Predicting tree survival in agroforestry systems using machine learning classification algorithms

This article discusses the application of machine learning algorithms to predict the survival of trees in agroforestry systems. Forests play a key role in maintaining ecological balance and biodiversity, but their survival is subject to many threats, including climate change, anthropogenic impacts,...

Full description

Saved in:
Bibliographic Details
Published in:E3S web of conferences Vol. 583; p. 2018
Main Authors: Kravtsov, Kirill, Kukartsev, Vladislav, Stepanova, Elina, Soloveva, Tatiana
Format: Journal Article Conference Proceeding
Language:English
Published: Les Ulis EDP Sciences 01.01.2024
Subjects:
ISSN:2267-1242, 2555-0403, 2267-1242
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This article discusses the application of machine learning algorithms to predict the survival of trees in agroforestry systems. Forests play a key role in maintaining ecological balance and biodiversity, but their survival is subject to many threats, including climate change, anthropogenic impacts, diseases and pests. The study used a dataset containing data on various factors affecting the survival of trees, such as the content of phenols, the presence of arbuscular mycorrhizal fungi (AMF), lignin and non- structural carbohydrates (NSC). The classification model was built using the C4.5 decision tree algorithm, which demonstrated high accuracy (86.02%) in predicting the survival of trees. Correlation analysis revealed that phenols and AMF are the most significant factors determining the survival of trees. These results highlight the importance of biochemical and symbiotic factors for tree health. The article also discusses the importance of various factors and suggests directions for future research aimed at improving the management of forest ecosystems in agroforestry systems. The use of machine learning methods allows not only to improve the accuracy of forecasting, but also to develop more effective strategies for the conservation and sustainable management of forests.
AbstractList This article discusses the application of machine learning algorithms to predict the survival of trees in agroforestry systems. Forests play a key role in maintaining ecological balance and biodiversity, but their survival is subject to many threats, including climate change, anthropogenic impacts, diseases and pests. The study used a dataset containing data on various factors affecting the survival of trees, such as the content of phenols, the presence of arbuscular mycorrhizal fungi (AMF), lignin and non- structural carbohydrates (NSC). The classification model was built using the C4.5 decision tree algorithm, which demonstrated high accuracy (86.02%) in predicting the survival of trees. Correlation analysis revealed that phenols and AMF are the most significant factors determining the survival of trees. These results highlight the importance of biochemical and symbiotic factors for tree health. The article also discusses the importance of various factors and suggests directions for future research aimed at improving the management of forest ecosystems in agroforestry systems. The use of machine learning methods allows not only to improve the accuracy of forecasting, but also to develop more effective strategies for the conservation and sustainable management of forests.
Author Stepanova, Elina
Soloveva, Tatiana
Kravtsov, Kirill
Kukartsev, Vladislav
Author_xml – sequence: 1
  givenname: Kirill
  surname: Kravtsov
  fullname: Kravtsov, Kirill
– sequence: 2
  givenname: Vladislav
  surname: Kukartsev
  fullname: Kukartsev, Vladislav
– sequence: 3
  givenname: Elina
  surname: Stepanova
  fullname: Stepanova, Elina
– sequence: 4
  givenname: Tatiana
  surname: Soloveva
  fullname: Soloveva, Tatiana
BookMark eNpNkU1LAzEQhoMoqNV_4GHBczWfm_QoxY9CQQ96DpNkUlO2G022Qv-9WyviaYaXd56Z4T0nx33ukZArRm8YVewWRfW5j7eccqmMoJwyc0TOOG_1lHHJj__1p-Sy1jWllHFlJJVnBF4KhuSH1K-aoSA2dVu-0hd0TeobWJUcc8E6lF1Td3XATW22de_dgH9PPTYdQun3gu-g1hSThyHlcbRb5ZKG9029ICcRuoqXv3VC3h7uX-dP0-Xz42J-t5x6rpSZBo9S8EA5OupdC9jqGdXc-OCMgZl0MmpAEaIXbYgzLnzbenQmCO2CUFFMyOLADRnW9qOkDZSdzZDsj5DLykIZku_QShc0R--UYiCR6ZlQArRkxrUCKYaRdX1gfZT8uR3_t-u8Lf14vhXMSGGMZmx0yYPLl1xrwfi3lVG7z8b-ZmP_ZyO-AVTEh7A
Cites_doi 10.1051/bioconf/20248401008
10.3390/en16248101
10.1109/INFOTEH57020.2023.10094168
10.3390/met12122135
10.1038/s41467-022-29289-2
10.1109/DTS55284.2022.9809892
10.1051/e3sconf/202345801011
10.1007/s11336-014-9413-1
10.1016/j.ijmedinf.2017.09.013
10.1038/s41467-020-18996-3
10.1051/e3sconf/202343103005
10.3390/polym16010115
10.1111/jep.12779
10.3390/ma16093490
10.3390/su142013083
10.3390/en16020729
10.1073/pnas.2003873117
10.3390/en17010017
10.1016/j.procs.2022.01.207
ContentType Journal Article
Conference Proceeding
Copyright 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7ST
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
FR3
GNUQQ
H8D
HCIFZ
KR7
L6V
L7M
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
SOI
DOA
DOI 10.1051/e3sconf/202458302018
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
Aerospace Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
Ecology
EISSN 2267-1242
ExternalDocumentID oai_doaj_org_article_4bd72ecb551a4e179353a7418b63e0ed
10_1051_e3sconf_202458302018
Genre Conference Proceeding
GroupedDBID 5VS
7XC
8FE
8FG
8FH
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AEUYN
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
EBS
EJD
GI~
GROUPED_DOAJ
HCIFZ
IPNFZ
KQ8
L6V
LK5
M7R
M7S
M~E
OK1
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
PYCSY
RIG
7ST
8FD
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
H8D
KR7
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
ID FETCH-LOGICAL-c2558-dce432d02eb0cb6ae6790728cdb88a94b4f7ae3dfc36df923c66ceb8d37bd35f3
IEDL.DBID M7S
ISSN 2267-1242
2555-0403
IngestDate Fri Oct 03 12:43:45 EDT 2025
Fri Jul 25 11:55:57 EDT 2025
Sat Nov 29 05:31:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2558-dce432d02eb0cb6ae6790728cdb88a94b4f7ae3dfc36df923c66ceb8d37bd35f3
Notes ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
OpenAccessLink https://www.proquest.com/docview/3184388711?pq-origsite=%requestingapplication%
PQID 3184388711
PQPubID 2040555
ParticipantIDs doaj_primary_oai_doaj_org_article_4bd72ecb551a4e179353a7418b63e0ed
proquest_journals_3184388711
crossref_primary_10_1051_e3sconf_202458302018
PublicationCentury 2000
PublicationDate 20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 20240101
  day: 01
PublicationDecade 2020
PublicationPlace Les Ulis
PublicationPlace_xml – name: Les Ulis
PublicationTitle E3S web of conferences
PublicationYear 2024
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Martyushev (R7) 2023; 16
Hammond (R1) 2022; 13
Kurashkin (R19) 2022; 200
Esquivel-Muelbert (R2) 2020; 11
Bukhtoyarov (R9) 2022; 1
Tynchenko (R16) 2022; 2373
Martyushev (R8) 2023; 16
Zhou (R4) 2015; 80
Panfilova (R12) 2023; 11-1
R21
R20
Bashmur (R10) 2022; 14
Rezanov (R15) 2022; 12
R22
R14
Filina (R23) 2023; 17
Boychuk (R24) 2023; 16
R18
Suprun (R13) 2024; 84
Gantimurov (R17) 2023; 431
Golik (R11) 2023; 11-1
Linden (R5) 2017; 23
Lynch (R6) 2017; 108
Locosselli (R3) 2020; 117
References_xml – volume: 84
  start-page: 01008
  year: 2024
  ident: R13
  publication-title: BIO Web of Conferences,
  doi: 10.1051/bioconf/20248401008
– volume: 16
  start-page: 8101
  issue: 24
  year: 2023
  ident: R24
  publication-title: Energies
  doi: 10.3390/en16248101
– ident: R21
– volume: 1
  start-page: 12
  year: 2022
  ident: R9
  publication-title: SOCAR Proceedings
– ident: R22
  doi: 10.1109/INFOTEH57020.2023.10094168
– volume: 12
  start-page: 2135
  issue: 12
  year: 2022
  ident: R15
  publication-title: Metals
  doi: 10.3390/met12122135
– volume: 13
  start-page: 1761
  year: 2022
  ident: R1
  publication-title: Nature Communications
  doi: 10.1038/s41467-022-29289-2
– ident: R18
  doi: 10.1109/DTS55284.2022.9809892
– ident: R20
  doi: 10.1051/e3sconf/202345801011
– volume: 11-1
  start-page: 239
  year: 2023
  ident: R12
  publication-title: MIAB. Mining Inf. Anal. Bull.
– volume: 80
  start-page: 811
  year: 2015
  ident: R4
  publication-title: Psychometrika
  doi: 10.1007/s11336-014-9413-1
– volume: 108
  start-page: 1
  year: 2017
  ident: R6
  publication-title: International journal of medical informatics
  doi: 10.1016/j.ijmedinf.2017.09.013
– volume: 11
  start-page: 5515
  year: 2020
  ident: R2
  publication-title: Nature communications
  doi: 10.1038/s41467-020-18996-3
– volume: 11-1
  start-page: 175
  year: 2023
  ident: R11
  publication-title: MIAB. Mining Inf. Anal. Bull.
– volume: 431
  start-page: 03005
  year: 2023
  ident: R17
  publication-title: E3S Web of Conferences,
  doi: 10.1051/e3sconf/202343103005
– ident: R14
  doi: 10.3390/polym16010115
– volume: 23
  start-page: 1299
  issue: 6
  year: 2017
  ident: R5
  publication-title: Journal of evaluation in clinical practice
  doi: 10.1111/jep.12779
– volume: 16
  start-page: 3490
  issue: 9
  year: 2023
  ident: R8
  publication-title: Materials. Т.
  doi: 10.3390/ma16093490
– volume: 2373
  start-page: 062015
  issue: 6
  year: 2022
  ident: R16
  publication-title: Journal of Physics: Conference Series. – IOP Publishing
– volume: 14
  start-page: 13083
  issue: 20
  year: 2022
  ident: R10
  publication-title: Sustainability. –
  doi: 10.3390/su142013083
– volume: 16
  start-page: 729
  issue: 2
  year: 2023
  ident: R7
  publication-title: Energies. Т.
  doi: 10.3390/en16020729
– volume: 117
  start-page: 33358
  issue: 52
  year: 2020
  ident: R3
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.2003873117
– volume: 17
  start-page: 17
  issue: 1
  year: 2023
  ident: R23
  publication-title: Energies
  doi: 10.3390/en17010017
– volume: 200
  start-page: 83
  year: 2022
  ident: R19
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2022.01.207
SSID ssj0001258404
Score 2.2421248
Snippet This article discusses the application of machine learning algorithms to predict the survival of trees in agroforestry systems. Forests play a key role in...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 2018
SubjectTerms Accuracy
Agroforestry
Algorithms
Anthropogenic factors
Arbuscular mycorrhizas
Biodiversity
Carbohydrates
Classification
Climate change
Correlation analysis
Decision trees
Ecological balance
Ecology
Forest ecosystems
Forest management
Human influences
Learning algorithms
Machine learning
Pests
Phenols
Survival
Sustainability management
Terrestrial ecosystems
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcCCeFUUCvLAGjWJ7cQZAbViqjqA1C3yM1SiKUpaJP49d0kKkRhYWJPIse7se_jO30fInYWoQuLxklaZDDg44EBHPglMzDT3nkXG2IZsIp3P5XKZLXpUX9gT1sIDt4KbcG3T2BkNnl1xh8tJMIWQKzphLnQWrW-YZr1kqj1dAcca8v1dORFNHKshwfSY7GOpEKIk5Pno-aIGsv-XRW7czOyEHHfxIb1v53VKDlx5RobTn-to8LLbj_U5UYsKCy3YukyxvEzrHWx9WDx0VVJVgI3dIPdG9UlbxOaaYp97QddNC6WjHWdEQQ0G0dg11CiKqrdiU622r-v6grzMps-PT0FHmgDiFUIG1jjOYhvGTodGJ8olKeS_sTRWS6kyDhpIlWPWG5ZYD-GdSRLjtLQs1ZYJz4ZkUG5Kd0modhJH0FZowSGNUxDdeS1NqhAGT_oRCfbiy99bbIy8qWmLKO_EnffFPSIPKOPvbxHZunkA-s47fed_6XtExnsN5d12q3OGrDVgLqPo6j_-cU2OcN7tScuYDLbVzt2QQ_OxXdXVbbPSvgDhMNw6
  priority: 102
  providerName: Directory of Open Access Journals
Title Predicting tree survival in agroforestry systems using machine learning classification algorithms
URI https://www.proquest.com/docview/3184388711
https://doaj.org/article/4bd72ecb551a4e179353a7418b63e0ed
Volume 583
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2267-1242
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001258404
  issn: 2267-1242
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2267-1242
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001258404
  issn: 2267-1242
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2267-1242
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001258404
  issn: 2267-1242
  databaseCode: PCBAR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2267-1242
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001258404
  issn: 2267-1242
  databaseCode: M7S
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 2267-1242
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001258404
  issn: 2267-1242
  databaseCode: PATMY
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2267-1242
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001258404
  issn: 2267-1242
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2267-1242
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001258404
  issn: 2267-1242
  databaseCode: PIMPY
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ja9tAFH5kK_SUZiNOUzOHXEUsjUYanwIpDumhRmSB5CRmVQOJnUpOIP8-743HsaHQS66SEANvX-b7AE4sZhWS2ktaDWWSYwBOdOqLxGRc597z1BgbyCbK8Vje3Q2r2HDr4lrlwicGR22nhnrkp5yISdAi0vTs-W9CrFE0XY0UGuuwSSgJaVjdu17psWB4DQyCmDiLBPWVL27PifTU8Q5LTk_lPw0PMW8i5o-V6BRA_P_x0SHwXGx_9sjfYH95p49VH9FqB9bcZBe-jAJo9dsuHIyWN97UI4sm3-2Bqlqa5dB2NKMJNute0LugfrKHCVMNuvEp0Xu0b2wOCt0xWqVv2FPY0nQs0lI0zFCeTotJQReYemzwrLM_T90-3F6Mbn5eJpGXASUohEyscTnP7CBzemB0oVxRYomdSWO1lGqYo5BL5bj1hhfWYwZpisI4LS0vteXC8wPYmEwn7hCYdpL-oK3QIsdKUWEC6bU0pSKkPel7kCzkUT_P4TfqMDYXaR3lV6_KrwfnJLSPbwk8OzyYtk0dbbHOtS0zZzQmiyp35KEEV4TiowvuBs724HghzzpadFcvhXn0_9ff4SudaN6mOYaNWfvifsCWeZ09dG0fNs9H4-qqH2r_flBXfFb9-l3dvwMJm_Wp
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFERPQGlFoMAe4Gg19nrtzaFCAlI1ahv5UKRyMvs0ldqk2ClV_lR_IzMbu4mExK0HrrblXa-_ndfOzAfwwaJVISm8pNVQRikq4EjHPotMwnXqPY-NsYFsIp9M5Pn5sNiAu64WhtIqO5kYBLWdGYqR73MiJsEdEcefrn9FxBpFp6sdhcYSFsducYsuW3Mw_or_92OSHI7OvhxFLasAji-EjKxxKU_sIHF6YHSmXJajg5hIY7WUapjiFHPluPWGZ9aj_WOyzDgtLc-15cJzfO8j2EwJ7D3YLManxfe1qA4q9MBZiGOJCHcI7-r1RLzveINOrqeAAx1XoqVGXCNr-jDQBvylFYKqO3z2vy3Sc9hZVS2y4l4fv4ANN92GJ6PQlnuxDbujVU2fumStUGtegipqOq2i_G9GZ_SsuUH5iTuQXUyZqlBRzYjApF6wZdvrhlGxQMWuQh6qYy3xRsUMeSKUehXQztRlhWsz_3nV7MC3B_n8XehNZ1P3Cph2kt6grdAiRV9YoYnstTS5ol6C0vch6v5_eb1sMFKGxAARly1eynW89OEzgeT-WWoPHi7M6qpspU2Zapsnzmg0h1XqSAYLrqhPkc64Gzjbh70OP2Urs5pyBZ7X_779Hp4enZ2elCfjyfEb2KLZLYNSe9Cb1zfuLTw2v-cXTf2u3R4Mfjw02P4AzfdS5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=E3S+web+of+conferences&rft.atitle=Predicting+tree+survival+in+agroforestry+systems+using+machine+learning+classification+algorithms&rft.au=Kravtsov%2C+Kirill&rft.au=Kukartsev%2C+Vladislav&rft.au=Stepanova%2C+Elina&rft.au=Soloveva%2C+Tatiana&rft.date=2024-01-01&rft.pub=EDP+Sciences&rft.issn=2555-0403&rft.eissn=2267-1242&rft.volume=583&rft_id=info:doi/10.1051%2Fe3sconf%2F202458302018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2267-1242&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2267-1242&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2267-1242&client=summon