Misinformation mitigation in online social networks using continual learning with graph neural networks

In today’s digital landscape, online social networks (OSNs) facilitate rapid information dissemination. However, they also serve as conduits for misinformation, leading to severe real-world consequences such as public panic, social unrest, and the erosion of institutional trust. Existing rumor influ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Online social networks and media Jg. 50; S. 100340
Hauptverfasser: Merini, Hichem, Hosni, Adil Imad Eddine, Beghdad Bey, Kadda, Lomonaco, Vincenzo, Podda, Marco, Baira, Islem
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.12.2025
Schlagworte:
ISSN:2468-6964, 2468-6964
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In today’s digital landscape, online social networks (OSNs) facilitate rapid information dissemination. However, they also serve as conduits for misinformation, leading to severe real-world consequences such as public panic, social unrest, and the erosion of institutional trust. Existing rumor influence minimization strategies predominantly rely on static models or specific diffusion mechanisms, restricting their ability to dynamically adapt to the evolving nature of misinformation. To address this gap, this paper proposes a novel misinformation influence mitigation framework that integrates Graph Neural Networks (GNNs) with continual learning and employs a Node Blocking strategy as its intervention approach. The framework comprises three key components: (1) a Dataset Generator, (2) a GNN Model Trainer, and (3) an Influential Node Identifier. Given the scarcity of real-world data on misinformation propagation, the first component simulates misinformation diffusion processes within social networks, leveraging the Human Individual and Social Behavior (HISB) model as a case study. The second component employs GNNs to learn from these synthetic datasets and predict the most influential nodes susceptible to misinformation. Subsequently, these nodes are strategically targeted and blocked to minimize further misinformation spread. Finally, the continual learning mechanism ensures the model dynamically adapts to evolving network structures and propagation patterns. Beyond evaluating the Human Individual and Social Behavior (HISB) propagation model, we empirically demonstrate that our framework is propagation-model agnostic by reproducing the pipeline under Independent Cascade and Linear Threshold with consistent gains over baselines. Finally, we introduce a truth-aware intervention rule that gates and weights actions by an external veracity score at detection time, selecting most influential nodes. This addition ensures interventions are enacted only when content is likely false, aligning the method with responsible deployment. Experimental evaluations conducted on multiple benchmark datasets demonstrate the superiority of the proposed node blocking framework over state-of-the-art methods. Our results indicate a statistically significant reduction in misinformation spread, with non-parametric statistical tests yielding p-values below 0.001 (p<0.001), confirming the robustness of our approach. This work presents a scalable and adaptable solution for misinformation containment, contributing to the development of more reliable and trustworthy online information ecosystems.
AbstractList In today’s digital landscape, online social networks (OSNs) facilitate rapid information dissemination. However, they also serve as conduits for misinformation, leading to severe real-world consequences such as public panic, social unrest, and the erosion of institutional trust. Existing rumor influence minimization strategies predominantly rely on static models or specific diffusion mechanisms, restricting their ability to dynamically adapt to the evolving nature of misinformation. To address this gap, this paper proposes a novel misinformation influence mitigation framework that integrates Graph Neural Networks (GNNs) with continual learning and employs a Node Blocking strategy as its intervention approach. The framework comprises three key components: (1) a Dataset Generator, (2) a GNN Model Trainer, and (3) an Influential Node Identifier. Given the scarcity of real-world data on misinformation propagation, the first component simulates misinformation diffusion processes within social networks, leveraging the Human Individual and Social Behavior (HISB) model as a case study. The second component employs GNNs to learn from these synthetic datasets and predict the most influential nodes susceptible to misinformation. Subsequently, these nodes are strategically targeted and blocked to minimize further misinformation spread. Finally, the continual learning mechanism ensures the model dynamically adapts to evolving network structures and propagation patterns. Beyond evaluating the Human Individual and Social Behavior (HISB) propagation model, we empirically demonstrate that our framework is propagation-model agnostic by reproducing the pipeline under Independent Cascade and Linear Threshold with consistent gains over baselines. Finally, we introduce a truth-aware intervention rule that gates and weights actions by an external veracity score at detection time, selecting most influential nodes. This addition ensures interventions are enacted only when content is likely false, aligning the method with responsible deployment. Experimental evaluations conducted on multiple benchmark datasets demonstrate the superiority of the proposed node blocking framework over state-of-the-art methods. Our results indicate a statistically significant reduction in misinformation spread, with non-parametric statistical tests yielding p-values below 0.001 (p<0.001), confirming the robustness of our approach. This work presents a scalable and adaptable solution for misinformation containment, contributing to the development of more reliable and trustworthy online information ecosystems.
ArticleNumber 100340
Author Merini, Hichem
Hosni, Adil Imad Eddine
Baira, Islem
Lomonaco, Vincenzo
Podda, Marco
Beghdad Bey, Kadda
Author_xml – sequence: 1
  givenname: Hichem
  orcidid: 0009-0004-4150-3533
  surname: Merini
  fullname: Merini, Hichem
  organization: Department of Computer Science, Ecole Militaire Polytechnique, Bordj El-Bahri, Algiers, 16046, Algeria
– sequence: 2
  givenname: Adil Imad Eddine
  orcidid: 0000-0001-5393-1157
  surname: Hosni
  fullname: Hosni, Adil Imad Eddine
  email: hosni.adil.emp@emp.mdn.dz, hosni.adil.emp@gmail.com
  organization: Department of Computer Science, Ecole Militaire Polytechnique, Bordj El-Bahri, Algiers, 16046, Algeria
– sequence: 3
  givenname: Kadda
  surname: Beghdad Bey
  fullname: Beghdad Bey, Kadda
  organization: Department of Computer Science, Ecole Militaire Polytechnique, Bordj El-Bahri, Algiers, 16046, Algeria
– sequence: 4
  givenname: Vincenzo
  surname: Lomonaco
  fullname: Lomonaco, Vincenzo
  organization: Department of Computer Science, University of Pisa, Largo Bruno Pontecorvo, 3, Pisa, 56127, Italy
– sequence: 5
  givenname: Marco
  surname: Podda
  fullname: Podda, Marco
  organization: Department of Computer Science, University of Pisa, Largo Bruno Pontecorvo, 3, Pisa, 56127, Italy
– sequence: 6
  givenname: Islem
  surname: Baira
  fullname: Baira, Islem
  organization: Department of Computer Science, Ecole Militaire Polytechnique, Bordj El-Bahri, Algiers, 16046, Algeria
BookMark eNp9kE1OwzAQhS0EEqX0BGxygRQ7Tpx4wQJV_ElFbGBtue44nZLYlZ1ScXtcwqIrVvM0b77RzLsi5847IOSG0TmjTNxu5z466OcFLarUobykZ2RSlKLJhRTl-Ym-JLMYt5RSJnlZ8WJC2leM6KwPvR7Qu6zHAdtRosu869BBFr1B3WUOhoMPnzHbJ6TNjHcDun0yOtDBHVsHHDZZG_Ruk4b34YS5JhdWdxFmf3VKPh4f3hfP-fLt6WVxv8xNUVVDLrQQptaGWmGtqNcNY5WgjKefdFNaENI29UqWwK3mkFyghmoua2PlqpaWTwkf95rgYwxg1S5gr8O3YlQd41Jb9RuXOsalxrgSdTdSkE77QggqGgRnYI0BzKDWHv_lfwDLr3kJ
Cites_doi 10.1016/j.neucom.2020.07.028
10.3390/su9122188
10.1002/asi.21015
10.1016/j.knosys.2019.105452
10.1038/nphys1746
10.1016/j.physa.2019.123262
10.1016/j.neucom.2018.07.044
10.1109/TSMC.2023.3237933
10.1007/BF02289527
10.1016/j.neunet.2019.01.012
10.1145/3219819.3220077
10.1016/j.ins.2019.10.063
10.1016/j.neucom.2022.07.057
10.1016/j.knosys.2020.105893
10.1145/3563388
10.4086/toc.2015.v011a004
10.1145/3097983.3098069
10.2307/3033543
10.1016/j.tics.2016.05.004
10.1609/aaai.v32i1.11268
10.1016/j.neucom.2015.02.047
10.1103/PhysRevE.71.056103
10.1016/j.ipm.2024.103878
10.1177/0272684X211022155
10.1016/j.jnca.2021.103094
10.1016/j.ipm.2021.102712
10.1016/j.socnet.2007.11.001
10.1145/3627673.3679675
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.osnem.2025.100340
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2468-6964
ExternalDocumentID 10_1016_j_osnem_2025_100340
S2468696425000412
GroupedDBID 0R~
AAEDW
AAKOC
AALRI
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADVLN
AEBSH
AEIPS
AEUPX
AFJKZ
AFPUW
AFTJW
AGUBO
AHJVU
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BJAXD
BKOJK
EBS
EFJIC
EFKBS
EFLBG
EJD
FDB
FIRID
FYGXN
KOM
ROL
SPC
SPCBC
SST
SSV
SSZ
T5K
~G-
AAYXX
CITATION
ID FETCH-LOGICAL-c255t-6a66c7ac0f6ff67d81156013340a84fe69f87b94e3fa3e811e0c0a397cf9b79f3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001614760800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2468-6964
IngestDate Sat Nov 29 06:50:03 EST 2025
Wed Dec 10 14:24:27 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Rumor influence minimization
Misinformation containment
Continual learning
Graph neural network
Online social networks
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c255t-6a66c7ac0f6ff67d81156013340a84fe69f87b94e3fa3e811e0c0a397cf9b79f3
ORCID 0000-0001-5393-1157
0009-0004-4150-3533
ParticipantIDs crossref_primary_10_1016_j_osnem_2025_100340
elsevier_sciencedirect_doi_10_1016_j_osnem_2025_100340
PublicationCentury 2000
PublicationDate December 2025
2025-12-00
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: December 2025
PublicationDecade 2020
PublicationTitle Online social networks and media
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sabidussi (b21) 1966; 31
Estrada, Rodriguez-Velazquez (b22) 2005; 71
Hosni, Li (b38) 2020; 193
Rozemberczki, Allen (b46) 2019
Merini, Hosni, Baghdad Bey, Baira (b1) 2024
Sheng, Dai, Wang, Duan, Long, Zhang, Guan, Hu, Chen, Guan (b19) 2020; 541
Song, Teng, Zhu, Wei, Wu (b16) 2022; 505
M. Kimura, K. Saito, H. Motoda, Minimizing the spread of contamination by blocking links in a network, in: Aaai, Vol. 8, 2008, p. 1321.
