An enhanced list scheduling algorithm for heterogeneous computing using an optimized Predictive Cost Matrix

Effective task scheduling is essential for optimizing resource utilization and improving system performance in heterogeneous computing environments. Current algorithms face challenges, particularly their need for more focus on the computational demands of intensive tasks and their inadequate attenti...

Full description

Saved in:
Bibliographic Details
Published in:Future generation computer systems Vol. 166; p. 107733
Main Authors: Wang, Min, Chen, Jiawang, Wang, Haoyuan, Gao, Ziyi, Bian, Weihao, Qiao, Sibo
Format: Journal Article
Language:English
Published: Elsevier B.V 01.05.2025
Subjects:
ISSN:0167-739X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Effective task scheduling is essential for optimizing resource utilization and improving system performance in heterogeneous computing environments. Current algorithms face challenges, particularly their need for more focus on the computational demands of intensive tasks and their inadequate attention to load balancing during processor allocation. To solve these problems, this study introduces the Balanced Prediction Priority Task Scheduling (BPPTS) algorithm, a novel list scheduling approach to improve the scheduling efficiency of compute-heavy tasks in heterogeneous systems. The BPPTS algorithm proposes the Balanced Prediction Cost Matrix (BPCM), which comprehensively evaluates the importance of tasks by considering their average computation cost. At the same time, a computation enhancement factor is introduced in the priority sorting to optimize the scheduling of computation-intensive tasks. The goal is to improve the scheduling efficiency of computation-intensive tasks and achieve load balancing. The BPPTS algorithm has a complexity of O(v2p), where v represents the number of tasks, and p denotes the number of processors. Experiments demonstrate that BPPTS outperforms other algorithms in terms of maximum completion time and speedup. •A novel list-based scheduling algorithm, the Balanced Prediction Priority Task Scheduling (BPPTS) algorithm, is proposed to minimize task flow scheduling time. Additionally, it maintains a complexity of O(v2p).•A new computational matrix, the Balanced Prediction Cost Matrix (BPCM), is proposed. Based on processor costs and task dependencies, it predicts task costs across processors, aiming to optimize scheduling and improve resource allocation efficiency.•At the task prioritization phase, a computation enhancement factor is introduced to optimize task priority assignment. This approach increases the priority weight of compute-intensive tasks, improving scheduling efficiency and resource utilization, thereby achieving more effective load balancing.
AbstractList Effective task scheduling is essential for optimizing resource utilization and improving system performance in heterogeneous computing environments. Current algorithms face challenges, particularly their need for more focus on the computational demands of intensive tasks and their inadequate attention to load balancing during processor allocation. To solve these problems, this study introduces the Balanced Prediction Priority Task Scheduling (BPPTS) algorithm, a novel list scheduling approach to improve the scheduling efficiency of compute-heavy tasks in heterogeneous systems. The BPPTS algorithm proposes the Balanced Prediction Cost Matrix (BPCM), which comprehensively evaluates the importance of tasks by considering their average computation cost. At the same time, a computation enhancement factor is introduced in the priority sorting to optimize the scheduling of computation-intensive tasks. The goal is to improve the scheduling efficiency of computation-intensive tasks and achieve load balancing. The BPPTS algorithm has a complexity of O(v2p), where v represents the number of tasks, and p denotes the number of processors. Experiments demonstrate that BPPTS outperforms other algorithms in terms of maximum completion time and speedup. •A novel list-based scheduling algorithm, the Balanced Prediction Priority Task Scheduling (BPPTS) algorithm, is proposed to minimize task flow scheduling time. Additionally, it maintains a complexity of O(v2p).•A new computational matrix, the Balanced Prediction Cost Matrix (BPCM), is proposed. Based on processor costs and task dependencies, it predicts task costs across processors, aiming to optimize scheduling and improve resource allocation efficiency.•At the task prioritization phase, a computation enhancement factor is introduced to optimize task priority assignment. This approach increases the priority weight of compute-intensive tasks, improving scheduling efficiency and resource utilization, thereby achieving more effective load balancing.
