.100340_b46) 2019 Kumaran (10.1016/j.osnem.2025.100340_b14) 2016; 20 Merini (10.1016/j.osnem.2025.100340_b1) 2024 Yan (10.1016/j.osnem.2025.100340_b34) 2019 Estrada (10.1016/j.osnem.2025.100340_b22) 2005; 71 10.1016/j.osnem.2025.100340_b41 Lu (10.1016/j.osnem.2025.100340_b43) 2020 Sun (10.1016/j.osnem.2025.100340_b5) 2023; 55 Sabidussi (10.1016/j.osnem.2025.100340_b21) 1966; 31 Do (10.1016/j.osnem.2025.100340_b39) 2022 10.1016/j.osnem.2025.100340_b47 Parisi (10.1016/j.osnem.2025.100340_b13) 2019; 113 Yan (10.1016/j.osnem.2025.100340_b28) 2019 Lopez-Paz (10.1016/j.osnem.2025.100340_b42) 2017; 30 Zhu (10.1016/j.osnem.2025.100340_b35) 2020 Ma (10.1016/j.osnem.2025.100340_b44) 2017 Inuwa-Dutse (10.1016/j.osnem.2025.100340_b24) 2018; 315 Sheng (10.1016/j.osnem.2025.100340_b19) 2020; 541 Yang (10.1016/j.osnem.2025.100340_b49) 2023; 53 Kitsak (10.1016/j.osnem.2025.100340_b23) 2010; 6 Shi (10.1016/j.osnem.2025.100340_b33) 2019 Kempe (10.1016/j.osnem.2025.100340_b8) 2015; 11 Leskovec (10.1016/j.osnem.2025.100340_b45) 2012 Song (10.1016/j.osnem.2025.100340_b16) 2022; 505 |
| References_xml | – reference: H. Yin, A.R. Benson, J. Leskovec, D.F. Gleich, Local higher-order graph clustering, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 555–564. – start-page: 123 year: 2018 ident: b40 article-title: HISBmodel: A rumor diffusion model based on human individual and social behaviors in online social networks publication-title: International Conference on Neural Information Processing – reference: L. Page, The PageRank Citation Ranking: Bringing Order to the Web, Tech. rep., Technical Report, 1999. – volume: 193 year: 2020 ident: b38 article-title: Minimizing the influence of rumors during breaking news events in online social networks publication-title: Knowl.-Based Syst. – volume: 6 start-page: 888 year: 2010 end-page: 893 ident: b23 article-title: Identification of influential spreaders in complex networks publication-title: Nat. Phys. – volume: 315 start-page: 496 year: 2018 end-page: 511 ident: b24 article-title: Detection of spam-posting accounts on Twitter publication-title: Neurocomputing – start-page: 321 year: 2019 ident: b28 article-title: Rumor blocking through online link deletion on social networks publication-title: ACM Trans. Knowl. Discov. Data (TKDD) – volume: 159 start-page: 27 year: 2015 end-page: 34 ident: b26 article-title: Detecting spammers on social networks publication-title: Neurocomputing – volume: 62 year: 2025 ident: b18 article-title: EvolveDetector: Towards an evolving fake news detector for emerging events with continual knowledge accumulation and transfer publication-title: Inf. Process. Manage. – year: 2019 ident: b46 article-title: Multi-scale attributed node embedding – start-page: 512 year: 2017 end-page: 534 ident: b44 article-title: Detect Rumors in Microblog Posts Using Propagation Structure via Kernel Learning – volume: 71 year: 2005 ident: b22 article-title: Subgraph centrality in complex networks publication-title: Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. – start-page: 123 year: 2017 ident: b32 article-title: An efficient randomized algorithm for rumor blocking in online social networks publication-title: IEEE Trans. Netw. Sci. Eng. – start-page: 123 year: 2019 ident: b34 article-title: Minimizing influence of rumors by blockers on social networks: algorithms and analysis publication-title: IEEE Trans. Netw. Sci. Eng. – volume: 53 start-page: 3990 year: 2023 end-page: 4002 ident: b49 article-title: Rumor containment by blocking nodes in social networks publication-title: IEEE Trans. Syst. Man Cybern.: Syst. – volume: 198 year: 2020 ident: b9 article-title: Identifying critical nodes in complex networks via graph convolutional networks publication-title: Knowl.-Based Syst. – start-page: 3213 year: 2020 ident: b29 article-title: Efficient targeted influence minimization in big social networks publication-title: World Wide Web – volume: 11 start-page: 105 year: 2015 end-page: 147 ident: b8 article-title: Maximizing the spread of influence through a social network publication-title: Theory Comput. – volume: 512 start-page: 1458 year: 2020 end-page: 1480 ident: b37 article-title: Minimizing rumor influence in multiplex online social networks based on human individual and social behaviors publication-title: Inform. Sci. – volume: 414 start-page: 18 year: 2020 end-page: 26 ident: b11 article-title: InfGCN: Identifying influential nodes in complex networks with graph convolutional networks publication-title: Neurocomputing – volume: 31 start-page: 581 year: 1966 end-page: 603 ident: b21 article-title: The centrality index of a graph publication-title: Psychometrika – reference: Y. Liu, Y.-F. Wu, Early detection of fake news on social media through propagation path classification with recurrent and convolutional networks, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32, 2018, pp. 512–534. – year: 1977 ident: b20 article-title: A set of measures of centrality based on betweenness publication-title: Sociometry – volume: 113 start-page: 54 year: 2019 end-page: 71 ident: b13 article-title: Continual lifelong learning with neural networks: A review publication-title: Neural Netw. – volume: 541 year: 2020 ident: b19 article-title: Identifying influential nodes in complex networks based on global and local structure publication-title: Phys. A – volume: 58 year: 2021 ident: b15 article-title: Temporally evolving graph neural network for fake news detection publication-title: Inf. Process. Manage. – reference: J. Qiu, J. Tang, H. Ma, Y. Dong, K. Wang, J. Tang, Deepinf: Social influence prediction with deep learning, in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 2110–2119. – reference: M. Kimura, K. Saito, H. Motoda, Minimizing the spread of contamination by blocking links in a network, in: Aaai, Vol. 8, 2008, p. 1321. – volume: 30 year: 2017 ident: b42 article-title: Gradient episodic memory for continual learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 505 start-page: 362 year: 2022 end-page: 374 ident: b16 article-title: Dynamic graph neural network for fake news detection publication-title: Neurocomputing – year: 2020 ident: b43 article-title: GCAN: Graph-aware co-attention networks for explainable fake news detection on social media – volume: 43 start-page: 283 year: 2023 end-page: 291 ident: b3 article-title: Dissemination and acceptance of COVID-19 misinformation in Iran: a qualitative study publication-title: Community Heal. Equity Res. Policy – volume: 55 start-page: 1 year: 2023 end-page: 38 ident: b5 article-title: Fighting false information from propagation process: A survey publication-title: ACM Comput. Surv. – start-page: 123 year: 2017 ident: b31 article-title: Drimux: Dynamic rumor influence minimization with user experience in social networks publication-title: IEEE Trans. Knowl. Data Eng. – volume: 60 start-page: 911 year: 2009 end-page: 932 ident: b48 article-title: Patterns and dynamics of users’ behavior and interaction: Network analysis of an online community publication-title: J. Am. Soc. Inf. Sci. Technol. – volume: 30 year: 2017 ident: b12 article-title: Inductive representation learning on large graphs publication-title: Adv. Neural Inf. Process. Syst. – start-page: 123 year: 2022 ident: b39 article-title: Two-stage training of graph neural networks for graph classification publication-title: Neural Process. Lett. – volume: 30 start-page: 123 year: 2008 ident: b6 article-title: On variants of shortest-path betweenness centrality and their generic computation publication-title: Soc. Netw. – start-page: 350 year: 2024 end-page: 360 ident: b1 article-title: Graph neural network based approach for restraining misinformation propagation in online social networks publication-title: International Conference on Computing Systems and Applications – volume: 20 start-page: 512 year: 2016 end-page: 534 ident: b14 article-title: What learning systems do intelligent agents need? Complementary learning systems theory updated publication-title: Trends Cogn. Sci. – start-page: 123 year: 2023 ident: b36 article-title: Deep reinforcement learning-based approach for rumor influence minimization in social networks publication-title: Appl. Intell. – volume: 9 start-page: 2188 year: 2017 ident: b2 article-title: Impact of the Fukushima nuclear accident on belief in rumors: The role of risk perception and communication publication-title: Sustainability – start-page: 123 year: 2020 ident: b35 article-title: Activity minimization of misinformation influence in online social networks publication-title: IEEE Trans. Comput. Soc. Syst. – reference: Y.-T. Chang, Z. Hu, X. Li, S. Yang, J. Jiang, N. Sun, Dihan: A novel dynamic hierarchical graph attention network for fake news detection, in: Proceedings of the 33rd ACM International Conference on Information and Knowledge Management, 2024, pp. 197–206. – volume: 186 year: 2021 ident: b4 article-title: Minimizing the spread of misinformation in online social networks: A survey publication-title: J. Netw. Comput. Appl. – start-page: 245 year: 2014 end-page: 256 ident: b25 article-title: Towards automatic detection of user influence in twitter by means of stylistic and behavioral features publication-title: Mexican International Conference on Artificial Intelligence – start-page: 32132 year: 2013 ident: b30 article-title: Least cost rumor blocking in social networks publication-title: 2013 IEEE 33rd International Conference on Distributed Computing Systems – year: 2012 ident: b45 article-title: Learning to discover social circles in ego networks publication-title: Adv. Neural Inf. Process. Syst. – start-page: 132 year: 2019 ident: b33 article-title: Adaptive influence blocking: Minimizing the negative spread by observation-based policies publication-title: IEEE 35th International Conference on Data Engineering – volume: 414 start-page: 18 year: 2020 ident: 10.1016/j.osnem.2025.100340_b11 article-title: InfGCN: Identifying influential nodes in complex networks with graph convolutional networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.028 – ident: 10.1016/j.osnem.2025.100340_b7 – ident: 10.1016/j.osnem.2025.100340_b27 – volume: 9 start-page: 2188 issue: 12 year: 2017 ident: 10.1016/j.osnem.2025.100340_b2 article-title: Impact of the Fukushima nuclear accident on belief in rumors: The role of risk perception and communication publication-title: Sustainability doi: 10.3390/su9122188 – volume: 60 start-page: 911 issue: 5 year: 2009 ident: 10.1016/j.osnem.2025.100340_b48 article-title: Patterns and dynamics of users’ behavior and interaction: Network analysis of an online community publication-title: J. Am. Soc. Inf. Sci. Technol. doi: 10.1002/asi.21015 – volume: 30 year: 2017 ident: 10.1016/j.osnem.2025.100340_b42 article-title: Gradient episodic memory for continual learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 193 year: 2020 ident: 10.1016/j.osnem.2025.100340_b38 article-title: Minimizing the influence of rumors during breaking news events in online social networks publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.105452 – volume: 6 start-page: 888 issue: 11 year: 2010 ident: 10.1016/j.osnem.2025.100340_b23 article-title: Identification of influential spreaders in complex networks publication-title: Nat. Phys. doi: 10.1038/nphys1746 – volume: 541 year: 2020 ident: 10.1016/j.osnem.2025.100340_b19 article-title: Identifying influential nodes in complex networks based on global and local structure publication-title: Phys. A doi: 10.1016/j.physa.2019.123262 – volume: 315 start-page: 496 year: 2018 ident: 10.1016/j.osnem.2025.100340_b24 article-title: Detection of spam-posting accounts on Twitter publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.07.044 – volume: 53 start-page: 3990 issue: 7 year: 2023 ident: 10.1016/j.osnem.2025.100340_b49 article-title: Rumor containment by blocking nodes in social networks publication-title: IEEE Trans. Syst. Man Cybern.: Syst. doi: 10.1109/TSMC.2023.3237933 – start-page: 245 year: 2014 ident: 10.1016/j.osnem.2025.100340_b25 article-title: Towards automatic detection of user influence in twitter by means of stylistic and behavioral features – volume: 31 start-page: 581 issue: 4 year: 1966 ident: 10.1016/j.osnem.2025.100340_b21 article-title: The centrality index of a graph publication-title: Psychometrika doi: 10.1007/BF02289527 – volume: 113 start-page: 54 year: 2019 ident: 10.1016/j.osnem.2025.100340_b13 article-title: Continual lifelong learning with neural networks: A review publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.01.012 – ident: 10.1016/j.osnem.2025.100340_b10 doi: 10.1145/3219819.3220077 – start-page: 123 year: 2017 ident: 10.1016/j.osnem.2025.100340_b31 article-title: Drimux: Dynamic rumor influence minimization with user experience in social networks publication-title: IEEE Trans. Knowl. Data Eng. – volume: 512 start-page: 1458 year: 2020 ident: 10.1016/j.osnem.2025.100340_b37 article-title: Minimizing rumor influence in multiplex online social networks based on human individual and social behaviors publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.10.063 – start-page: 123 year: 2022 ident: 10.1016/j.osnem.2025.100340_b39 article-title: Two-stage training of graph neural networks for graph classification publication-title: Neural Process. Lett. – volume: 505 start-page: 362 year: 2022 ident: 10.1016/j.osnem.2025.100340_b16 article-title: Dynamic graph neural network for fake news detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.07.057 – volume: 198 year: 2020 ident: 10.1016/j.osnem.2025.100340_b9 article-title: Identifying critical nodes in complex networks via graph convolutional networks publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105893 – start-page: 132 year: 2019 ident: 10.1016/j.osnem.2025.100340_b33 article-title: Adaptive influence blocking: Minimizing the negative spread by observation-based policies – volume: 55 start-page: 1 issue: 10 year: 2023 ident: 10.1016/j.osnem.2025.100340_b5 article-title: Fighting false information from propagation process: A survey publication-title: ACM Comput. Surv. doi: 10.1145/3563388 – year: 2020 ident: 10.1016/j.osnem.2025.100340_b43 – volume: 11 start-page: 105 issue: 4 year: 2015 ident: 10.1016/j.osnem.2025.100340_b8 article-title: Maximizing the spread of influence through a social network publication-title: Theory Comput. doi: 10.4086/toc.2015.v011a004 – year: 2012 ident: 10.1016/j.osnem.2025.100340_b45 article-title: Learning to discover social circles in ego networks publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.osnem.2025.100340_b47 doi: 10.1145/3097983.3098069 – year: 1977 ident: 10.1016/j.osnem.2025.100340_b20 article-title: A set of measures of centrality based on betweenness publication-title: Sociometry doi: 10.2307/3033543 – start-page: 350 year: 2024 ident: 10.1016/j.osnem.2025.100340_b1 article-title: Graph neural network based approach for restraining misinformation propagation in online social networks – volume: 20 start-page: 512 issue: 7 year: 2016 ident: 10.1016/j.osnem.2025.100340_b14 article-title: What learning systems do intelligent agents need? Complementary learning systems theory updated publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2016.05.004 – ident: 10.1016/j.osnem.2025.100340_b41 doi: 10.1609/aaai.v32i1.11268 – volume: 30 year: 2017 ident: 10.1016/j.osnem.2025.100340_b12 article-title: Inductive representation learning on large graphs publication-title: Adv. Neural Inf. Process. Syst. – volume: 159 start-page: 27 year: 2015 ident: 10.1016/j.osnem.2025.100340_b26 article-title: Detecting spammers on social networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.02.047 – start-page: 321 year: 2019 ident: 10.1016/j.osnem.2025.100340_b28 article-title: Rumor blocking through online link deletion on social networks publication-title: ACM Trans. Knowl. Discov. Data (TKDD) – start-page: 123 year: 2018 ident: 10.1016/j.osnem.2025.100340_b40 article-title: HISBmodel: A rumor diffusion model based on human individual and social behaviors in online social networks – volume: 71 issue: 5 year: 2005 ident: 10.1016/j.osnem.2025.100340_b22 article-title: Subgraph centrality in complex networks publication-title: Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. doi: 10.1103/PhysRevE.71.056103 – start-page: 123 year: 2017 ident: 10.1016/j.osnem.2025.100340_b32 article-title: An efficient randomized algorithm for rumor blocking in online social networks publication-title: IEEE Trans. Netw. Sci. Eng. – start-page: 32132 year: 2013 ident: 10.1016/j.osnem.2025.100340_b30 article-title: Least cost rumor blocking in social networks – volume: 62 issue: 1 year: 2025 ident: 10.1016/j.osnem.2025.100340_b18 article-title: EvolveDetector: Towards an evolving fake news detector for emerging events with continual knowledge accumulation and transfer publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2024.103878 – start-page: 123 year: 2019 ident: 10.1016/j.osnem.2025.100340_b34 article-title: Minimizing influence of rumors by blockers on social networks: algorithms and analysis publication-title: IEEE Trans. Netw. Sci. Eng. – start-page: 123 year: 2023 ident: 10.1016/j.osnem.2025.100340_b36 article-title: Deep reinforcement learning-based approach for rumor influence minimization in social networks publication-title: Appl. Intell. – volume: 43 start-page: 283 issue: 3 year: 2023 ident: 10.1016/j.osnem.2025.100340_b3 article-title: Dissemination and acceptance of COVID-19 misinformation in Iran: a qualitative study publication-title: Community Heal. Equity Res. Policy doi: 10.1177/0272684X211022155 – volume: 186 year: 2021 ident: 10.1016/j.osnem.2025.100340_b4 article-title: Minimizing the spread of misinformation in online social networks: A survey publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2021.103094 – volume: 58 issue: 6 year: 2021 ident: 10.1016/j.osnem.2025.100340_b15 article-title: Temporally evolving graph neural network for fake news detection publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2021.102712 – start-page: 3213 year: 2020 ident: 10.1016/j.osnem.2025.100340_b29 article-title: Efficient targeted influence minimization in big social networks publication-title: World Wide Web – year: 2019 ident: 10.1016/j.osnem.2025.100340_b46 – volume: 30 start-page: 123 issue: 2 year: 2008 ident: 10.1016/j.osnem.2025.100340_b6 article-title: On variants of shortest-path betweenness centrality and their generic computation publication-title: Soc. Netw. doi: 10.1016/j.socnet.2007.11.001 – start-page: 123 year: 2020 ident: 10.1016/j.osnem.2025.100340_b35 article-title: Activity minimization of misinformation influence in online social networks publication-title: IEEE Trans. Comput. Soc. Syst. – start-page: 512 year: 2017 ident: 10.1016/j.osnem.2025.100340_b44 – ident: 10.1016/j.osnem.2025.100340_b17 doi: 10.1145/3627673.3679675 |
| SSID | ssj0001934532 |
| Score | 2.3108778 |
| Snippet | In today’s digital landscape, online social networks (OSNs) facilitate rapid information dissemination. However, they also serve as conduits for... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 100340 |
| SubjectTerms | Continual learning Graph neural network Misinformation containment Online social networks Rumor influence minimization |
| Title | Misinformation mitigation in online social networks using continual learning with graph neural networks |
| URI | https://dx.doi.org/10.1016/j.osnem.2025.100340 |
| Volume | 50 |
| WOSCitedRecordID | wos001614760800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 2468-6964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001934532 issn: 2468-6964 databaseCode: AIEXJ dateStart: 20170601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDBbSdIdeig3b0NcGHXZLHSh-SNYxGzqse3Q9dEBuhiNLrYvEKfIoiv6v_r9RouW4W1Csh12EQIloW_xA0Qz5kZAPCXipRrJxEIUyCWyMIUiLnAXS8EiBg2yMYq7ZhDg7S0cjed7pPPhamNuJqKr07k7e_FdVwxwo25bOPkPdjVCYgM-gdBhB7TD-k-J_lIuaDdWpdloiiwamNCIxho-UV5gDvuit6tpb2zbC1pNMfMDEhWkdqXXPMl-21rS92p-bpdqYvKtMabRqaw2xTbbNQJ02mJotcHpYlJPe6TS3RMtF-x9_fXlVwOxHDLB_A3PZCP0-g60Fu-4ydkvAcHU_a8cywqSVF-JMXmjrwLhEXvO-3jBX22wkq62N7sCS7LCN5wGGJq778Bja8g6ESX_968fs23-cik2uok-Du86ckMwKyVDIFtkORSLTLtkenp6Mvq6DezKKE9ccr7l7z3jlcgv_up3NXlHL07l4SXbrVxQ6RGi9Ih1dvSaXj2FF17CiZUURVhQBQD0AqIMVbWBFPayohRV1sKIIq2bNG_Lr88nFpy9B3aQjUPA2ugx4zrkSuWKGG8NFkQ5sbf4ggofK09hoLk0qxjLWkckjDd9qplgOXrAyciykid6SbjWr9B6hOmGFUgWHU2YQayNlCqMIi0SMQ8livU-O_SZlN8jFkj2hnX3C_UZmtTuJbmIG6Hhq4cHzrnNIdtZYPiLd5Xyl35EX6nZZLubva2j8BqM5nDo |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Misinformation+mitigation+in+online+social+networks+using+continual+learning+with+graph+neural+networks&rft.jtitle=Online+social+networks+and+media&rft.au=Merini%2C+Hichem&rft.au=Hosni%2C+Adil+Imad+Eddine&rft.au=Beghdad+Bey%2C+Kadda&rft.au=Lomonaco%2C+Vincenzo&rft.date=2025-12-01&rft.issn=2468-6964&rft.eissn=2468-6964&rft.volume=50&rft.spage=100340&rft_id=info:doi/10.1016%2Fj.osnem.2025.100340&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_osnem_2025_100340 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-6964&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-6964&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-6964&client=summon |