Lifted inference with tree axioms

We consider the problem of weighted first-order model counting (WFOMC): given a first-order sentence ϕ and domain size n∈N, determine the weighted sum of models of ϕ over the domain {1,…,n}. Past work has shown that any sentence using at most two logical variables admits an algorithm for WFOMC that...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Artificial intelligence Ročník 324; s. 103997
Hlavní autoři: van Bremen, Timothy, Kuželka, Ondřej
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.11.2023
Témata:
ISSN:0004-3702, 1872-7921
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider the problem of weighted first-order model counting (WFOMC): given a first-order sentence ϕ and domain size n∈N, determine the weighted sum of models of ϕ over the domain {1,…,n}. Past work has shown that any sentence using at most two logical variables admits an algorithm for WFOMC that runs in time polynomial in the given domain size [1,2]. The same property was later also shown to hold for C2, the two-variable fragment with counting quantifiers [3]. In this paper, we further expand this result to any C2 sentence ϕ with the addition of a tree axiom, stating that some distinguished binary relation in ϕ forms a tree in the graph-theoretic sense.
ISSN:0004-3702
1872-7921
DOI:10.1016/j.artint.2023.103997