ArticleNumber 107733
Author Chen, Jiawang
Wang, Min
Gao, Ziyi
Wang, Haoyuan
Bian, Weihao
Qiao, Sibo
Author_xml – sequence: 1
  givenname: Min
  orcidid: 0000-0002-1852-9610
  surname: Wang
  fullname: Wang, Min
  email: wangmin@tiangong.edu.cn
  organization: School of Life Sciences, Tiangong University, Tianjin 300387, China
– sequence: 2
  givenname: Jiawang
  orcidid: 0009-0006-4194-0682
  surname: Chen
  fullname: Chen, Jiawang
  email: 2331091154@tiangong.edu.cn
  organization: School of Control Sciences and Engineering, Tiangong University, Tianjin 300387, China
– sequence: 3
  givenname: Haoyuan
  surname: Wang
  fullname: Wang, Haoyuan
  email: wanghaoyuan@tiangong.edu.cn
  organization: School of Control Sciences and Engineering, Tiangong University, Tianjin 300387, China
– sequence: 4
  givenname: Ziyi
  surname: Gao
  fullname: Gao, Ziyi
  email: 2230070937@tiangong.edu.cn
  organization: School of Control Sciences and Engineering, Tiangong University, Tianjin 300387, China
– sequence: 5
  givenname: Weihao
  surname: Bian
  fullname: Bian, Weihao
  email: 2331091152@tiangong.edu.cn
  organization: School of Control Sciences and Engineering, Tiangong University, Tianjin 300387, China
– sequence: 6
  givenname: Sibo
  surname: Qiao
  fullname: Qiao, Sibo
  email: siboqiao@tiangong.edu.cn
  organization: School of Software, Tiangong University, Tianjin 300387, China
BookMark eNp9kMtOwzAQRb0oEm3hD1j4B1LsOLbTDVJV8ZKKYAESO8u1J41LGle2UwFfT0JYsxpp5t6j0ZmhSetbQOiKkgUlVFzvF1WXugCLnOS8X0nJ2ARN-5PMJFu-n6NZjHtCCJWMTtHHqsXQ1ro1YHHjYsLR1GC7xrU7rJudDy7VB1z5gGtIEPwOWvBdxMYfjl0aUl38zbbYH5M7uO8e9BLAOpPcCfDa98wnnYL7vEBnlW4iXP7NOXq7u31dP2Sb5_vH9WqTmZzzlIlCWEOAwlZzWzArGXDJyirPQUtieaFptbQ5EVsuSMk1XZqyMlqYUgswgrI5KkauCT7GAJU6BnfQ4UtRogZJaq9GSWqQpEZJfe1mrEH_28lBUNE4GMS4ACYp693_gB80Q3k-
Cites_doi 10.1016/j.future.2012.08.015
10.1002/cpe.3944
10.1109/5.533958
10.1109/JPROC.2022.3218057
10.1109/TPDS.2005.64
10.1109/TPDS.2017.2678507
10.1007/s12652-020-01994-0
10.1109/TPDS.2018.2808959
10.1109/TPDS.2016.2533615
10.1007/s11227-022-04687-x
10.1109/TPDS.2020.3041829
10.1109/TPDS.2013.57
10.1016/j.future.2024.107576
10.1109/71.993206
10.1016/j.jpdc.2007.05.015
10.1109/71.503776
10.1126/science.256.5055.325
10.1145/2822332.2822336
10.1109/TC.2013.170
10.1007/s11227-018-2355-0
10.1109/TPDS.2018.2851221
10.1016/j.future.2015.12.014
10.1145/3339186.3339206
10.1109/TWC.2020.3030889
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.future.2025.107733
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_future_2025_107733
S0167739X25000287
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABDPE
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AAYWO
AAYXX
ACLOT
AIIUN
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c255t-646dc0e1eba5d43d73e5738f22ea70d54a1f9d206b56085a19c8fca6c8a6ec613
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001417520800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-739X
IngestDate Sat Nov 29 07:59:07 EST 2025
Sat May 03 15:56:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Task scheduling algorithms
Heterogeneous computing
Computational complexity
List-based scheduling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c255t-646dc0e1eba5d43d73e5738f22ea70d54a1f9d206b56085a19c8fca6c8a6ec613
ORCID 0000-0002-1852-9610
0009-0006-4194-0682
ParticipantIDs crossref_primary_10_1016_j_future_2025_107733
elsevier_sciencedirect_doi_10_1016_j_future_2025_107733
PublicationCentury 2000
PublicationDate May 2025
2025-05-00
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May 2025
PublicationDecade 2020
PublicationTitle Future generation computer systems
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ekmecic, Tartalja, Milutinovic (b5) 1996; 84
Ryan Mork, Paul Martin, Zhiming Zhao, Contemporary challenges for data-intensive scientific workflow management systems, in: Proceedings of the 10th Workshop on Workflows in Support of Large-Scale Science, 2015.
Djigal (b16) 2020; 32
Li (b3) 2016; 65
Kwok, Ahmad (b8) 1996; 7
Tang, Tan (b27) 2016; 2016
Naithani, Eyerman, Eeckhout (b26) 2017
Sirisha (b7) 2023; 79
Hamza Djigal, Jun Feng, Jiamin Lu, Task scheduling for heterogeneous computing using a predict cost matrix, in: Workshop Proceedings of the 48th International Conference on Parallel Processing, 2019.
Arabnejad, Barbosa (b13) 2013; 25
Wang, Sinnen (b19) 2018; 29
Chai (b20) 2023; 14
Sun, Zhou, Niu (b21) 2020; 20
Bittencourt, Sakellariou, Madeira (b4) 2010
Wang (b2) 2016; 2016
Hu, Veeravalli (b25) 2013; 63
Maurya, Tripathi (b10) 2018; 74
Topcuoglu, Hariri, Wu (b12) 2002; 13
Juve (b30) 2013; 29
Akarvardar, Wong (b1) 2023; 111
Lee (b6) 2016; 28
Wang, Wang, Qiao, Chen, Xie, Guo (b17) 2025; 164
He (b23) 2018; 30
Suter, Hunold (b29) 2013
Chen (b22) 2017; 28
Daoud, Kharma (b24) 2008; 68
Zhou (b14) 2017; 29
Sinnen, Sousa (b28) 2005; 16
Sirisha, Vijaya Kumari (b11) 2015
Ahmad (b9) 2024
Etminani, Naghibzadeh (b18) 2007
Abramovici (b31) 1992; 256
He (10.1016/j.future.2025.107733_b23) 2018; 30
10.1016/j.future.2025.107733_b32
Akarvardar (10.1016/j.future.2025.107733_b1) 2023; 111
Ahmad (10.1016/j.future.2025.107733_b9) 2024
Wang (10.1016/j.future.2025.107733_b19) 2018; 29
Ekmecic (10.1016/j.future.2025.107733_b5) 1996; 84
Sun (10.1016/j.future.2025.107733_b21) 2020; 20
Naithani (10.1016/j.future.2025.107733_b26) 2017
Wang (10.1016/j.future.2025.107733_b2) 2016; 2016
10.1016/j.future.2025.107733_b15
Abramovici (10.1016/j.future.2025.107733_b31) 1992; 256
Li (10.1016/j.future.2025.107733_b3) 2016; 65
Sirisha (10.1016/j.future.2025.107733_b11) 2015
Maurya (10.1016/j.future.2025.107733_b10) 2018; 74
Chai (10.1016/j.future.2025.107733_b20) 2023; 14
Wang (10.1016/j.future.2025.107733_b17) 2025; 164
Daoud (10.1016/j.future.2025.107733_b24) 2008; 68
Tang (10.1016/j.future.2025.107733_b27) 2016; 2016
Kwok (10.1016/j.future.2025.107733_b8) 1996; 7
Sirisha (10.1016/j.future.2025.107733_b7) 2023; 79
Topcuoglu (10.1016/j.future.2025.107733_b12) 2002; 13
Zhou (10.1016/j.future.2025.107733_b14) 2017; 29
Sinnen (10.1016/j.future.2025.107733_b28) 2005; 16
Lee (10.1016/j.future.2025.107733_b6) 2016; 28
Hu (10.1016/j.future.2025.107733_b25) 2013; 63
Juve (10.1016/j.future.2025.107733_b30) 2013; 29
Bittencourt (10.1016/j.future.2025.107733_b4) 2010
Chen (10.1016/j.future.2025.107733_b22) 2017; 28
Arabnejad (10.1016/j.future.2025.107733_b13) 2013; 25
Suter (10.1016/j.future.2025.107733_b29) 2013
Etminani (10.1016/j.future.2025.107733_b18) 2007
Djigal (10.1016/j.future.2025.107733_b16) 2020; 32
References_xml – volume: 2016
  year: 2016
  ident: b2
  article-title: HSIP: A novel task scheduling algorithm for heterogeneous computing
  publication-title: Sci. Program.
– volume: 25
  start-page: 682
  year: 2013
  end-page: 694
  ident: b13
  article-title: List scheduling algorithm for heterogeneous systems by an optimistic cost table
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 256
  start-page: 325
  year: 1992
  end-page: 333
  ident: b31
  article-title: LIGO: The laser interferometer gravitational-wave observatory
  publication-title: Science
– volume: 2016
  year: 2016
  ident: b27
  article-title: Energy-efficient reliability-aware scheduling algorithm on heterogeneous systems
  publication-title: Sci. Program.
– volume: 30
  start-page: 2
  year: 2018
  end-page: 14
  ident: b23
  article-title: A novel task-duplication based clustering algorithm for heterogeneous computing environments
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– year: 2013
  ident: b29
  article-title: Daggen: A synthetic task graph generator
– volume: 28
  start-page: 230
  year: 2016
  end-page: 243
  ident: b6
  article-title: Time-reversibility for real-time scheduling on multiprocessor systems
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 74
  start-page: 3039
  year: 2018
  end-page: 3070
  ident: b10
  article-title: On benchmarking task scheduling algorithms for heterogeneous computing systems
  publication-title: J. Supercomput.
– volume: 28
  start-page: 2674
  year: 2017
  end-page: 2688
  ident: b22
  article-title: Scheduling for workflows with security-sensitive intermediate data by selective task duplication in clouds
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 111
  start-page: 92
  year: 2023
  end-page: 112
  ident: b1
  article-title: Technology prospects for data-intensive computing
  publication-title: Proc. IEEE
– volume: 14
  start-page: 14807
  year: 2023
  end-page: 14815
  ident: b20
  article-title: Task scheduling based on swarm intelligence algorithms in high performance computing environment
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: 79
  start-page: 924
  year: 2023
  end-page: 946
  ident: b7
  article-title: Complexity versus quality: a trade-off for scheduling workflows in heterogeneous computing environments
  publication-title: J. Supercomput.
– volume: 7
  start-page: 506
  year: 1996
  end-page: 521
  ident: b8
  article-title: Dynamic critical-path scheduling: An effective technique for allocating task graphs to multiprocessors
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 84
  start-page: 1127
  year: 1996
  end-page: 1144
  ident: b5
  article-title: A survey of heterogeneous computing: concepts and systems
  publication-title: Proc. IEEE
– volume: 32
  start-page: 1057
  year: 2020
  end-page: 1071
  ident: b16
  article-title: IPPTS: An efficient algorithm for scientific workflow scheduling in heterogeneous computing systems
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– start-page: 397
  year: 2017
  end-page: 408
  ident: b26
  article-title: Reliability-aware scheduling on heterogeneous multicore processors
  publication-title: 2017 IEEE International Symposium on High Performance Computer Architecture
– volume: 29
  start-page: 682
  year: 2013
  end-page: 692
  ident: b30
  article-title: Characterizing and profiling scientific workflows
  publication-title: Future Gener. Comput. Syst.
– start-page: 1
  year: 2007
  end-page: 6
  ident: b18
  article-title: A min-min max-min selective algorithm for grid task scheduling
  publication-title: 2007 3rd IEEE/IFIP International Conference in Central Asia on Internet
– reference: Ryan Mork, Paul Martin, Zhiming Zhao, Contemporary challenges for data-intensive scientific workflow management systems, in: Proceedings of the 10th Workshop on Workflows in Support of Large-Scale Science, 2015.
– reference: Hamza Djigal, Jun Feng, Jiamin Lu, Task scheduling for heterogeneous computing using a predict cost matrix, in: Workshop Proceedings of the 48th International Conference on Parallel Processing, 2019.
– start-page: 1
  year: 2015
  end-page: 6
  ident: b11
  article-title: A new heuristic for minimizing schedule length in heterogeneous computing systems
  publication-title: 2015 IEEE International Conference on Electrical, Computer and Communication Technologies
– volume: 65
  start-page: 140
  year: 2016
  end-page: 152
  ident: b3
  article-title: A security and cost aware scheduling algorithm for heterogeneous tasks of scientific workflow in clouds
  publication-title: Future Gener. Comput. Syst.
– volume: 16
  start-page: 503
  year: 2005
  end-page: 515
  ident: b28
  article-title: Communication contention in task scheduling
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 29
  year: 2017
  ident: b14
  article-title: A list scheduling algorithm for heterogeneous systems based on a critical node cost table and pessimistic cost table
  publication-title: Concurr. Comput.: Pract. Exper.
– start-page: 1
  year: 2024
  end-page: 23
  ident: b9
  article-title: An analytical review and performance measures of state-of-art scheduling algorithms in heterogenous computing environment
  publication-title: Arch. Comput. Methods Eng.
– volume: 13
  start-page: 260
  year: 2002
  end-page: 274
  ident: b12
  article-title: Performance-effective and low-complexity task scheduling for heterogeneous computing
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– start-page: 357
  year: 2010
  end-page: 364
  ident: b4
  article-title: Dag scheduling using a lookahead variant of the heterogeneous earliest finish time algorithm
  publication-title: 2010 18th Euromicro Conference on Parallel, Distributed and Network-Based Processing
– volume: 68
  start-page: 399
  year: 2008
  end-page: 409
  ident: b24
  article-title: A high performance algorithm for static task scheduling in heterogeneous distributed computing systems
  publication-title: J. Parallel Distrib. Comput.
– volume: 29
  start-page: 1736
  year: 2018
  end-page: 1749
  ident: b19
  article-title: List-scheduling versus cluster-scheduling
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 63
  start-page: 2988
  year: 2013
  end-page: 2997
  ident: b25
  article-title: Dynamic scheduling of hybrid real-time tasks on clusters
  publication-title: IEEE Trans. Comput.
– volume: 164
  year: 2025
  ident: b17
  article-title: Heterogeneous system list scheduling algorithm based on improved optimistic cost matrix
  publication-title: Future Gener. Comput. Syst.
– volume: 20
  start-page: 1138
  year: 2020
  end-page: 1151
  ident: b21
  article-title: Distributed task replication for vehicular edge computing: Performance analysis and learning-based algorithm
  publication-title: IEEE Trans. Wireless Commun.
– start-page: 1
  year: 2007
  ident: 10.1016/j.future.2025.107733_b18
  article-title: A min-min max-min selective algorithm for grid task scheduling
– volume: 29
  start-page: 682
  issue: 3
  year: 2013
  ident: 10.1016/j.future.2025.107733_b30
  article-title: Characterizing and profiling scientific workflows
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2012.08.015
– volume: 29
  issue: 5
  year: 2017
  ident: 10.1016/j.future.2025.107733_b14
  article-title: A list scheduling algorithm for heterogeneous systems based on a critical node cost table and pessimistic cost table
  publication-title: Concurr. Comput.: Pract. Exper.
  doi: 10.1002/cpe.3944
– volume: 84
  start-page: 1127
  issue: 8
  year: 1996
  ident: 10.1016/j.future.2025.107733_b5
  article-title: A survey of heterogeneous computing: concepts and systems
  publication-title: Proc. IEEE
  doi: 10.1109/5.533958
– volume: 111
  start-page: 92
  issue: 1
  year: 2023
  ident: 10.1016/j.future.2025.107733_b1
  article-title: Technology prospects for data-intensive computing
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2022.3218057
– start-page: 1
  year: 2024
  ident: 10.1016/j.future.2025.107733_b9
  article-title: An analytical review and performance measures of state-of-art scheduling algorithms in heterogenous computing environment
  publication-title: Arch. Comput. Methods Eng.
– start-page: 357
  year: 2010
  ident: 10.1016/j.future.2025.107733_b4
  article-title: Dag scheduling using a lookahead variant of the heterogeneous earliest finish time algorithm
– volume: 16
  start-page: 503
  issue: 6
  year: 2005
  ident: 10.1016/j.future.2025.107733_b28
  article-title: Communication contention in task scheduling
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2005.64
– volume: 28
  start-page: 2674
  issue: 9
  year: 2017
  ident: 10.1016/j.future.2025.107733_b22
  article-title: Scheduling for workflows with security-sensitive intermediate data by selective task duplication in clouds
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2017.2678507
– volume: 14
  start-page: 14807
  issue: 11
  year: 2023
  ident: 10.1016/j.future.2025.107733_b20
  article-title: Task scheduling based on swarm intelligence algorithms in high performance computing environment
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-020-01994-0
– volume: 29
  start-page: 1736
  issue: 8
  year: 2018
  ident: 10.1016/j.future.2025.107733_b19
  article-title: List-scheduling versus cluster-scheduling
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2018.2808959
– start-page: 397
  year: 2017
  ident: 10.1016/j.future.2025.107733_b26
  article-title: Reliability-aware scheduling on heterogeneous multicore processors
– volume: 2016
  issue: 1
  year: 2016
  ident: 10.1016/j.future.2025.107733_b27
  article-title: Energy-efficient reliability-aware scheduling algorithm on heterogeneous systems
  publication-title: Sci. Program.
– volume: 28
  start-page: 230
  issue: 1
  year: 2016
  ident: 10.1016/j.future.2025.107733_b6
  article-title: Time-reversibility for real-time scheduling on multiprocessor systems
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2016.2533615
– volume: 79
  start-page: 924
  issue: 1
  year: 2023
  ident: 10.1016/j.future.2025.107733_b7
  article-title: Complexity versus quality: a trade-off for scheduling workflows in heterogeneous computing environments
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-022-04687-x
– volume: 2016
  issue: 1
  year: 2016
  ident: 10.1016/j.future.2025.107733_b2
  article-title: HSIP: A novel task scheduling algorithm for heterogeneous computing
  publication-title: Sci. Program.
– volume: 32
  start-page: 1057
  issue: 5
  year: 2020
  ident: 10.1016/j.future.2025.107733_b16
  article-title: IPPTS: An efficient algorithm for scientific workflow scheduling in heterogeneous computing systems
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2020.3041829
– volume: 25
  start-page: 682
  issue: 3
  year: 2013
  ident: 10.1016/j.future.2025.107733_b13
  article-title: List scheduling algorithm for heterogeneous systems by an optimistic cost table
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2013.57
– volume: 164
  year: 2025
  ident: 10.1016/j.future.2025.107733_b17
  article-title: Heterogeneous system list scheduling algorithm based on improved optimistic cost matrix
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2024.107576
– start-page: 1
  year: 2015
  ident: 10.1016/j.future.2025.107733_b11
  article-title: A new heuristic for minimizing schedule length in heterogeneous computing systems
– volume: 13
  start-page: 260
  issue: 3
  year: 2002
  ident: 10.1016/j.future.2025.107733_b12
  article-title: Performance-effective and low-complexity task scheduling for heterogeneous computing
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/71.993206
– volume: 68
  start-page: 399
  issue: 4
  year: 2008
  ident: 10.1016/j.future.2025.107733_b24
  article-title: A high performance algorithm for static task scheduling in heterogeneous distributed computing systems
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2007.05.015
– volume: 7
  start-page: 506
  issue: 5
  year: 1996
  ident: 10.1016/j.future.2025.107733_b8
  article-title: Dynamic critical-path scheduling: An effective technique for allocating task graphs to multiprocessors
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/71.503776
– year: 2013
  ident: 10.1016/j.future.2025.107733_b29
– volume: 256
  start-page: 325
  issue: 5055
  year: 1992
  ident: 10.1016/j.future.2025.107733_b31
  article-title: LIGO: The laser interferometer gravitational-wave observatory
  publication-title: Science
  doi: 10.1126/science.256.5055.325
– ident: 10.1016/j.future.2025.107733_b32
  doi: 10.1145/2822332.2822336
– volume: 63
  start-page: 2988
  issue: 12
  year: 2013
  ident: 10.1016/j.future.2025.107733_b25
  article-title: Dynamic scheduling of hybrid real-time tasks on clusters
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2013.170
– volume: 74
  start-page: 3039
  issue: 7
  year: 2018
  ident: 10.1016/j.future.2025.107733_b10
  article-title: On benchmarking task scheduling algorithms for heterogeneous computing systems
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-018-2355-0
– volume: 30
  start-page: 2
  issue: 1
  year: 2018
  ident: 10.1016/j.future.2025.107733_b23
  article-title: A novel task-duplication based clustering algorithm for heterogeneous computing environments
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2018.2851221
– volume: 65
  start-page: 140
  year: 2016
  ident: 10.1016/j.future.2025.107733_b3
  article-title: A security and cost aware scheduling algorithm for heterogeneous tasks of scientific workflow in clouds
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2015.12.014
– ident: 10.1016/j.future.2025.107733_b15
  doi: 10.1145/3339186.3339206
– volume: 20
  start-page: 1138
  issue: 2
  year: 2020
  ident: 10.1016/j.future.2025.107733_b21
  article-title: Distributed task replication for vehicular edge computing: Performance analysis and learning-based algorithm
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2020.3030889
SSID ssj0001731
Score 2.4290607
Snippet Effective task scheduling is essential for optimizing resource utilization and improving system performance in heterogeneous computing environments. Current...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 107733
SubjectTerms Computational complexity
Heterogeneous computing
List-based scheduling
Task scheduling algorithms
Title An enhanced list scheduling algorithm for heterogeneous computing using an optimized Predictive Cost Matrix
URI https://dx.doi.org/10.1016/j.future.2025.107733
Volume 166
WOSCitedRecordID wos001417520800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  issn: 0167-739X
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001731
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Lb9NAEIBXoeXAhTeivLQHbpGj2F5718coaimIVhwKRFys8XpN3KZ2lSYl5T_wn5l9-FGKKnrgYkXWZmztfJqdXc-DkLdZrCTL8sgTfqQ8hk6pJxKZe1CILAuYhMDkcX_5yA8PxWyWfBoMfjW5MBcLXlVis0nO_quq8R4qW6fO3kLdrVC8gb9R6XhFteP1nxQ_qYaqmtsP-wtU4hD3r7iemLRzWHyvl-VqfmqiC-c6FKZGQUrHwUrT30GPWp_bzMVhjfbktPypdD6B_qBjwoymNco80JX9N33Pds8UJ9EdmZWDSrqGEa5adOu8f3VH1AdlC-a0yREp4Qe4tbQ3ch_qy3WH8Tsw57vfysuyf2gRRF2IYHOOifaZh6aLbmeI474pxX0ptzUyrll5e-BwPLJlV0b6AaNu-NWi2n8sdm0IYhPddpxaKamWklopd8h2wKMEjeT25P3u7EO7tPvcNbh0b9_kYpqAwetv83dfp-e_HD0k993Gg04sMI_IQFWPyYOmqQd1Nv4JOZlUtOGHan5oxw9t-aHID73CD235oYYfChVt-aEdP1TzQy0_T8nnvd2j6b7nOnJ4EreeKy9mcS7HylcZRDkLcx6qiIeiCAIFfJxHDPwiyYNxnKEjLSLwEykKCbEUgDYBPcdnZKuqK_Wc0CICKWOcJAYhixWIOERrkisApoJCsh3iNXOXntnCK-lNOtshvJng1DmP1ilMkZob__nilk96Se51SL8iW6vlWr0md-XFqjxfvnHI_AbrdJoY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+enhanced+list+scheduling+algorithm+for+heterogeneous+computing+using+an+optimized+Predictive+Cost+Matrix&rft.jtitle=Future+generation+computer+systems&rft.au=Wang%2C+Min&rft.au=Chen%2C+Jiawang&rft.au=Wang%2C+Haoyuan&rft.au=Gao%2C+Ziyi&rft.date=2025-05-01&rft.issn=0167-739X&rft.volume=166&rft.spage=107733&rft_id=info:doi/10.1016%2Fj.future.2025.107733&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2025_107733
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon