Bit duplication technique to generate hard quadratic unconstrained binary optimization problems with adjustable sizes
Quadratic unconstrained binary optimization (QUBO) is a combinatorial optimization to find an optimal binary solution vector that minimizes the energy value defined by a quadratic formula of binary variables in the vector. The main contribution of this article is to propose the bit duplication techn...
Uloženo v:
| Vydáno v: | Concurrency and computation Ročník 36; číslo 10 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken
Wiley Subscription Services, Inc
01.05.2024
|
| Témata: | |
| ISSN: | 1532-0626, 1532-0634 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Quadratic unconstrained binary optimization (QUBO) is a combinatorial optimization to find an optimal binary solution vector that minimizes the energy value defined by a quadratic formula of binary variables in the vector. The main contribution of this article is to propose the bit duplication technique that can specify the number of duplicated bits, so that it can generate hard QUBO problem with adjustable sizes. The idea is to duplicate specified number of bits and then to give constraints so that the corresponding two bits take the same binary values. By this technique, any QUBO problem with bits is converted to a hard QUBO problem with bits . We use random QUBO problems, N‐Queen problems, traveling salesman problem and maximum weight matching problems for experiments. The performance of QUBO solvers including Gurobi optimizer, Fixstars Amplify AE, OpenJij with SA, D‐Wave samplers with SA, D‐Wave hybrid and ABS2 QUBO solver are evaluated for solving these QUBO problems. The experimental results show that only a small scale of duplicated bits can make QUBO problems harder. Hence, the bit duplication technique is a potent method to generate hard QUBO problems and generated QUBO problems can be used as benchmark problems for evaluating the search performance of QUBO solvers. |
|---|---|
| AbstractList | Quadratic unconstrained binary optimization (QUBO) is a combinatorial optimization to find an optimal binary solution vector that minimizes the energy value defined by a quadratic formula of binary variables in the vector. The main contribution of this article is to propose the bit duplication technique that can specify the number of duplicated bits, so that it can generate hard QUBO problem with adjustable sizes. The idea is to duplicate specified number of bits and then to give constraints so that the corresponding two bits take the same binary values. By this technique, any QUBO problem with n$$ n $$ bits is converted to a hard QUBO problem with (m+n)$$ \left(m+n\right) $$ bits (0<m≤n)$$ \left(0<m\le n\right) $$. We use random QUBO problems, N‐Queen problems, traveling salesman problem and maximum weight matching problems for experiments. The performance of QUBO solvers including Gurobi optimizer, Fixstars Amplify AE, OpenJij with SA, D‐Wave samplers with SA, D‐Wave hybrid and ABS2 QUBO solver are evaluated for solving these QUBO problems. The experimental results show that only a small scale of duplicated bits can make QUBO problems harder. Hence, the bit duplication technique is a potent method to generate hard QUBO problems and generated QUBO problems can be used as benchmark problems for evaluating the search performance of QUBO solvers. Quadratic unconstrained binary optimization (QUBO) is a combinatorial optimization to find an optimal binary solution vector that minimizes the energy value defined by a quadratic formula of binary variables in the vector. The main contribution of this article is to propose the bit duplication technique that can specify the number of duplicated bits, so that it can generate hard QUBO problem with adjustable sizes. The idea is to duplicate specified number of bits and then to give constraints so that the corresponding two bits take the same binary values. By this technique, any QUBO problem with bits is converted to a hard QUBO problem with bits . We use random QUBO problems, N‐Queen problems, traveling salesman problem and maximum weight matching problems for experiments. The performance of QUBO solvers including Gurobi optimizer, Fixstars Amplify AE, OpenJij with SA, D‐Wave samplers with SA, D‐Wave hybrid and ABS2 QUBO solver are evaluated for solving these QUBO problems. The experimental results show that only a small scale of duplicated bits can make QUBO problems harder. Hence, the bit duplication technique is a potent method to generate hard QUBO problems and generated QUBO problems can be used as benchmark problems for evaluating the search performance of QUBO solvers. |
| Author | Ozaki, Shiro Li, Xiaotian Mori, Rie Nakano, Koji Ito, Yasuaki Takafuji, Daisuke Katsuki, Ryota Kato, Takumi Yazane, Takashi Yano, Junko |
| Author_xml | – sequence: 1 givenname: Xiaotian orcidid: 0009-0001-6022-2647 surname: Li fullname: Li, Xiaotian organization: Graduate School of Advanced Science and Engineering Hiroshima University Hiroshima Japan – sequence: 2 givenname: Koji orcidid: 0000-0002-2040-4032 surname: Nakano fullname: Nakano, Koji organization: Graduate School of Advanced Science and Engineering Hiroshima University Hiroshima Japan – sequence: 3 givenname: Yasuaki orcidid: 0000-0003-0593-231X surname: Ito fullname: Ito, Yasuaki organization: Graduate School of Advanced Science and Engineering Hiroshima University Hiroshima Japan – sequence: 4 givenname: Daisuke surname: Takafuji fullname: Takafuji, Daisuke organization: Faculty of Welfare Information Shunan University Yamaguchi Japan – sequence: 5 givenname: Takashi surname: Yazane fullname: Yazane, Takashi organization: Research and Development Headquarters NTT DATA Corporation Tokyo Japan – sequence: 6 givenname: Junko surname: Yano fullname: Yano, Junko organization: Research and Development Headquarters NTT DATA Corporation Tokyo Japan – sequence: 7 givenname: Takumi surname: Kato fullname: Kato, Takumi organization: Research and Development Headquarters NTT DATA Corporation Tokyo Japan – sequence: 8 givenname: Shiro surname: Ozaki fullname: Ozaki, Shiro organization: Research and Development Headquarters NTT DATA Corporation Tokyo Japan – sequence: 9 givenname: Rie surname: Mori fullname: Mori, Rie organization: Research and Development Headquarters NTT DATA Corporation Tokyo Japan – sequence: 10 givenname: Ryota surname: Katsuki fullname: Katsuki, Ryota organization: Research and Development Headquarters NTT DATA Corporation Tokyo Japan |
| BookMark | eNplkMlOwzAURS1UJNqCxCdYYsMmxY4TJ1lCxSRVYgPryLFfqKvUTj0I0a_HpYgFrN6g84Z7Z2hirAGELilZUELyGznComp4dYKmtGR5RjgrJr95zs_QzPsNIZQSRqco3umAVRwHLUXQ1uAAcm30LgIOFr-DAScC4LVwCu-iUKnSEkcjrfHBCW1A4U4b4T6xHYPe6v1xzehsN8DW4w8d1lioTfRBpA72eg_-HJ32YvBw8RPn6O3h_nX5lK1eHp-Xt6tM5mUZMlY0HDpJK6kUhZpxVRRM9apuoK_6hquaV2Vq1AKUJB0rFCdMFXUvZJ4Qxebo6rg3vZMk-dBubHQmnWwZYQ3hNC-qRF0fKems9w76dnR6myS1lLQHU9tkanswNaGLP6jU4VvxwYzh_8AXLkZ_vQ |
| CitedBy_id | crossref_primary_10_1002_nag_3800 crossref_primary_10_1080_17445760_2024_2376928 |
| Cites_doi | 10.1109/TQE.2021.3050449 10.1109/JSSC.2020.3027702 10.1145/3449726.3463208 10.1016/0020-0190(90)90082-9 10.1109/MC.2019.2908836 10.1109/CANDARW57323.2022.00029 10.1145/3404397.3404423 10.1016/0166-218X(93)E0140-T 10.1109/IPDPSW55747.2022.00080 10.1007/978-3-319-61566-0_39 10.1103/PhysRevE.100.012111 10.1613/jair.2039 10.1002/cpe.6565 10.1016/0004-3702(95)00045-3 10.1587/transinf.2018EDP7411 10.1103/PhysRevLett.88.188701 10.1613/jair.1681 10.1613/jair.1.13909 10.1126/sciadv.abe7953 10.1287/ijoc.3.4.376 10.1016/0377-2217(91)90197-4 10.1126/sciadv.abh0952 10.1109/IPDPSW59300.2023.00060 10.1016/j.jpdc.2022.04.016 10.1126/science.aah4243 |
| ContentType | Journal Article |
| Copyright | 2024 John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/cpe.7967 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1532-0634 |
| ExternalDocumentID | 10_1002_cpe_7967 |
| GroupedDBID | .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACBWZ ACCZN ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HF~ HGLYW HHY HVGLF HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O8X O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c255t-3496ebc17cdd1e836d443dfd89ef7f96d86753df8aedc0b34d603d48fac29efd3 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001104819100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1532-0626 |
| IngestDate | Sun Nov 09 08:15:16 EST 2025 Sat Nov 29 03:49:54 EST 2025 Tue Nov 18 21:46:38 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c255t-3496ebc17cdd1e836d443dfd89ef7f96d86753df8aedc0b34d603d48fac29efd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0001-6022-2647 0000-0002-2040-4032 0000-0003-0593-231X |
| PQID | 3039061247 |
| PQPubID | 2045170 |
| ParticipantIDs | proquest_journals_3039061247 crossref_primary_10_1002_cpe_7967 crossref_citationtrail_10_1002_cpe_7967 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-00 20240501 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Concurrency and computation |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 McGeoch C (e_1_2_6_5_1) 2020 e_1_2_6_19_1 e_1_2_6_13_1 Liu R (e_1_2_6_28_1) 2014; 2 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 Omelchenko O (e_1_2_6_29_1) 2021 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_27_1 e_1_2_6_26_1 |
| References_xml | – ident: e_1_2_6_6_1 doi: 10.1109/TQE.2021.3050449 – start-page: 3886 volume-title: 35 of Proceedings of the AAAI Conference on Artificial Intelligence year: 2021 ident: e_1_2_6_29_1 – ident: e_1_2_6_8_1 doi: 10.1109/JSSC.2020.3027702 – ident: e_1_2_6_34_1 – ident: e_1_2_6_14_1 doi: 10.1145/3449726.3463208 – ident: e_1_2_6_18_1 – ident: e_1_2_6_22_1 doi: 10.1016/0020-0190(90)90082-9 – ident: e_1_2_6_4_1 doi: 10.1109/MC.2019.2908836 – ident: e_1_2_6_31_1 doi: 10.1109/CANDARW57323.2022.00029 – ident: e_1_2_6_37_1 – ident: e_1_2_6_13_1 doi: 10.1145/3404397.3404423 – ident: e_1_2_6_23_1 doi: 10.1016/0166-218X(93)E0140-T – ident: e_1_2_6_3_1 doi: 10.1109/IPDPSW55747.2022.00080 – ident: e_1_2_6_9_1 doi: 10.1007/978-3-319-61566-0_39 – ident: e_1_2_6_12_1 doi: 10.1103/PhysRevE.100.012111 – ident: e_1_2_6_27_1 doi: 10.1613/jair.2039 – ident: e_1_2_6_11_1 doi: 10.1002/cpe.6565 – ident: e_1_2_6_24_1 doi: 10.1016/0004-3702(95)00045-3 – ident: e_1_2_6_33_1 – ident: e_1_2_6_7_1 doi: 10.1587/transinf.2018EDP7411 – ident: e_1_2_6_25_1 doi: 10.1103/PhysRevLett.88.188701 – ident: e_1_2_6_19_1 – ident: e_1_2_6_26_1 doi: 10.1613/jair.1681 – ident: e_1_2_6_30_1 doi: 10.1613/jair.1.13909 – volume: 2 start-page: 43 issue: 1 year: 2014 ident: e_1_2_6_28_1 article-title: The p‐hidden algorithm: hiding single databases more deeply publication-title: Immune Comput – ident: e_1_2_6_2_1 – ident: e_1_2_6_10_1 doi: 10.1126/sciadv.abe7953 – ident: e_1_2_6_20_1 doi: 10.1287/ijoc.3.4.376 – ident: e_1_2_6_21_1 doi: 10.1016/0377-2217(91)90197-4 – ident: e_1_2_6_17_1 doi: 10.1126/sciadv.abh0952 – ident: e_1_2_6_36_1 doi: 10.1109/IPDPSW59300.2023.00060 – ident: e_1_2_6_32_1 – ident: e_1_2_6_38_1 – volume-title: The D‐Wave Advantage System: An Overview year: 2020 ident: e_1_2_6_5_1 – ident: e_1_2_6_35_1 – ident: e_1_2_6_15_1 doi: 10.1016/j.jpdc.2022.04.016 – ident: e_1_2_6_16_1 doi: 10.1126/science.aah4243 |
| SSID | ssj0011031 |
| Score | 2.380607 |
| Snippet | Quadratic unconstrained binary optimization (QUBO) is a combinatorial optimization to find an optimal binary solution vector that minimizes the energy value... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| SubjectTerms | Combinatorial analysis Energy value Optimization Performance evaluation Quadratic formulas Solvers Traveling salesman problem |
| Title | Bit duplication technique to generate hard quadratic unconstrained binary optimization problems with adjustable sizes |
| URI | https://www.proquest.com/docview/3039061247 |
| Volume | 36 |
| WOSCitedRecordID | wos001104819100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1532-0634 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011031 issn: 1532-0626 databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jj9MwFLZKhwMXdsTAgIyExCEKpInb2Ee2ERJVhdAMKqcosR2UdkiqJhkN_Ap-Ms9bltEchgOXKLLsbO-L3_PyfQ-hl0RQMZMh9dWSlk-yjPksS6Wf5TPGI7Cz0JJC35bxakXXa_ZlMvnjuDDnZ3FZ0osLtvuvpoYyMLaizv6DubuLQgGcg9HhCGaH47UM_65oPNF2y9Jer9IKYeYPrTLdSE-RrRSjUuy1ZCt4NxUoqnwRKiQ1JN0KupOflqfp2cwzjg0nNop5pWhXdfHb7kN0ggdVybXqE__lWHO7drziv9R7CNZFWjUDeK7SbaozgXufq03RgVYnevK-p3UL0W4_07BN83ZjafJF3W7lcAIjJP12wa7PDf1gEVpF7GGZnee0HbVRSnGADK50AEZQlu_k65iZPB9jje1Lvq_bkWjUm8MEWiaq5Q10EMZzRqfo4MPX49NltzKl0mIYDV7z0E7QOAjfuLuOQ5yxh9dhy8lddNuON_Bbg5N7aCLL--iOy-WBbdf-ALUAGzyADe5gg5sKO9hgBRvcwQaPYIMNbPAQNtjBBivY4B42WMPmITo9_njy_pNvU3L4HMaeja_SC8iMz2Iu4Ben0UIQEolcUCbzOGcLQWEACgU0lYIHWUTEIogEoXnKQ6giokdoWlalfIwwifgspywnGYzpIzKnklEIOCPKcwleYn6IXrmvmHCrV6_e5yy5bKtD9KKruTMaLVfUOXKGSOzPWicQvjEV4pP4yTUu8RTd6uF7hKbNvpXP0E1-3hT1_rnFyV9IaZrQ |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bit+duplication+technique+to+generate+hard+quadratic+unconstrained+binary+optimization+problems+with+adjustable+sizes&rft.jtitle=Concurrency+and+computation&rft.au=Li%2C+Xiaotian&rft.au=Nakano%2C+Koji&rft.au=Ito%2C+Yasuaki&rft.au=Takafuji%2C+Daisuke&rft.date=2024-05-01&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=36&rft.issue=10&rft_id=info:doi/10.1002%2Fcpe.7967&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_7967 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |