Federated Incremental Learning algorithm based on Topological Data Analysis

Federated learning is a distributed learning approach aimed at preserving user’s data privacy, while incremental learning is an adaptive machine learning method that enables continuous learning of new data. The combination of these two approaches into Federated Incremental Learning (FIL) algorithms...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pattern recognition Ročník 158; s. 111048
Hlavní autoři: Hu, Kai, Gong, Sheng, Li, Lingxiao, Luo, Yuantu, Li, YaoGen, Jiang, Shanshan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.02.2025
Témata:
ISSN:0031-3203
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Federated learning is a distributed learning approach aimed at preserving user’s data privacy, while incremental learning is an adaptive machine learning method that enables continuous learning of new data. The combination of these two approaches into Federated Incremental Learning (FIL) algorithms brings together their respective advantages. However, the existing federated incremental learning still faces two main challenges: (1) catastrophic forgetting of previous knowledge by local models when adapting to incremental tasks, and (2) limited capability of the server to capture critical features during federated aggregation. To address these challenges, this paper proposes a federated incremental learning algorithm based on Topological Data Analysis (TDA). Firstly, the algorithm extracts topological features from the input information and designs a Topological Stability Loss (TSL) to mitigate catastrophic forgetting of previous knowledge by local models. Secondly, a feature attention mechanism is utilized to select appropriate attention weights for each local model, enhancing the recognition performance of the global model. The experimental results on publicly available datasets, namely CIFAR10, CIFAR100, and ImageNet, demonstrate that the proposed approach in this paper achieves global accuracies of 67.23%, 65.75%, and 62.41% respectively for the federated incremental learning model. These accuracies surpass the existing Icarl incremental algorithm by improvements of 3.21%, 2.87%, and 1.34% respectively. Therefore, the algorithm presented in this paper achieves better performance, indicating its superiority over existing methods. •Proposes a topological stability loss function based on Topological Data Analysis (TDA).•Presenting a federated incremental learning framework that incorporates the detection of new class tasks based on changes in the local model’s topological structure.
AbstractList Federated learning is a distributed learning approach aimed at preserving user’s data privacy, while incremental learning is an adaptive machine learning method that enables continuous learning of new data. The combination of these two approaches into Federated Incremental Learning (FIL) algorithms brings together their respective advantages. However, the existing federated incremental learning still faces two main challenges: (1) catastrophic forgetting of previous knowledge by local models when adapting to incremental tasks, and (2) limited capability of the server to capture critical features during federated aggregation. To address these challenges, this paper proposes a federated incremental learning algorithm based on Topological Data Analysis (TDA). Firstly, the algorithm extracts topological features from the input information and designs a Topological Stability Loss (TSL) to mitigate catastrophic forgetting of previous knowledge by local models. Secondly, a feature attention mechanism is utilized to select appropriate attention weights for each local model, enhancing the recognition performance of the global model. The experimental results on publicly available datasets, namely CIFAR10, CIFAR100, and ImageNet, demonstrate that the proposed approach in this paper achieves global accuracies of 67.23%, 65.75%, and 62.41% respectively for the federated incremental learning model. These accuracies surpass the existing Icarl incremental algorithm by improvements of 3.21%, 2.87%, and 1.34% respectively. Therefore, the algorithm presented in this paper achieves better performance, indicating its superiority over existing methods. •Proposes a topological stability loss function based on Topological Data Analysis (TDA).•Presenting a federated incremental learning framework that incorporates the detection of new class tasks based on changes in the local model’s topological structure.
ArticleNumber 111048
Author Jiang, Shanshan
Hu, Kai
Li, YaoGen
Gong, Sheng
Li, Lingxiao
Luo, Yuantu
Author_xml – sequence: 1
  givenname: Kai
  orcidid: 0000-0001-7181-9935
  surname: Hu
  fullname: Hu, Kai
  email: 001600@nuist.edu.cn
  organization: School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China
– sequence: 2
  givenname: Sheng
  orcidid: 0000-0001-9726-2338
  surname: Gong
  fullname: Gong, Sheng
  email: 20211249032@nuist.edu.cn
  organization: School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China
– sequence: 3
  givenname: Lingxiao
  orcidid: 0009-0005-2290-3969
  surname: Li
  fullname: Li, Lingxiao
  email: 202312490034@nuist.edu.cn
  organization: School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China
– sequence: 4
  givenname: Yuantu
  orcidid: 0009-0003-0448-2502
  surname: Luo
  fullname: Luo, Yuantu
  email: 220225006@seu.edu.cn
  organization: Cyber Science & Engineering, Nanjing University of Southeast, Nanjing 211189, China
– sequence: 5
  givenname: YaoGen
  orcidid: 0000-0001-7745-1713
  surname: Li
  fullname: Li, YaoGen
  email: 230238080@seu.edu.cn
  organization: School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China
– sequence: 6
  givenname: Shanshan
  orcidid: 0000-0001-7734-5136
  surname: Jiang
  fullname: Jiang, Shanshan
  email: jss@nuist.edu.cn
  organization: School of management science and engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
BookMark eNp9kL1OwzAUhT0UibbwBgx5gQRf22mTBakqFCoqsZTZ8s91cJXalR0h9e0JCjPTWc75dPQtyCzEgIQ8AK2AwurxVF3UYGJXMcpEBQBUNDMyp5RDyRnlt2SR84lSWINgc_K-Q4tJDWiLfTAJzxgG1RcHVCn40BWq72Lyw9e50CqPpRiKY7zEPnbejL1nNahiE1R_zT7fkRun-oz3f7kkn7uX4_atPHy87rebQ2lYXQ-l0E5z0Zq2dlq4VdtoXGu21rUB52qmLHAFogZw1DqjWorWcWibFXONrXXDl0RMXJNizgmdvCR_VukqgcpfCfIkJwnyV4KcJIyzp2mG47dvj0lm4zEYtD6hGaSN_n_AD5bObDs
Cites_doi 10.1016/j.eswa.2023.121463
10.1016/j.engappai.2021.104468
10.1145/3298981
10.1016/S0079-7421(08)60536-8
10.3390/math10061000
10.1016/S0031-3203(01)00238-2
10.1016/j.tics.2020.09.004
10.1109/ICCV48922.2021.00088
10.3390/electronics11223668
10.1109/ICCV.2017.368
10.3390/rs14010206
10.18653/v1/2020.coling-main.392
10.1117/1.JRS.16.016513
10.1002/int.22727
10.1126/science.7134969
10.1109/CVPR.2019.00092
10.1109/CVPR.2017.587
10.1109/TPAMI.2020.3013679
10.3390/app121910025
10.1609/aaai.v35i9.16991
10.1155/2021/8261663
10.1167/19.7.12
10.1109/CVPR52688.2022.00992
10.1523/JNEUROSCI.2789-16.2016
10.1109/TPWRD.2021.3124528
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2024.111048
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_patcog_2024_111048
S0031320324007994
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABDPE
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c255t-4bfb349c95fb4f698be7b27b5c1ff52ad13a14511f0dfca90edf319862f8d5b83
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001331831600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Sat Nov 29 03:52:41 EST 2025
Sat Nov 16 15:59:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Incremental learning
Federated learning
Topological Data Analysis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c255t-4bfb349c95fb4f698be7b27b5c1ff52ad13a14511f0dfca90edf319862f8d5b83
ORCID 0000-0001-7181-9935
0009-0003-0448-2502
0000-0001-7734-5136
0000-0001-7745-1713
0009-0005-2290-3969
0000-0001-9726-2338
ParticipantIDs crossref_primary_10_1016_j_patcog_2024_111048
elsevier_sciencedirect_doi_10_1016_j_patcog_2024_111048
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References S. Hou, X. Pan, C.C. Loy, Z. Wang, D. Lin, Learning a unified classifier incrementally via rebalancing, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 831–839.
Qiang, Liang, Wan, Zhang (b22) 2024
Wei, Zhou, Zhang, Zhuo, Chen (b30) 2019; 19
Balaban, Luria (b32) 2017; 37
Wang, Zhou, Zhang, Zhan, Ye (b23) 2024; 36
D. Zhang, X. Chen, S. Xu, B. Xu, Knowledge aware emotion recognition in textual conversations via multi-task incremental transformer, in: Proceedings of the 28th International Conference on Computational Linguistics, 2020, pp. 4429–4440.
Wang, Xia, Lu, Pan, Liu (b43) 2021; 37
Hu, Li, Zhang, Wu, Gong, Jiang, Weng (b3) 2024; 237
Tao, Chang, Hong, Wei, Gong (b12) 2020
Che, Galaz-García, Guijarro, Solis, Valiunas (b40) 2022
Meng, Zhang, Yang, Zhan, Zhao, WAng (b24) 2024
Babakniya, Fabian, He, Soltanolkotabi, Avestimehr (b11) 2024; 36
McCloskey, Cohen (b29) 1989; Vol. 24
Blanco-Justicia, Domingo-Ferrer, Martínez, Sánchez, Flanagan, Tan (b13) 2021; 106
Douillard, Cord, Ollion, Robert, Valle (b17) 2020
Hu, Li, Xia, Wu, Lu, Zhang, Weng (b2) 2021; 2021
Li, Sahu, Zaheer, Sanjabi, Talwalkar, Smith (b5) 2020; 2
Kaji, Sudo, Ahara (b34) 2020
McMahan, Moore, Ramage, Hampson, y Arcas (b4) 2017
J.-Y. Kim, D.-W. Choi, Split-and-bridge: Adaptable class incremental learning within a single neural network, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, 2021, pp. 8137–8145.
Gao, Weng, Xia, Lin (b42) 2022; 16
Hadsell, Rao, Rusu, Pascanu (b1) 2020; 24
Garin, Tauzin (b33) 2019
K. Shmelkov, C. Schmid, K. Alahari, Incremental learning of object detectors without catastrophic forgetting, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 3400–3409.
Hu, Li, Xia, Lin (b41) 2022; 14
Wang, Liang, Koe, Wu, Zhang, Li, Yang (b8) 2022; 37
S.-A. Rebuffi, A. Kolesnikov, G. Sperl, C.H. Lampert, icarl: Incremental classifier and representation learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2001–2010.
Pun, Xia, Lee (b25) 2018
Saadat-Yazdi, Andreeva, Sarkar (b39) 2021
Bubenik (b38) 2015; 16
Clough, Byrne, Oksuz, Zimmer, Schnabel, King (b26) 2020; 44
Park, Kumatani, Dimitriadis (b9) 2021
Hu, Lu, Li, Gong, Wu, Zhou, Jiang, Yang (b6) 2022; 12
H. Ahn, J. Kwak, S. Lim, H. Bang, H. Kim, T. Moon, Ss-il: Separated softmax for incremental learning, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 844–853.
Ziou, Allili (b36) 2002; 35
J. Dong, L. Wang, Z. Fang, G. Sun, S. Xu, X. Wang, Q. Zhu, Federated class-incremental learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 10164–10173.
Shoham, Avidor, Keren, Israel, Benditkis, Mor-Yosef, Zeitak (b21) 2019
Lei, Wang, Zhong, Wang, Ng (b10) 2022; 11
Hu, Wu, Li, Lu, Weng, Xia (b14) 2022; 10
Yang, Liu, Chen, Tong (b15) 2019; 10
Goodfellow, Mirza, Xiao, Courville, Bengio (b28) 2013
Chen (b31) 1982; 218
Karaca, Ege (b37) 2012; 1
Allili, Mischaikow, Tannenbaum (b35) 2001; Vol. 2
Lei (10.1016/j.patcog.2024.111048_b10) 2022; 11
Shoham (10.1016/j.patcog.2024.111048_b21) 2019
Qiang (10.1016/j.patcog.2024.111048_b22) 2024
Bubenik (10.1016/j.patcog.2024.111048_b38) 2015; 16
Che (10.1016/j.patcog.2024.111048_b40) 2022
Meng (10.1016/j.patcog.2024.111048_b24) 2024
Balaban (10.1016/j.patcog.2024.111048_b32) 2017; 37
Pun (10.1016/j.patcog.2024.111048_b25) 2018
Gao (10.1016/j.patcog.2024.111048_b42) 2022; 16
Hu (10.1016/j.patcog.2024.111048_b6) 2022; 12
Allili (10.1016/j.patcog.2024.111048_b35) 2001; Vol. 2
Hu (10.1016/j.patcog.2024.111048_b2) 2021; 2021
10.1016/j.patcog.2024.111048_b27
Park (10.1016/j.patcog.2024.111048_b9) 2021
Hu (10.1016/j.patcog.2024.111048_b14) 2022; 10
Hu (10.1016/j.patcog.2024.111048_b3) 2024; 237
Saadat-Yazdi (10.1016/j.patcog.2024.111048_b39) 2021
Garin (10.1016/j.patcog.2024.111048_b33) 2019
Karaca (10.1016/j.patcog.2024.111048_b37) 2012; 1
Li (10.1016/j.patcog.2024.111048_b5) 2020; 2
10.1016/j.patcog.2024.111048_b7
Clough (10.1016/j.patcog.2024.111048_b26) 2020; 44
Goodfellow (10.1016/j.patcog.2024.111048_b28) 2013
McMahan (10.1016/j.patcog.2024.111048_b4) 2017
Blanco-Justicia (10.1016/j.patcog.2024.111048_b13) 2021; 106
Wei (10.1016/j.patcog.2024.111048_b30) 2019; 19
10.1016/j.patcog.2024.111048_b18
10.1016/j.patcog.2024.111048_b19
Chen (10.1016/j.patcog.2024.111048_b31) 1982; 218
Kaji (10.1016/j.patcog.2024.111048_b34) 2020
Tao (10.1016/j.patcog.2024.111048_b12) 2020
Hu (10.1016/j.patcog.2024.111048_b41) 2022; 14
10.1016/j.patcog.2024.111048_b16
10.1016/j.patcog.2024.111048_b20
Ziou (10.1016/j.patcog.2024.111048_b36) 2002; 35
Yang (10.1016/j.patcog.2024.111048_b15) 2019; 10
10.1016/j.patcog.2024.111048_b44
Wang (10.1016/j.patcog.2024.111048_b23) 2024; 36
McCloskey (10.1016/j.patcog.2024.111048_b29) 1989; Vol. 24
Wang (10.1016/j.patcog.2024.111048_b8) 2022; 37
Hadsell (10.1016/j.patcog.2024.111048_b1) 2020; 24
Douillard (10.1016/j.patcog.2024.111048_b17) 2020
Wang (10.1016/j.patcog.2024.111048_b43) 2021; 37
Babakniya (10.1016/j.patcog.2024.111048_b11) 2024; 36
References_xml – volume: 10
  start-page: 1000
  year: 2022
  ident: b14
  article-title: Fedgcn: Federated learning-based graph convolutional networks for non-euclidean spatial data
  publication-title: Mathematics
– year: 2020
  ident: b34
  article-title: Cubical ripser: Software for computing persistent homology of image and volume data
– volume: 12
  start-page: 10025
  year: 2022
  ident: b6
  article-title: A federated incremental learning algorithm based on dual attention mechanism
  publication-title: Appl. Sci.
– reference: J.-Y. Kim, D.-W. Choi, Split-and-bridge: Adaptable class incremental learning within a single neural network, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, 2021, pp. 8137–8145.
– reference: D. Zhang, X. Chen, S. Xu, B. Xu, Knowledge aware emotion recognition in textual conversations via multi-task incremental transformer, in: Proceedings of the 28th International Conference on Computational Linguistics, 2020, pp. 4429–4440.
– reference: K. Shmelkov, C. Schmid, K. Alahari, Incremental learning of object detectors without catastrophic forgetting, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 3400–3409.
– volume: 2
  start-page: 429
  year: 2020
  end-page: 450
  ident: b5
  article-title: Federated optimization in heterogeneous networks
  publication-title: Proc. Mach. Learn. Syst.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 19
  ident: b15
  article-title: Federated machine learning: Concept and applications
  publication-title: ACM Trans. Intell. Syst. Technol.
– volume: 36
  year: 2024
  ident: b23
  article-title: Few-shot class-incremental learning via training-free prototype calibration
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 14
  start-page: 206
  year: 2022
  ident: b41
  article-title: Multi-scale feature aggregation network for water area segmentation
  publication-title: Remote Sens.
– volume: 16
  start-page: 016513
  year: 2022
  ident: b42
  article-title: MLNet: Multichannel feature fusion lozenge network for land segmentation
  publication-title: J. Appl. Remote Sens.
– start-page: 119
  year: 2021
  end-page: 128
  ident: b39
  article-title: Topological detection of Alzheimer’s disease using Betti curves
  publication-title: Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data: 4th International Workshop, IMIMIC 2021, and 1st International Workshop, TDA4MedicalData 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings 4
– reference: S. Hou, X. Pan, C.C. Loy, Z. Wang, D. Lin, Learning a unified classifier incrementally via rebalancing, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 831–839.
– volume: 106
  year: 2021
  ident: b13
  article-title: Achieving security and privacy in federated learning systems: Survey, research challenges and future directions
  publication-title: Eng. Appl. Artif. Intell.
– year: 2024
  ident: b22
  article-title: Dynamic feature learning and matching for class-incremental learning
– volume: 19
  start-page: 12
  year: 2019
  ident: b30
  article-title: Visual working memory representation as a topological defined perceptual object
  publication-title: J. Vis.
– volume: 35
  start-page: 2833
  year: 2002
  end-page: 2839
  ident: b36
  article-title: Generating cubical complexes from image data and computation of the Euler number
  publication-title: Pattern Recognit.
– year: 2018
  ident: b25
  article-title: Persistent-homology-based machine learning and its applications–A survey
– start-page: 86
  year: 2020
  end-page: 102
  ident: b17
  article-title: Podnet: Pooled outputs distillation for small-tasks incremental learning
  publication-title: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XX 16
– volume: 1
  start-page: 178
  year: 2012
  end-page: 187
  ident: b37
  article-title: Cubical homology in digital images
  publication-title: Int. J. Inf. Comput. Sci.
– start-page: 254
  year: 2020
  end-page: 270
  ident: b12
  article-title: Topology-preserving class-incremental learning
  publication-title: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIX 16
– volume: 16
  start-page: 77
  year: 2015
  end-page: 102
  ident: b38
  article-title: Statistical topological data analysis using persistence landscapes
  publication-title: J. Mach. Learn. Res.
– year: 2021
  ident: b9
  article-title: Tackling dynamics in federated incremental learning with variational embedding rehearsal
– reference: S.-A. Rebuffi, A. Kolesnikov, G. Sperl, C.H. Lampert, icarl: Incremental classifier and representation learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2001–2010.
– volume: 237
  year: 2024
  ident: b3
  article-title: FedMMD: A federated weighting algorithm considering non-IID and local model deviation
  publication-title: Expert Syst. Appl.
– volume: 37
  start-page: 3155
  year: 2021
  end-page: 3163
  ident: b43
  article-title: Parameter identification in power transmission systems based on graph convolution network
  publication-title: IEEE Trans. Power Deliv.
– year: 2019
  ident: b21
  article-title: Overcoming forgetting in federated learning on non-iid data
– start-page: 1273
  year: 2017
  end-page: 1282
  ident: b4
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: Artificial Intelligence and Statistics
– volume: 24
  start-page: 1028
  year: 2020
  end-page: 1040
  ident: b1
  article-title: Embracing change: Continual learning in deep neural networks
  publication-title: Trends Cogn. Sci.
– volume: 218
  start-page: 699
  year: 1982
  end-page: 700
  ident: b31
  article-title: Topological structure in visual perception
  publication-title: Science
– reference: J. Dong, L. Wang, Z. Fang, G. Sun, S. Xu, X. Wang, Q. Zhu, Federated class-incremental learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 10164–10173.
– start-page: 1551
  year: 2019
  end-page: 1556
  ident: b33
  article-title: A topological” reading” lesson: Classification of MNIST using TDA
  publication-title: 2019 18th IEEE International Conference on Machine Learning and Applications
– volume: 37
  start-page: 4471
  year: 2022
  end-page: 4487
  ident: b8
  article-title: Secure and efficient parameters aggregation protocol for federated incremental learning and its applications
  publication-title: Int. J. Intell. Syst.
– year: 2013
  ident: b28
  article-title: An empirical investigation of catastrophic forgetting in gradient-based neural networks
– volume: 37
  start-page: 1225
  year: 2017
  end-page: 1239
  ident: b32
  article-title: Neural and behavioral evidence for an online resetting process in visual working memory
  publication-title: J. Neurosci.
– volume: 36
  year: 2024
  ident: b11
  article-title: A data-free approach to mitigate catastrophic forgetting in federated class incremental learning for vision tasks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 44
  start-page: 8766
  year: 2020
  end-page: 8778
  ident: b26
  article-title: A topological loss function for deep-learning based image segmentation using persistent homology
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: Vol. 24
  start-page: 109
  year: 1989
  end-page: 165
  ident: b29
  article-title: Catastrophic interference in connectionist networks: The sequential learning problem
  publication-title: Psychology of Learning and Motivation
– year: 2024
  ident: b24
  article-title: DiffClass: Diffusion-based class incremental learning
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 20
  ident: b2
  article-title: Federated learning: a distributed shared machine learning method
  publication-title: Complexity
– volume: Vol. 2
  start-page: 173
  year: 2001
  end-page: 176
  ident: b35
  article-title: Cubical homology and the topological classification of 2D and 3D imagery
  publication-title: Proceedings 2001 International Conference on Image Processing (Cat. No. 01CH37205)
– volume: 11
  start-page: 3668
  year: 2022
  ident: b10
  article-title: A federated learning framework based on incremental weighting and diversity selection for internet of vehicles
  publication-title: Electronics
– year: 2022
  ident: b40
  article-title: Basic metric geometry of the bottleneck distance
– reference: H. Ahn, J. Kwak, S. Lim, H. Bang, H. Kim, T. Moon, Ss-il: Separated softmax for incremental learning, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 844–853.
– volume: 36
  year: 2024
  ident: 10.1016/j.patcog.2024.111048_b11
  article-title: A data-free approach to mitigate catastrophic forgetting in federated class incremental learning for vision tasks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: Vol. 2
  start-page: 173
  year: 2001
  ident: 10.1016/j.patcog.2024.111048_b35
  article-title: Cubical homology and the topological classification of 2D and 3D imagery
– year: 2013
  ident: 10.1016/j.patcog.2024.111048_b28
– volume: 237
  year: 2024
  ident: 10.1016/j.patcog.2024.111048_b3
  article-title: FedMMD: A federated weighting algorithm considering non-IID and local model deviation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121463
– volume: 106
  year: 2021
  ident: 10.1016/j.patcog.2024.111048_b13
  article-title: Achieving security and privacy in federated learning systems: Survey, research challenges and future directions
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104468
– volume: 10
  start-page: 1
  issue: 2
  year: 2019
  ident: 10.1016/j.patcog.2024.111048_b15
  article-title: Federated machine learning: Concept and applications
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/3298981
– volume: Vol. 24
  start-page: 109
  year: 1989
  ident: 10.1016/j.patcog.2024.111048_b29
  article-title: Catastrophic interference in connectionist networks: The sequential learning problem
  doi: 10.1016/S0079-7421(08)60536-8
– start-page: 86
  year: 2020
  ident: 10.1016/j.patcog.2024.111048_b17
  article-title: Podnet: Pooled outputs distillation for small-tasks incremental learning
– year: 2024
  ident: 10.1016/j.patcog.2024.111048_b22
– start-page: 1551
  year: 2019
  ident: 10.1016/j.patcog.2024.111048_b33
  article-title: A topological” reading” lesson: Classification of MNIST using TDA
– volume: 10
  start-page: 1000
  issue: 6
  year: 2022
  ident: 10.1016/j.patcog.2024.111048_b14
  article-title: Fedgcn: Federated learning-based graph convolutional networks for non-euclidean spatial data
  publication-title: Mathematics
  doi: 10.3390/math10061000
– volume: 35
  start-page: 2833
  issue: 12
  year: 2002
  ident: 10.1016/j.patcog.2024.111048_b36
  article-title: Generating cubical complexes from image data and computation of the Euler number
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(01)00238-2
– volume: 24
  start-page: 1028
  issue: 12
  year: 2020
  ident: 10.1016/j.patcog.2024.111048_b1
  article-title: Embracing change: Continual learning in deep neural networks
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2020.09.004
– volume: 16
  start-page: 77
  issue: 1
  year: 2015
  ident: 10.1016/j.patcog.2024.111048_b38
  article-title: Statistical topological data analysis using persistence landscapes
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.patcog.2024.111048_b18
  doi: 10.1109/ICCV48922.2021.00088
– year: 2024
  ident: 10.1016/j.patcog.2024.111048_b24
– volume: 11
  start-page: 3668
  issue: 22
  year: 2022
  ident: 10.1016/j.patcog.2024.111048_b10
  article-title: A federated learning framework based on incremental weighting and diversity selection for internet of vehicles
  publication-title: Electronics
  doi: 10.3390/electronics11223668
– ident: 10.1016/j.patcog.2024.111048_b20
  doi: 10.1109/ICCV.2017.368
– year: 2021
  ident: 10.1016/j.patcog.2024.111048_b9
– volume: 14
  start-page: 206
  issue: 1
  year: 2022
  ident: 10.1016/j.patcog.2024.111048_b41
  article-title: Multi-scale feature aggregation network for water area segmentation
  publication-title: Remote Sens.
  doi: 10.3390/rs14010206
– ident: 10.1016/j.patcog.2024.111048_b16
  doi: 10.18653/v1/2020.coling-main.392
– volume: 36
  year: 2024
  ident: 10.1016/j.patcog.2024.111048_b23
  article-title: Few-shot class-incremental learning via training-free prototype calibration
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 16
  start-page: 016513
  issue: 1
  year: 2022
  ident: 10.1016/j.patcog.2024.111048_b42
  article-title: MLNet: Multichannel feature fusion lozenge network for land segmentation
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.16.016513
– volume: 37
  start-page: 4471
  issue: 8
  year: 2022
  ident: 10.1016/j.patcog.2024.111048_b8
  article-title: Secure and efficient parameters aggregation protocol for federated incremental learning and its applications
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.22727
– year: 2022
  ident: 10.1016/j.patcog.2024.111048_b40
– year: 2018
  ident: 10.1016/j.patcog.2024.111048_b25
– volume: 218
  start-page: 699
  issue: 4573
  year: 1982
  ident: 10.1016/j.patcog.2024.111048_b31
  article-title: Topological structure in visual perception
  publication-title: Science
  doi: 10.1126/science.7134969
– ident: 10.1016/j.patcog.2024.111048_b27
  doi: 10.1109/CVPR.2019.00092
– volume: 2
  start-page: 429
  year: 2020
  ident: 10.1016/j.patcog.2024.111048_b5
  article-title: Federated optimization in heterogeneous networks
  publication-title: Proc. Mach. Learn. Syst.
– ident: 10.1016/j.patcog.2024.111048_b44
  doi: 10.1109/CVPR.2017.587
– volume: 44
  start-page: 8766
  issue: 12
  year: 2020
  ident: 10.1016/j.patcog.2024.111048_b26
  article-title: A topological loss function for deep-learning based image segmentation using persistent homology
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.3013679
– start-page: 1273
  year: 2017
  ident: 10.1016/j.patcog.2024.111048_b4
  article-title: Communication-efficient learning of deep networks from decentralized data
– volume: 12
  start-page: 10025
  issue: 19
  year: 2022
  ident: 10.1016/j.patcog.2024.111048_b6
  article-title: A federated incremental learning algorithm based on dual attention mechanism
  publication-title: Appl. Sci.
  doi: 10.3390/app121910025
– year: 2020
  ident: 10.1016/j.patcog.2024.111048_b34
– volume: 1
  start-page: 178
  year: 2012
  ident: 10.1016/j.patcog.2024.111048_b37
  article-title: Cubical homology in digital images
  publication-title: Int. J. Inf. Comput. Sci.
– ident: 10.1016/j.patcog.2024.111048_b19
  doi: 10.1609/aaai.v35i9.16991
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10.1016/j.patcog.2024.111048_b2
  article-title: Federated learning: a distributed shared machine learning method
  publication-title: Complexity
  doi: 10.1155/2021/8261663
– year: 2019
  ident: 10.1016/j.patcog.2024.111048_b21
– volume: 19
  start-page: 12
  issue: 7
  year: 2019
  ident: 10.1016/j.patcog.2024.111048_b30
  article-title: Visual working memory representation as a topological defined perceptual object
  publication-title: J. Vis.
  doi: 10.1167/19.7.12
– ident: 10.1016/j.patcog.2024.111048_b7
  doi: 10.1109/CVPR52688.2022.00992
– start-page: 119
  year: 2021
  ident: 10.1016/j.patcog.2024.111048_b39
  article-title: Topological detection of Alzheimer’s disease using Betti curves
– volume: 37
  start-page: 1225
  issue: 5
  year: 2017
  ident: 10.1016/j.patcog.2024.111048_b32
  article-title: Neural and behavioral evidence for an online resetting process in visual working memory
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2789-16.2016
– start-page: 254
  year: 2020
  ident: 10.1016/j.patcog.2024.111048_b12
  article-title: Topology-preserving class-incremental learning
– volume: 37
  start-page: 3155
  issue: 4
  year: 2021
  ident: 10.1016/j.patcog.2024.111048_b43
  article-title: Parameter identification in power transmission systems based on graph convolution network
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2021.3124528
SSID ssj0017142
Score 2.4744377
Snippet Federated learning is a distributed learning approach aimed at preserving user’s data privacy, while incremental learning is an adaptive machine learning...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 111048
SubjectTerms Federated learning
Incremental learning
Topological Data Analysis
Title Federated Incremental Learning algorithm based on Topological Data Analysis
URI https://dx.doi.org/10.1016/j.patcog.2024.111048
Volume 158
WOSCitedRecordID wos001331831600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017142
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZg48AFxi8xYMgHbsgosZ3aOU5o0wbSNGlFKqfIjuMu00iqLkH983mO7TRjCAESl6iylLZ6X_L8-fnz9xB6Z6gQjM8smc1MRbiVhkipKCmNKTPLMy10MjSbEGdncrHIz0Ov9puhnYBoGrnZ5Kv_CjWMAdju6OxfwD1-KQzAZwAdrgA7XP8I-GNnD6EckYR331f_XLE6lkDU9bJd193lt_duAjNus2DuGyX4FKg6NTqVTJnr-WDE6Q6_BMXRdv_-pPe6jHoU8wSd78VlFSZGJ_mpQw1gualVO472Q632aw8I99MSBM2iajnWxeLZmK0Qaci1LCWMJuxWrvU-7Xfyti8hXH1YwfzTLmHZTrlL5ol34fzJEfvCG04mzkswEXnO76NdKrIcktru4enR4tO4jSRS7u3iw1-JZycHgd_d3_o1N5nwjfkeehQWCvjQA_wE3auap-hxbMKBQ05-hj6PeOMJ3jjijUe88YA3bhs8wRs7vHHE-zn6cnw0_3hCQocMUsJSsCNcW814XuaZ1dzOcqkroanQWZlam1FlUqZcK-bUJsaWKk8qYyHnwioWXspMS_YC7TRtU71EGKgjsDmmtWYlV1JJC0xFMguBNVQnah-RGJti5Y1QiqgQvCp8LAsXy8LHch-JGMAikDlP0grA_Ld3vvrnO1-jh9vH8w3a6dZ9dYAelN-7-mb9NjwcPwCn-3Fi
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+Incremental+Learning+algorithm+based+on+Topological+Data+Analysis&rft.jtitle=Pattern+recognition&rft.au=Hu%2C+Kai&rft.au=Gong%2C+Sheng&rft.au=Li%2C+Lingxiao&rft.au=Luo%2C+Yuantu&rft.date=2025-02-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.volume=158&rft_id=info:doi/10.1016%2Fj.patcog.2024.111048&rft.externalDocID=S0031320324007994
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon