Q-learning-based semi-fixed clustering routing algorithm in WSNs

In recent years, cluster-based routing protocols have emerged as a core technology for Wireless Sensor Networks (WSNs), attracting significant attention from researchers. This paper introduces a novel semi-fixed clustering algorithm, SFC-QL-IACO, designed to maintain energy balance in WSNs. The algo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Ad hoc networks Ročník 174; s. 103837
Hlavní autoři: Zhaohui, Zhang, Jiaqi, Zhou, Jing, Li
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.07.2025
Témata:
ISSN:1570-8705
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In recent years, cluster-based routing protocols have emerged as a core technology for Wireless Sensor Networks (WSNs), attracting significant attention from researchers. This paper introduces a novel semi-fixed clustering algorithm, SFC-QL-IACO, designed to maintain energy balance in WSNs. The algorithm employs semi-fixed clustering to redistribute cluster nodes for initial load balancing and utilizes Q-Learning and enhanced ant colony optimization to construct data transmission paths. Clusters are dynamically adjusted when the energy difference exceeds a specified threshold to ensure energy balance. A dynamic energy threshold is implemented to prevent network disruptions caused by the depletion of cluster head energy, with cluster head rotation occurring as needed. Simulation results show that SFC-QL-IACO outperforms existing algorithms in terms of energy consumption, load balancing, and network lifetime.
ISSN:1570-8705
DOI:10.1016/j.adhoc.2025.103837