A Proposed Deep Learning based Framework for Arabic Text Classification

Deep learning has become one of the crucial trends in the modern era due to the huge amount of data that has become available. This paper aims to investigate and improve a generic framework for Arabic Text Classification (ATC) with different deep learning techniques. Besides, it deals directly with...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of advanced computer science & applications Ročník 13; číslo 8
Hlavní autoři: Sayed, Mostafa, Abdelkader, Hatem, Khedr, Ayman E., Salem, Rashed
Médium: Journal Article
Jazyk:angličtina
Vydáno: West Yorkshire Science and Information (SAI) Organization Limited 01.01.2022
Témata:
ISSN:2158-107X, 2156-5570
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Deep learning has become one of the crucial trends in the modern era due to the huge amount of data that has become available. This paper aims to investigate and improve a generic framework for Arabic Text Classification (ATC) with different deep learning techniques. Besides, it deals directly with a word in its original style as a basic unit of modern Arabic sentence and on a different level of N-grams versus a combination of Intersected Consecutive Word proposed method (ICW). However, it aimed to discuss the results of the different experiments for the enhancements of the proposed method on different deep learning algorithms such as Scaled Conjugate Gradient (SCG) and Gradient descent with momentum and adaptive learning rate backpropagation (GDX) on ATC. The results showed that the proposed framework applied with the SCG algorithm and TF-IDF outperforms the GDX algorithm with an accuracy ratio of 90.65%.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2158-107X
2156-5570
DOI:10.14569/IJACSA.2022.0130836