Bit duplication technique to generate hard quadratic unconstrained binary optimization problems with adjustable sizes

Quadratic unconstrained binary optimization (QUBO) is a combinatorial optimization to find an optimal binary solution vector that minimizes the energy value defined by a quadratic formula of binary variables in the vector. The main contribution of this article is to propose the bit duplication techn...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Concurrency and computation Ročník 36; číslo 10
Hlavní autoři: Li, Xiaotian, Nakano, Koji, Ito, Yasuaki, Takafuji, Daisuke, Yazane, Takashi, Yano, Junko, Kato, Takumi, Ozaki, Shiro, Mori, Rie, Katsuki, Ryota
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc 01.05.2024
Témata:
ISSN:1532-0626, 1532-0634
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Quadratic unconstrained binary optimization (QUBO) is a combinatorial optimization to find an optimal binary solution vector that minimizes the energy value defined by a quadratic formula of binary variables in the vector. The main contribution of this article is to propose the bit duplication technique that can specify the number of duplicated bits, so that it can generate hard QUBO problem with adjustable sizes. The idea is to duplicate specified number of bits and then to give constraints so that the corresponding two bits take the same binary values. By this technique, any QUBO problem with bits is converted to a hard QUBO problem with bits . We use random QUBO problems, N‐Queen problems, traveling salesman problem and maximum weight matching problems for experiments. The performance of QUBO solvers including Gurobi optimizer, Fixstars Amplify AE, OpenJij with SA, D‐Wave samplers with SA, D‐Wave hybrid and ABS2 QUBO solver are evaluated for solving these QUBO problems. The experimental results show that only a small scale of duplicated bits can make QUBO problems harder. Hence, the bit duplication technique is a potent method to generate hard QUBO problems and generated QUBO problems can be used as benchmark problems for evaluating the search performance of QUBO solvers.
AbstractList Quadratic unconstrained binary optimization (QUBO) is a combinatorial optimization to find an optimal binary solution vector that minimizes the energy value defined by a quadratic formula of binary variables in the vector. The main contribution of this article is to propose the bit duplication technique that can specify the number of duplicated bits, so that it can generate hard QUBO problem with adjustable sizes. The idea is to duplicate specified number of bits and then to give constraints so that the corresponding two bits take the same binary values. By this technique, any QUBO problem with n$$ n $$ bits is converted to a hard QUBO problem with (m+n)$$ \left(m+n\right) $$ bits (0<m≤n)$$ \left(0<m\le n\right) $$. We use random QUBO problems, N‐Queen problems, traveling salesman problem and maximum weight matching problems for experiments. The performance of QUBO solvers including Gurobi optimizer, Fixstars Amplify AE, OpenJij with SA, D‐Wave samplers with SA, D‐Wave hybrid and ABS2 QUBO solver are evaluated for solving these QUBO problems. The experimental results show that only a small scale of duplicated bits can make QUBO problems harder. Hence, the bit duplication technique is a potent method to generate hard QUBO problems and generated QUBO problems can be used as benchmark problems for evaluating the search performance of QUBO solvers.
Quadratic unconstrained binary optimization (QUBO) is a combinatorial optimization to find an optimal binary solution vector that minimizes the energy value defined by a quadratic formula of binary variables in the vector. The main contribution of this article is to propose the bit duplication technique that can specify the number of duplicated bits, so that it can generate hard QUBO problem with adjustable sizes. The idea is to duplicate specified number of bits and then to give constraints so that the corresponding two bits take the same binary values. By this technique, any QUBO problem with bits is converted to a hard QUBO problem with bits . We use random QUBO problems, N‐Queen problems, traveling salesman problem and maximum weight matching problems for experiments. The performance of QUBO solvers including Gurobi optimizer, Fixstars Amplify AE, OpenJij with SA, D‐Wave samplers with SA, D‐Wave hybrid and ABS2 QUBO solver are evaluated for solving these QUBO problems. The experimental results show that only a small scale of duplicated bits can make QUBO problems harder. Hence, the bit duplication technique is a potent method to generate hard QUBO problems and generated QUBO problems can be used as benchmark problems for evaluating the search performance of QUBO solvers.
Author Ozaki, Shiro
Li, Xiaotian
Mori, Rie
Nakano, Koji
Ito, Yasuaki
Takafuji, Daisuke
Katsuki, Ryota
Kato, Takumi
Yazane, Takashi
Yano, Junko
Author_xml – sequence: 1
  givenname: Xiaotian
  orcidid: 0009-0001-6022-2647
  surname: Li
  fullname: Li, Xiaotian
  organization: Graduate School of Advanced Science and Engineering Hiroshima University Hiroshima Japan
– sequence: 2
  givenname: Koji
  orcidid: 0000-0002-2040-4032
  surname: Nakano
  fullname: Nakano, Koji
  organization: Graduate School of Advanced Science and Engineering Hiroshima University Hiroshima Japan
– sequence: 3
  givenname: Yasuaki
  orcidid: 0000-0003-0593-231X
  surname: Ito
  fullname: Ito, Yasuaki
  organization: Graduate School of Advanced Science and Engineering Hiroshima University Hiroshima Japan
– sequence: 4
  givenname: Daisuke
  surname: Takafuji
  fullname: Takafuji, Daisuke
  organization: Faculty of Welfare Information Shunan University Yamaguchi Japan
– sequence: 5
  givenname: Takashi
  surname: Yazane
  fullname: Yazane, Takashi
  organization: Research and Development Headquarters NTT DATA Corporation Tokyo Japan
– sequence: 6
  givenname: Junko
  surname: Yano
  fullname: Yano, Junko
  organization: Research and Development Headquarters NTT DATA Corporation Tokyo Japan
– sequence: 7
  givenname: Takumi
  surname: Kato
  fullname: Kato, Takumi
  organization: Research and Development Headquarters NTT DATA Corporation Tokyo Japan
– sequence: 8
  givenname: Shiro
  surname: Ozaki
  fullname: Ozaki, Shiro
  organization: Research and Development Headquarters NTT DATA Corporation Tokyo Japan
– sequence: 9
  givenname: Rie
  surname: Mori
  fullname: Mori, Rie
  organization: Research and Development Headquarters NTT DATA Corporation Tokyo Japan
– sequence: 10
  givenname: Ryota
  surname: Katsuki
  fullname: Katsuki, Ryota
  organization: Research and Development Headquarters NTT DATA Corporation Tokyo Japan
BookMark eNplkMlOwzAURS1UJNqCxCdYYsMmxY4TJ1lCxSRVYgPryLFfqKvUTj0I0a_HpYgFrN6g84Z7Z2hirAGELilZUELyGznComp4dYKmtGR5RjgrJr95zs_QzPsNIZQSRqco3umAVRwHLUXQ1uAAcm30LgIOFr-DAScC4LVwCu-iUKnSEkcjrfHBCW1A4U4b4T6xHYPe6v1xzehsN8DW4w8d1lioTfRBpA72eg_-HJ32YvBw8RPn6O3h_nX5lK1eHp-Xt6tM5mUZMlY0HDpJK6kUhZpxVRRM9apuoK_6hquaV2Vq1AKUJB0rFCdMFXUvZJ4Qxebo6rg3vZMk-dBubHQmnWwZYQ3hNC-qRF0fKems9w76dnR6myS1lLQHU9tkanswNaGLP6jU4VvxwYzh_8AXLkZ_vQ
CitedBy_id crossref_primary_10_1002_nag_3800
crossref_primary_10_1080_17445760_2024_2376928
Cites_doi 10.1109/TQE.2021.3050449
10.1109/JSSC.2020.3027702
10.1145/3449726.3463208
10.1016/0020-0190(90)90082-9
10.1109/MC.2019.2908836
10.1109/CANDARW57323.2022.00029
10.1145/3404397.3404423
10.1016/0166-218X(93)E0140-T
10.1109/IPDPSW55747.2022.00080
10.1007/978-3-319-61566-0_39
10.1103/PhysRevE.100.012111
10.1613/jair.2039
10.1002/cpe.6565
10.1016/0004-3702(95)00045-3
10.1587/transinf.2018EDP7411
10.1103/PhysRevLett.88.188701
10.1613/jair.1681
10.1613/jair.1.13909
10.1126/sciadv.abe7953
10.1287/ijoc.3.4.376
10.1016/0377-2217(91)90197-4
10.1126/sciadv.abh0952
10.1109/IPDPSW59300.2023.00060
10.1016/j.jpdc.2022.04.016
10.1126/science.aah4243
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.7967
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
ExternalDocumentID 10_1002_cpe_7967
GroupedDBID .3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCZN
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O8X
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c255t-3496ebc17cdd1e836d443dfd89ef7f96d86753df8aedc0b34d603d48fac29efd3
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001104819100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1532-0626
IngestDate Sun Nov 09 08:15:16 EST 2025
Sat Nov 29 03:49:54 EST 2025
Tue Nov 18 21:46:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c255t-3496ebc17cdd1e836d443dfd89ef7f96d86753df8aedc0b34d603d48fac29efd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-6022-2647
0000-0002-2040-4032
0000-0003-0593-231X
PQID 3039061247
PQPubID 2045170
ParticipantIDs proquest_journals_3039061247
crossref_primary_10_1002_cpe_7967
crossref_citationtrail_10_1002_cpe_7967
PublicationCentury 2000
PublicationDate 2024-05-00
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-00
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
McGeoch C (e_1_2_6_5_1) 2020
e_1_2_6_19_1
e_1_2_6_13_1
Liu R (e_1_2_6_28_1) 2014; 2
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
Omelchenko O (e_1_2_6_29_1) 2021
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – ident: e_1_2_6_6_1
  doi: 10.1109/TQE.2021.3050449
– start-page: 3886
  volume-title: 35 of Proceedings of the AAAI Conference on Artificial Intelligence
  year: 2021
  ident: e_1_2_6_29_1
– ident: e_1_2_6_8_1
  doi: 10.1109/JSSC.2020.3027702
– ident: e_1_2_6_34_1
– ident: e_1_2_6_14_1
  doi: 10.1145/3449726.3463208
– ident: e_1_2_6_18_1
– ident: e_1_2_6_22_1
  doi: 10.1016/0020-0190(90)90082-9
– ident: e_1_2_6_4_1
  doi: 10.1109/MC.2019.2908836
– ident: e_1_2_6_31_1
  doi: 10.1109/CANDARW57323.2022.00029
– ident: e_1_2_6_37_1
– ident: e_1_2_6_13_1
  doi: 10.1145/3404397.3404423
– ident: e_1_2_6_23_1
  doi: 10.1016/0166-218X(93)E0140-T
– ident: e_1_2_6_3_1
  doi: 10.1109/IPDPSW55747.2022.00080
– ident: e_1_2_6_9_1
  doi: 10.1007/978-3-319-61566-0_39
– ident: e_1_2_6_12_1
  doi: 10.1103/PhysRevE.100.012111
– ident: e_1_2_6_27_1
  doi: 10.1613/jair.2039
– ident: e_1_2_6_11_1
  doi: 10.1002/cpe.6565
– ident: e_1_2_6_24_1
  doi: 10.1016/0004-3702(95)00045-3
– ident: e_1_2_6_33_1
– ident: e_1_2_6_7_1
  doi: 10.1587/transinf.2018EDP7411
– ident: e_1_2_6_25_1
  doi: 10.1103/PhysRevLett.88.188701
– ident: e_1_2_6_19_1
– ident: e_1_2_6_26_1
  doi: 10.1613/jair.1681
– ident: e_1_2_6_30_1
  doi: 10.1613/jair.1.13909
– volume: 2
  start-page: 43
  issue: 1
  year: 2014
  ident: e_1_2_6_28_1
  article-title: The p‐hidden algorithm: hiding single databases more deeply
  publication-title: Immune Comput
– ident: e_1_2_6_2_1
– ident: e_1_2_6_10_1
  doi: 10.1126/sciadv.abe7953
– ident: e_1_2_6_20_1
  doi: 10.1287/ijoc.3.4.376
– ident: e_1_2_6_21_1
  doi: 10.1016/0377-2217(91)90197-4
– ident: e_1_2_6_17_1
  doi: 10.1126/sciadv.abh0952
– ident: e_1_2_6_36_1
  doi: 10.1109/IPDPSW59300.2023.00060
– ident: e_1_2_6_32_1
– ident: e_1_2_6_38_1
– volume-title: The D‐Wave Advantage System: An Overview
  year: 2020
  ident: e_1_2_6_5_1
– ident: e_1_2_6_35_1
– ident: e_1_2_6_15_1
  doi: 10.1016/j.jpdc.2022.04.016
– ident: e_1_2_6_16_1
  doi: 10.1126/science.aah4243
SSID ssj0011031
Score 2.380607
Snippet Quadratic unconstrained binary optimization (QUBO) is a combinatorial optimization to find an optimal binary solution vector that minimizes the energy value...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
SubjectTerms Combinatorial analysis
Energy value
Optimization
Performance evaluation
Quadratic formulas
Solvers
Traveling salesman problem
Title Bit duplication technique to generate hard quadratic unconstrained binary optimization problems with adjustable sizes
URI https://www.proquest.com/docview/3039061247
Volume 36
WOSCitedRecordID wos001104819100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jj9MwFLZKhwMXdsTAgIyExCEKpInb2Ee2ERJVhdAMKqcosR2UdkiqJhkN_Ap-Ms9bltEchgOXKLLsbO-L3_PyfQ-hl0RQMZMh9dWSlk-yjPksS6Wf5TPGI7Cz0JJC35bxakXXa_ZlMvnjuDDnZ3FZ0osLtvuvpoYyMLaizv6DubuLQgGcg9HhCGaH47UM_65oPNF2y9Jer9IKYeYPrTLdSE-RrRSjUuy1ZCt4NxUoqnwRKiQ1JN0KupOflqfp2cwzjg0nNop5pWhXdfHb7kN0ggdVybXqE__lWHO7drziv9R7CNZFWjUDeK7SbaozgXufq03RgVYnevK-p3UL0W4_07BN83ZjafJF3W7lcAIjJP12wa7PDf1gEVpF7GGZnee0HbVRSnGADK50AEZQlu_k65iZPB9jje1Lvq_bkWjUm8MEWiaq5Q10EMZzRqfo4MPX49NltzKl0mIYDV7z0E7QOAjfuLuOQ5yxh9dhy8lddNuON_Bbg5N7aCLL--iOy-WBbdf-ALUAGzyADe5gg5sKO9hgBRvcwQaPYIMNbPAQNtjBBivY4B42WMPmITo9_njy_pNvU3L4HMaeja_SC8iMz2Iu4Ben0UIQEolcUCbzOGcLQWEACgU0lYIHWUTEIogEoXnKQ6giokdoWlalfIwwifgspywnGYzpIzKnklEIOCPKcwleYn6IXrmvmHCrV6_e5yy5bKtD9KKruTMaLVfUOXKGSOzPWicQvjEV4pP4yTUu8RTd6uF7hKbNvpXP0E1-3hT1_rnFyV9IaZrQ
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bit+duplication+technique+to+generate+hard+quadratic+unconstrained+binary+optimization+problems+with+adjustable+sizes&rft.jtitle=Concurrency+and+computation&rft.au=Li%2C+Xiaotian&rft.au=Nakano%2C+Koji&rft.au=Ito%2C+Yasuaki&rft.au=Takafuji%2C+Daisuke&rft.date=2024-05-01&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=36&rft.issue=10&rft_id=info:doi/10.1002%2Fcpe.7967&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_7967
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon