Parameterized algorithms for generalizations of Directed Feedback Vertex Set

The Directed Feedback Vertex Set (DFVS) problem takes as input a directed graph G and seeks a smallest vertex set S that hits all cycles in G. This is one of Karp’s 21 NP-complete problems. Resolving the parameterized complexity status of DFVS was a long-standing open problem until Chen et al. (2008...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discrete optimization Ročník 46; s. 100740
Hlavní autori: Göke, Alexander, Marx, Dániel, Mnich, Matthias
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.11.2022
Predmet:
ISSN:1572-5286, 1873-636X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The Directed Feedback Vertex Set (DFVS) problem takes as input a directed graph G and seeks a smallest vertex set S that hits all cycles in G. This is one of Karp’s 21 NP-complete problems. Resolving the parameterized complexity status of DFVS was a long-standing open problem until Chen et al. (2008) showed its fixed-parameter tractability via a 4kk!nO(1)-time algorithm, where k=|S|. Here we show fixed-parameter tractability of two generalizations of DFVS: •Find a smallest vertex set S such that every strong component of G−S has size at most s: we give an algorithm solving this problem in time 4k(ks+k+s)!⋅nO(1). This generalizes an algorithm by Xiao (2017) for the undirected version of the problem.•Find a smallest vertex set S such that every non-trivial strong component of G−S is 1-out-regular: we give an algorithm solving this problem in time 2O(k3)⋅nO(1). We also solve the corresponding arc versions of these problems by fixed-parameter algorithms.
ISSN:1572-5286
1873-636X
DOI:10.1016/j.disopt.2022.100740