J. Qiu, J. Tang, H. Ma, Y. Dong, K. Wang, J. Tang, Deepinf: Social influence prediction with deep learning, in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 2110–2119.
Zhu, Ni, Wang (b35) 2020
H. Yin, A.R. Benson, J. Leskovec, D.F. Gleich, Local higher-order graph clustering, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 555–564.
Fan, Lu, Wu, Thuraisingham, Ma, Bi (b30) 2013
Wang, Chen, Fu, Song, Wang (b31) 2017
Lopez-Paz, Ranzato (b42) 2017; 30
Taghipour, Ashrafi-Rizi, Soleymani (b3) 2023; 43
Panzarasa, Opsahl, Carley (b48) 2009; 60
Hamilton, Ying, Leskovec (b12) 2017; 30
Zhao, Jia, Zhou, Zhang (b11) 2020; 414
Sun, Rao, Wu, Zhang, Lan, Nazir (b5) 2023; 55
Inuwa-Dutse, Liptrott, Korkontzelos (b24) 2018; 315
Zheng, Zeng, Chen, Yu, Rong (b26) 2015; 159
Zareie, Sakellariou (b4) 2021; 186
Kim, Kim (b2) 2017; 9
Ding, Guo, Liu, Jing, Yin, Li, Wang, Yu (b18) 2025; 62
Ma, Gao, Wong (b44) 2017
Hosni, Li, Ahmed (b40) 2018
Wang, Deng, Li, Yu, Jensen, Yang (b29) 2020
Hosni, Li, Ahmad (b37) 2020; 512
Brandes (b6) 2008; 30
Kempe, Kleinberg, Tardos (b8) 2015; 11
L. Page, The PageRank Citation Ranking: Bringing Order to the Web, Tech. rep., Technical Report, 1999.
Lu, Li (b43) 2020
Kumaran, Hassabis, McClelland (b14) 2016; 20
Yan, Li, Wu, Li, Wang (b28) 2019
Song, Shu, Wu (b15) 2021; 58
Shi, Wang, Ye, Chen, Feng, Chen (b33) 2019
Kitsak, Gallos, Havlin, Liljeros, Muchnik, Stanley, Makse (b23) 2010; 6
Do, Park, Shin (b39) 2022
Yang, Ma, Li, Giua (b49) 2023; 53
Parisi, Kemker, Part, Kanan, Wermter (b13) 2019; 113
Freeman (b20) 1977
Y.-T. Chang, Z. Hu, X. Li, S. Yang, J. Jiang, N. Sun, Dihan: A novel dynamic hierarchical graph attention network for fake news detection, in: Proceedings of the 33rd ACM International Conference on Information and Knowledge Management, 2024, pp. 197–206.
Tong, Wu, Guo, Li, Liu, Liu, Du (b32) 2017
Yu, Wang, Fu, Chen, Xie (b9) 2020; 198
Jiang, Chen, Huang, Li, Du (b36) 2023
Ramírez-de-la Rosa, Villatoro-Tello, Jiménez-Salazar, Sánchez-Sánchez (b25) 2014
Y. Liu, Y.-F. Wu, Early detection of fake news on social media through propagation path classification with recurrent and convolutional networks, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32, 2018, pp. 512–534.
Leskovec, Mcauley (b45) 2012
Yan, Li, Wu, Du, Wang (b34) 2019
Fan (10.1016/j.osnem.2025.100340_b30) 2013
Panzarasa (10.1016/j.osnem.2025.100340_b48) 2009; 60
Tong (10.1016/j.osnem.2025.100340_b32) 2017
Song (10.1016/j.osnem.2025.100340_b15) 2021; 58
Wang (10.1016/j.osnem.2025.100340_b31) 2017
Jiang (10.1016/j.osnem.2025.100340_b36) 2023
Ramírez-de-la Rosa (10.1016/j.osnem.2025.100340_b25) 2014
10.1016/j.osnem.2025.100340_b27
Wang (10.1016/j.osnem.2025.100340_b29) 2020
Zareie (10.1016/j.osnem.2025.100340_b4) 2021; 186
Ding (10.1016/j.osnem.2025.100340_b18) 2025; 62
Hosni (10.1016/j.osnem.2025.100340_b40) 2018
Freeman (10.1016/j.osnem.2025.100340_b20) 1977
Taghipour (10.1016/j.osnem.2025.100340_b3) 2023; 43
Brandes (10.1016/j.osnem.2025.100340_b6) 2008; 30
Hamilton (10.1016/j.osnem.2025.100340_b12) 2017; 30
10.1016/j.osnem.2025.100340_b7
Zhao (10.1016/j.osnem.2025.100340_b11) 2020; 414
10.1016/j.osnem.2025.100340_b10
Kim (10.1016/j.osnem.2025.100340_b2) 2017; 9
Zheng (10.1016/j.osnem.2025.100340_b26) 2015; 159
Hosni (10.1016/j.osnem.2025.100340_b38) 2020; 193
Yu (10.1016/j.osnem.2025.100340_b9) 2020; 198
Hosni (10.1016/j.osnem.2025.100340_b37) 2020; 512
10.1016/j.osnem.2025.100340_b17
Rozemberczki (10.1016/j.osnem.2025.100340_b46) 2019
Kumaran (10.1016/j.osnem.2025.100340_b14) 2016; 20
Merini (10.1016/j.osnem.2025.100340_b1) 2024
Yan (10.1016/j.osnem.2025.100340_b34) 2019
Estrada (10.1016/j.osnem.2025.100340_b22) 2005; 71
10.1016/j.osnem.2025.100340_b41
Lu (10.1016/j.osnem.2025.100340_b43) 2020
Sun (10.1016/j.osnem.2025.100340_b5) 2023; 55
Sabidussi (10.1016/j.osnem.2025.100340_b21) 1966; 31
Do (10.1016/j.osnem.2025.100340_b39) 2022
10.1016/j.osnem.2025.100340_b47
Parisi (10.1016/j.osnem.2025.100340_b13) 2019; 113
Yan (10.1016/j.osnem.2025.100340_b28) 2019
Lopez-Paz (10.1016/j.osnem.2025.100340_b42) 2017; 30
Zhu (10.1016/j.osnem.2025.100340_b35) 2020
Ma (10.1016/j.osnem.2025.100340_b44) 2017
Inuwa-Dutse (10.1016/j.osnem.2025.100340_b24) 2018; 315
Sheng (10.1016/j.osnem.2025.100340_b19) 2020; 541
Yang (10.1016/j.osnem.2025.100340_b49) 2023; 53
Kitsak (10.1016/j.osnem.2025.100340_b23) 2010; 6
Shi (10.1016/j.osnem.2025.100340_b33) 2019
Kempe (10.1016/j.osnem.2025.100340_b8) 2015; 11
Leskovec (10.1016/j.osnem.2025.100340_b45) 2012
Song (10.1016/j.osnem.2025.100340_b16) 2022; 505
References_xml – reference: H. Yin, A.R. Benson, J. Leskovec, D.F. Gleich, Local higher-order graph clustering, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 555–564.
– start-page: 123
  year: 2018
  ident: b40
  article-title: HISBmodel: A rumor diffusion model based on human individual and social behaviors in online social networks
  publication-title: International Conference on Neural Information Processing
– reference: L. Page, The PageRank Citation Ranking: Bringing Order to the Web, Tech. rep., Technical Report, 1999.
– volume: 193
  year: 2020
  ident: b38
  article-title: Minimizing the influence of rumors during breaking news events in online social networks
  publication-title: Knowl.-Based Syst.
– volume: 6
  start-page: 888
  year: 2010
  end-page: 893
  ident: b23
  article-title: Identification of influential spreaders in complex networks
  publication-title: Nat. Phys.
– volume: 315
  start-page: 496
  year: 2018
  end-page: 511
  ident: b24
  article-title: Detection of spam-posting accounts on Twitter
  publication-title: Neurocomputing
– start-page: 321
  year: 2019
  ident: b28
  article-title: Rumor blocking through online link deletion on social networks
  publication-title: ACM Trans. Knowl. Discov. Data (TKDD)
– volume: 159
  start-page: 27
  year: 2015
  end-page: 34
  ident: b26
  article-title: Detecting spammers on social networks
  publication-title: Neurocomputing
– volume: 62
  year: 2025
  ident: b18
  article-title: EvolveDetector: Towards an evolving fake news detector for emerging events with continual knowledge accumulation and transfer
  publication-title: Inf. Process. Manage.
– year: 2019
  ident: b46
  article-title: Multi-scale attributed node embedding
– start-page: 512
  year: 2017
  end-page: 534
  ident: b44
  article-title: Detect Rumors in Microblog Posts Using Propagation Structure via Kernel Learning
– volume: 71
  year: 2005
  ident: b22
  article-title: Subgraph centrality in complex networks
  publication-title: Phys. Rev. E—Stat. Nonlinear Soft Matter Phys.
– start-page: 123
  year: 2017
  ident: b32
  article-title: An efficient randomized algorithm for rumor blocking in online social networks
  publication-title: IEEE Trans. Netw. Sci. Eng.
– start-page: 123
  year: 2019
  ident: b34
  article-title: Minimizing influence of rumors by blockers on social networks: algorithms and analysis
  publication-title: IEEE Trans. Netw. Sci. Eng.
– volume: 53
  start-page: 3990
  year: 2023
  end-page: 4002
  ident: b49
  article-title: Rumor containment by blocking nodes in social networks
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
– volume: 198
  year: 2020
  ident: b9
  article-title: Identifying critical nodes in complex networks via graph convolutional networks
  publication-title: Knowl.-Based Syst.
– start-page: 3213
  year: 2020
  ident: b29
  article-title: Efficient targeted influence minimization in big social networks
  publication-title: World Wide Web
– volume: 11
  start-page: 105
  year: 2015
  end-page: 147
  ident: b8
  article-title: Maximizing the spread of influence through a social network
  publication-title: Theory Comput.
– volume: 512
  start-page: 1458
  year: 2020
  end-page: 1480
  ident: b37
  article-title: Minimizing rumor influence in multiplex online social networks based on human individual and social behaviors
  publication-title: Inform. Sci.
– volume: 414
  start-page: 18
  year: 2020
  end-page: 26
  ident: b11
  article-title: InfGCN: Identifying influential nodes in complex networks with graph convolutional networks
  publication-title: Neurocomputing
– volume: 31
  start-page: 581
  year: 1966
  end-page: 603
  ident: b21
  article-title: The centrality index of a graph
  publication-title: Psychometrika
– reference: Y. Liu, Y.-F. Wu, Early detection of fake news on social media through propagation path classification with recurrent and convolutional networks, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32, 2018, pp. 512–534.
– year: 1977
  ident: b20
  article-title: A set of measures of centrality based on betweenness
  publication-title: Sociometry
– volume: 113
  start-page: 54
  year: 2019
  end-page: 71
  ident: b13
  article-title: Continual lifelong learning with neural networks: A review
  publication-title: Neural Netw.
– volume: 541
  year: 2020
  ident: b19
  article-title: Identifying influential nodes in complex networks based on global and local structure
  publication-title: Phys. A
– volume: 58
  year: 2021
  ident: b15
  article-title: Temporally evolving graph neural network for fake news detection
  publication-title: Inf. Process. Manage.
– reference: J. Qiu, J. Tang, H. Ma, Y. Dong, K. Wang, J. Tang, Deepinf: Social influence prediction with deep learning, in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 2110–2119.
– reference: M. Kimura, K. Saito, H. Motoda, Minimizing the spread of contamination by blocking links in a network, in: Aaai, Vol. 8, 2008, p. 1321.
– volume: 30
  year: 2017
  ident: b42
  article-title: Gradient episodic memory for continual learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 505
  start-page: 362
  year: 2022
  end-page: 374
  ident: b16
  article-title: Dynamic graph neural network for fake news detection
  publication-title: Neurocomputing
– year: 2020
  ident: b43
  article-title: GCAN: Graph-aware co-attention networks for explainable fake news detection on social media
– volume: 43
  start-page: 283
  year: 2023
  end-page: 291
  ident: b3
  article-title: Dissemination and acceptance of COVID-19 misinformation in Iran: a qualitative study
  publication-title: Community Heal. Equity Res. Policy
– volume: 55
  start-page: 1
  year: 2023
  end-page: 38
  ident: b5
  article-title: Fighting false information from propagation process: A survey
  publication-title: ACM Comput. Surv.
– start-page: 123
  year: 2017
  ident: b31
  article-title: Drimux: Dynamic rumor influence minimization with user experience in social networks
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 60
  start-page: 911
  year: 2009
  end-page: 932
  ident: b48
  article-title: Patterns and dynamics of users’ behavior and interaction: Network analysis of an online community
  publication-title: J. Am. Soc. Inf. Sci. Technol.
– volume: 30
  year: 2017
  ident: b12
  article-title: Inductive representation learning on large graphs
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 123
  year: 2022
  ident: b39
  article-title: Two-stage training of graph neural networks for graph classification
  publication-title: Neural Process. Lett.
– volume: 30
  start-page: 123
  year: 2008
  ident: b6
  article-title: On variants of shortest-path betweenness centrality and their generic computation
  publication-title: Soc. Netw.
– start-page: 350
  year: 2024
  end-page: 360
  ident: b1
  article-title: Graph neural network based approach for restraining misinformation propagation in online social networks
  publication-title: International Conference on Computing Systems and Applications
– volume: 20
  start-page: 512
  year: 2016
  end-page: 534
  ident: b14
  article-title: What learning systems do intelligent agents need? Complementary learning systems theory updated
  publication-title: Trends Cogn. Sci.
– start-page: 123
  year: 2023
  ident: b36
  article-title: Deep reinforcement learning-based approach for rumor influence minimization in social networks
  publication-title: Appl. Intell.
– volume: 9
  start-page: 2188
  year: 2017
  ident: b2
  article-title: Impact of the Fukushima nuclear accident on belief in rumors: The role of risk perception and communication
  publication-title: Sustainability
– start-page: 123
  year: 2020
  ident: b35
  article-title: Activity minimization of misinformation influence in online social networks
  publication-title: IEEE Trans. Comput. Soc. Syst.
– reference: Y.-T. Chang, Z. Hu, X. Li, S. Yang, J. Jiang, N. Sun, Dihan: A novel dynamic hierarchical graph attention network for fake news detection, in: Proceedings of the 33rd ACM International Conference on Information and Knowledge Management, 2024, pp. 197–206.
– volume: 186
  year: 2021
  ident: b4
  article-title: Minimizing the spread of misinformation in online social networks: A survey
  publication-title: J. Netw. Comput. Appl.
– start-page: 245
  year: 2014
  end-page: 256
  ident: b25
  article-title: Towards automatic detection of user influence in twitter by means of stylistic and behavioral features
  publication-title: Mexican International Conference on Artificial Intelligence
– start-page: 32132
  year: 2013
  ident: b30
  article-title: Least cost rumor blocking in social networks
  publication-title: 2013 IEEE 33rd International Conference on Distributed Computing Systems
– year: 2012
  ident: b45
  article-title: Learning to discover social circles in ego networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 132
  year: 2019
  ident: b33
  article-title: Adaptive influence blocking: Minimizing the negative spread by observation-based policies
  publication-title: IEEE 35th International Conference on Data Engineering
– volume: 414
  start-page: 18
  year: 2020
  ident: 10.1016/j.osnem.2025.100340_b11
  article-title: InfGCN: Identifying influential nodes in complex networks with graph convolutional networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.028
– ident: 10.1016/j.osnem.2025.100340_b7
– ident: 10.1016/j.osnem.2025.100340_b27
– volume: 9
  start-page: 2188
  issue: 12
  year: 2017
  ident: 10.1016/j.osnem.2025.100340_b2
  article-title: Impact of the Fukushima nuclear accident on belief in rumors: The role of risk perception and communication
  publication-title: Sustainability
  doi: 10.3390/su9122188
– volume: 60
  start-page: 911
  issue: 5
  year: 2009
  ident: 10.1016/j.osnem.2025.100340_b48
  article-title: Patterns and dynamics of users’ behavior and interaction: Network analysis of an online community
  publication-title: J. Am. Soc. Inf. Sci. Technol.
  doi: 10.1002/asi.21015
– volume: 30
  year: 2017
  ident: 10.1016/j.osnem.2025.100340_b42
  article-title: Gradient episodic memory for continual learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 193
  year: 2020
  ident: 10.1016/j.osnem.2025.100340_b38
  article-title: Minimizing the influence of rumors during breaking news events in online social networks
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.105452
– volume: 6
  start-page: 888
  issue: 11
  year: 2010
  ident: 10.1016/j.osnem.2025.100340_b23
  article-title: Identification of influential spreaders in complex networks
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1746
– volume: 541
  year: 2020
  ident: 10.1016/j.osnem.2025.100340_b19
  article-title: Identifying influential nodes in complex networks based on global and local structure
  publication-title: Phys. A
  doi: 10.1016/j.physa.2019.123262
– volume: 315
  start-page: 496
  year: 2018
  ident: 10.1016/j.osnem.2025.100340_b24
  article-title: Detection of spam-posting accounts on Twitter
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.07.044
– volume: 53
  start-page: 3990
  issue: 7
  year: 2023
  ident: 10.1016/j.osnem.2025.100340_b49
  article-title: Rumor containment by blocking nodes in social networks
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
  doi: 10.1109/TSMC.2023.3237933
– start-page: 245
  year: 2014
  ident: 10.1016/j.osnem.2025.100340_b25
  article-title: Towards automatic detection of user influence in twitter by means of stylistic and behavioral features
– volume: 31
  start-page: 581
  issue: 4
  year: 1966
  ident: 10.1016/j.osnem.2025.100340_b21
  article-title: The centrality index of a graph
  publication-title: Psychometrika
  doi: 10.1007/BF02289527
– volume: 113
  start-page: 54
  year: 2019
  ident: 10.1016/j.osnem.2025.100340_b13
  article-title: Continual lifelong learning with neural networks: A review
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.01.012
– ident: 10.1016/j.osnem.2025.100340_b10
  doi: 10.1145/3219819.3220077
– start-page: 123
  year: 2017
  ident: 10.1016/j.osnem.2025.100340_b31
  article-title: Drimux: Dynamic rumor influence minimization with user experience in social networks
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 512
  start-page: 1458
  year: 2020
  ident: 10.1016/j.osnem.2025.100340_b37
  article-title: Minimizing rumor influence in multiplex online social networks based on human individual and social behaviors
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.10.063
– start-page: 123
  year: 2022
  ident: 10.1016/j.osnem.2025.100340_b39
  article-title: Two-stage training of graph neural networks for graph classification
  publication-title: Neural Process. Lett.
– volume: 505
  start-page: 362
  year: 2022
  ident: 10.1016/j.osnem.2025.100340_b16
  article-title: Dynamic graph neural network for fake news detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.07.057
– volume: 198
  year: 2020
  ident: 10.1016/j.osnem.2025.100340_b9
  article-title: Identifying critical nodes in complex networks via graph convolutional networks
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105893
– start-page: 132
  year: 2019
  ident: 10.1016/j.osnem.2025.100340_b33
  article-title: Adaptive influence blocking: Minimizing the negative spread by observation-based policies
– volume: 55
  start-page: 1
  issue: 10
  year: 2023
  ident: 10.1016/j.osnem.2025.100340_b5
  article-title: Fighting false information from propagation process: A survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3563388
– year: 2020
  ident: 10.1016/j.osnem.2025.100340_b43
– volume: 11
  start-page: 105
  issue: 4
  year: 2015
  ident: 10.1016/j.osnem.2025.100340_b8
  article-title: Maximizing the spread of influence through a social network
  publication-title: Theory Comput.
  doi: 10.4086/toc.2015.v011a004
– year: 2012
  ident: 10.1016/j.osnem.2025.100340_b45
  article-title: Learning to discover social circles in ego networks
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.osnem.2025.100340_b47
  doi: 10.1145/3097983.3098069
– year: 1977
  ident: 10.1016/j.osnem.2025.100340_b20
  article-title: A set of measures of centrality based on betweenness
  publication-title: Sociometry
  doi: 10.2307/3033543
– start-page: 350
  year: 2024
  ident: 10.1016/j.osnem.2025.100340_b1
  article-title: Graph neural network based approach for restraining misinformation propagation in online social networks
– volume: 20
  start-page: 512
  issue: 7
  year: 2016
  ident: 10.1016/j.osnem.2025.100340_b14
  article-title: What learning systems do intelligent agents need? Complementary learning systems theory updated
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2016.05.004
– ident: 10.1016/j.osnem.2025.100340_b41
  doi: 10.1609/aaai.v32i1.11268
– volume: 30
  year: 2017
  ident: 10.1016/j.osnem.2025.100340_b12
  article-title: Inductive representation learning on large graphs
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 159
  start-page: 27
  year: 2015
  ident: 10.1016/j.osnem.2025.100340_b26
  article-title: Detecting spammers on social networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.02.047
– start-page: 321
  year: 2019
  ident: 10.1016/j.osnem.2025.100340_b28
  article-title: Rumor blocking through online link deletion on social networks
  publication-title: ACM Trans. Knowl. Discov. Data (TKDD)
– start-page: 123
  year: 2018
  ident: 10.1016/j.osnem.2025.100340_b40
  article-title: HISBmodel: A rumor diffusion model based on human individual and social behaviors in online social networks
– volume: 71
  issue: 5
  year: 2005
  ident: 10.1016/j.osnem.2025.100340_b22
  article-title: Subgraph centrality in complex networks
  publication-title: Phys. Rev. E—Stat. Nonlinear Soft Matter Phys.
  doi: 10.1103/PhysRevE.71.056103
– start-page: 123
  year: 2017
  ident: 10.1016/j.osnem.2025.100340_b32
  article-title: An efficient randomized algorithm for rumor blocking in online social networks
  publication-title: IEEE Trans. Netw. Sci. Eng.
– start-page: 32132
  year: 2013
  ident: 10.1016/j.osnem.2025.100340_b30
  article-title: Least cost rumor blocking in social networks
– volume: 62
  issue: 1
  year: 2025
  ident: 10.1016/j.osnem.2025.100340_b18
  article-title: EvolveDetector: Towards an evolving fake news detector for emerging events with continual knowledge accumulation and transfer
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2024.103878
– start-page: 123
  year: 2019
  ident: 10.1016/j.osnem.2025.100340_b34
  article-title: Minimizing influence of rumors by blockers on social networks: algorithms and analysis
  publication-title: IEEE Trans. Netw. Sci. Eng.
– start-page: 123
  year: 2023
  ident: 10.1016/j.osnem.2025.100340_b36
  article-title: Deep reinforcement learning-based approach for rumor influence minimization in social networks
  publication-title: Appl. Intell.
– volume: 43
  start-page: 283
  issue: 3
  year: 2023
  ident: 10.1016/j.osnem.2025.100340_b3
  article-title: Dissemination and acceptance of COVID-19 misinformation in Iran: a qualitative study
  publication-title: Community Heal. Equity Res. Policy
  doi: 10.1177/0272684X211022155
– volume: 186
  year: 2021
  ident: 10.1016/j.osnem.2025.100340_b4
  article-title: Minimizing the spread of misinformation in online social networks: A survey
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2021.103094
– volume: 58
  issue: 6
  year: 2021
  ident: 10.1016/j.osnem.2025.100340_b15
  article-title: Temporally evolving graph neural network for fake news detection
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2021.102712
– start-page: 3213
  year: 2020
  ident: 10.1016/j.osnem.2025.100340_b29
  article-title: Efficient targeted influence minimization in big social networks
  publication-title: World Wide Web
– year: 2019
  ident: 10.1016/j.osnem.2025.100340_b46
– volume: 30
  start-page: 123
  issue: 2
  year: 2008
  ident: 10.1016/j.osnem.2025.100340_b6
  article-title: On variants of shortest-path betweenness centrality and their generic computation
  publication-title: Soc. Netw.
  doi: 10.1016/j.socnet.2007.11.001
– start-page: 123
  year: 2020
  ident: 10.1016/j.osnem.2025.100340_b35
  article-title: Activity minimization of misinformation influence in online social networks
  publication-title: IEEE Trans. Comput. Soc. Syst.
– start-page: 512
  year: 2017
  ident: 10.1016/j.osnem.2025.100340_b44
– ident: 10.1016/j.osnem.2025.100340_b17
  doi: 10.1145/3627673.3679675
SSID ssj0001934532
Score 2.3108778
Snippet In today’s digital landscape, online social networks (OSNs) facilitate rapid information dissemination. However, they also serve as conduits for...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 100340
SubjectTerms Continual learning
Graph neural network
Misinformation containment
Online social networks
Rumor influence minimization
Title Misinformation mitigation in online social networks using continual learning with graph neural networks
URI https://dx.doi.org/10.1016/j.osnem.2025.100340
Volume 50
WOSCitedRecordID wos001614760800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 2468-6964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001934532
  issn: 2468-6964
  databaseCode: AIEXJ
  dateStart: 20170601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDBbSdIdeig3b0NcGHXZLHSh-SNYxGzqse3Q9dEBuhiNLrYvEKfIoiv6v_r9RouW4W1Csh12EQIloW_xA0Qz5kZAPCXipRrJxEIUyCWyMIUiLnAXS8EiBg2yMYq7ZhDg7S0cjed7pPPhamNuJqKr07k7e_FdVwxwo25bOPkPdjVCYgM-gdBhB7TD-k-J_lIuaDdWpdloiiwamNCIxho-UV5gDvuit6tpb2zbC1pNMfMDEhWkdqXXPMl-21rS92p-bpdqYvKtMabRqaw2xTbbNQJ02mJotcHpYlJPe6TS3RMtF-x9_fXlVwOxHDLB_A3PZCP0-g60Fu-4ydkvAcHU_a8cywqSVF-JMXmjrwLhEXvO-3jBX22wkq62N7sCS7LCN5wGGJq778Bja8g6ESX_968fs23-cik2uok-Du86ckMwKyVDIFtkORSLTLtkenp6Mvq6DezKKE9ccr7l7z3jlcgv_up3NXlHL07l4SXbrVxQ6RGi9Ih1dvSaXj2FF17CiZUURVhQBQD0AqIMVbWBFPayohRV1sKIIq2bNG_Lr88nFpy9B3aQjUPA2ugx4zrkSuWKGG8NFkQ5sbf4ggofK09hoLk0qxjLWkckjDd9qplgOXrAyciykid6SbjWr9B6hOmGFUgWHU2YQayNlCqMIi0SMQ8livU-O_SZlN8jFkj2hnX3C_UZmtTuJbmIG6Hhq4cHzrnNIdtZYPiLd5Xyl35EX6nZZLubva2j8BqM5nDo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Misinformation+mitigation+in+online+social+networks+using+continual+learning+with+graph+neural+networks&rft.jtitle=Online+social+networks+and+media&rft.au=Merini%2C+Hichem&rft.au=Hosni%2C+Adil+Imad+Eddine&rft.au=Beghdad+Bey%2C+Kadda&rft.au=Lomonaco%2C+Vincenzo&rft.date=2025-12-01&rft.issn=2468-6964&rft.eissn=2468-6964&rft.volume=50&rft.spage=100340&rft_id=info:doi/10.1016%2Fj.osnem.2025.100340&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_osnem_2025_100340
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-6964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-6964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-6964&client=summon