Predicting tree survival in agroforestry systems using machine learning classification algorithms
This article discusses the application of machine learning algorithms to predict the survival of trees in agroforestry systems. Forests play a key role in maintaining ecological balance and biodiversity, but their survival is subject to many threats, including climate change, anthropogenic impacts,...
Gespeichert in:
| Veröffentlicht in: | E3S web of conferences Jg. 583; S. 2018 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
Les Ulis
EDP Sciences
01.01.2024
|
| Schlagworte: | |
| ISSN: | 2267-1242, 2555-0403, 2267-1242 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This article discusses the application of machine learning algorithms to predict the survival of trees in agroforestry systems. Forests play a key role in maintaining ecological balance and biodiversity, but their survival is subject to many threats, including climate change, anthropogenic impacts, diseases and pests. The study used a dataset containing data on various factors affecting the survival of trees, such as the content of phenols, the presence of arbuscular mycorrhizal fungi (AMF), lignin and non- structural carbohydrates (NSC). The classification model was built using the C4.5 decision tree algorithm, which demonstrated high accuracy (86.02%) in predicting the survival of trees. Correlation analysis revealed that phenols and AMF are the most significant factors determining the survival of trees. These results highlight the importance of biochemical and symbiotic factors for tree health. The article also discusses the importance of various factors and suggests directions for future research aimed at improving the management of forest ecosystems in agroforestry systems. The use of machine learning methods allows not only to improve the accuracy of forecasting, but also to develop more effective strategies for the conservation and sustainable management of forests. |
|---|---|
| AbstractList | This article discusses the application of machine learning algorithms to predict the survival of trees in agroforestry systems. Forests play a key role in maintaining ecological balance and biodiversity, but their survival is subject to many threats, including climate change, anthropogenic impacts, diseases and pests. The study used a dataset containing data on various factors affecting the survival of trees, such as the content of phenols, the presence of arbuscular mycorrhizal fungi (AMF), lignin and non- structural carbohydrates (NSC). The classification model was built using the C4.5 decision tree algorithm, which demonstrated high accuracy (86.02%) in predicting the survival of trees. Correlation analysis revealed that phenols and AMF are the most significant factors determining the survival of trees. These results highlight the importance of biochemical and symbiotic factors for tree health. The article also discusses the importance of various factors and suggests directions for future research aimed at improving the management of forest ecosystems in agroforestry systems. The use of machine learning methods allows not only to improve the accuracy of forecasting, but also to develop more effective strategies for the conservation and sustainable management of forests. |
| Author | Stepanova, Elina Soloveva, Tatiana Kravtsov, Kirill Kukartsev, Vladislav |
| Author_xml | – sequence: 1 givenname: Kirill surname: Kravtsov fullname: Kravtsov, Kirill – sequence: 2 givenname: Vladislav surname: Kukartsev fullname: Kukartsev, Vladislav – sequence: 3 givenname: Elina surname: Stepanova fullname: Stepanova, Elina – sequence: 4 givenname: Tatiana surname: Soloveva fullname: Soloveva, Tatiana |
| BookMark | eNpNkU1LAzEQhoMoqNV_4GHBczWfm_QoxY9CQQ96DpNkUlO2G022Qv-9WyviaYaXd56Z4T0nx33ukZArRm8YVewWRfW5j7eccqmMoJwyc0TOOG_1lHHJj__1p-Sy1jWllHFlJJVnBF4KhuSH1K-aoSA2dVu-0hd0TeobWJUcc8E6lF1Td3XATW22de_dgH9PPTYdQun3gu-g1hSThyHlcbRb5ZKG9029ICcRuoqXv3VC3h7uX-dP0-Xz42J-t5x6rpSZBo9S8EA5OupdC9jqGdXc-OCMgZl0MmpAEaIXbYgzLnzbenQmCO2CUFFMyOLADRnW9qOkDZSdzZDsj5DLykIZku_QShc0R--UYiCR6ZlQArRkxrUCKYaRdX1gfZT8uR3_t-u8Lf14vhXMSGGMZmx0yYPLl1xrwfi3lVG7z8b-ZmP_ZyO-AVTEh7A |
| Cites_doi | 10.1051/bioconf/20248401008 10.3390/en16248101 10.1109/INFOTEH57020.2023.10094168 10.3390/met12122135 10.1038/s41467-022-29289-2 10.1109/DTS55284.2022.9809892 10.1051/e3sconf/202345801011 10.1007/s11336-014-9413-1 10.1016/j.ijmedinf.2017.09.013 10.1038/s41467-020-18996-3 10.1051/e3sconf/202343103005 10.3390/polym16010115 10.1111/jep.12779 10.3390/ma16093490 10.3390/su142013083 10.3390/en16020729 10.1073/pnas.2003873117 10.3390/en17010017 10.1016/j.procs.2022.01.207 |
| ContentType | Journal Article Conference Proceeding |
| Copyright | 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7ST 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO FR3 GNUQQ H8D HCIFZ KR7 L6V L7M M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY SOI DOA |
| DOI | 10.1051/e3sconf/202458302018 |
| DatabaseName | CrossRef Environment Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland ProQuest Agricultural & Environmental Science & Pollution Managment ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student Aerospace Database SciTech Premium Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection Environment Abstracts Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Environmental Sciences Ecology |
| EISSN | 2267-1242 |
| ExternalDocumentID | oai_doaj_org_article_4bd72ecb551a4e179353a7418b63e0ed 10_1051_e3sconf_202458302018 |
| Genre | Conference Proceeding |
| GroupedDBID | 5VS 7XC 8FE 8FG 8FH AAFWJ AAYXX ABJCF ADBBV ADMLS AEUYN AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS ATCPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION EBS EJD GI~ GROUPED_DOAJ HCIFZ IPNFZ KQ8 L6V LK5 M7R M7S M~E OK1 PATMY PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS PYCSY RIG 7ST 8FD ABUWG AZQEC C1K DWQXO FR3 GNUQQ H8D KR7 L7M PKEHL PQEST PQQKQ PQUKI PRINS SOI |
| ID | FETCH-LOGICAL-c2558-dce432d02eb0cb6ae6790728cdb88a94b4f7ae3dfc36df923c66ceb8d37bd35f3 |
| IEDL.DBID | DOA |
| ISSN | 2267-1242 2555-0403 |
| IngestDate | Fri Oct 03 12:43:45 EDT 2025 Fri Jul 25 11:55:57 EDT 2025 Sat Nov 29 05:31:43 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2558-dce432d02eb0cb6ae6790728cdb88a94b4f7ae3dfc36df923c66ceb8d37bd35f3 |
| Notes | ObjectType-Conference Proceeding-1 SourceType-Conference Papers & Proceedings-1 content type line 21 |
| OpenAccessLink | https://doaj.org/article/4bd72ecb551a4e179353a7418b63e0ed |
| PQID | 3184388711 |
| PQPubID | 2040555 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4bd72ecb551a4e179353a7418b63e0ed proquest_journals_3184388711 crossref_primary_10_1051_e3sconf_202458302018 |
| PublicationCentury | 2000 |
| PublicationDate | 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 20240101 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Les Ulis |
| PublicationPlace_xml | – name: Les Ulis |
| PublicationTitle | E3S web of conferences |
| PublicationYear | 2024 |
| Publisher | EDP Sciences |
| Publisher_xml | – name: EDP Sciences |
| References | Martyushev (R7) 2023; 16 Hammond (R1) 2022; 13 Kurashkin (R19) 2022; 200 Esquivel-Muelbert (R2) 2020; 11 Bukhtoyarov (R9) 2022; 1 Tynchenko (R16) 2022; 2373 Martyushev (R8) 2023; 16 Zhou (R4) 2015; 80 Panfilova (R12) 2023; 11-1 R21 R20 Bashmur (R10) 2022; 14 Rezanov (R15) 2022; 12 R22 R14 Filina (R23) 2023; 17 Boychuk (R24) 2023; 16 R18 Suprun (R13) 2024; 84 Gantimurov (R17) 2023; 431 Golik (R11) 2023; 11-1 Linden (R5) 2017; 23 Lynch (R6) 2017; 108 Locosselli (R3) 2020; 117 |
| References_xml | – volume: 84 start-page: 01008 year: 2024 ident: R13 publication-title: BIO Web of Conferences, doi: 10.1051/bioconf/20248401008 – volume: 16 start-page: 8101 issue: 24 year: 2023 ident: R24 publication-title: Energies doi: 10.3390/en16248101 – ident: R21 – volume: 1 start-page: 12 year: 2022 ident: R9 publication-title: SOCAR Proceedings – ident: R22 doi: 10.1109/INFOTEH57020.2023.10094168 – volume: 12 start-page: 2135 issue: 12 year: 2022 ident: R15 publication-title: Metals doi: 10.3390/met12122135 – volume: 13 start-page: 1761 year: 2022 ident: R1 publication-title: Nature Communications doi: 10.1038/s41467-022-29289-2 – ident: R18 doi: 10.1109/DTS55284.2022.9809892 – ident: R20 doi: 10.1051/e3sconf/202345801011 – volume: 11-1 start-page: 239 year: 2023 ident: R12 publication-title: MIAB. Mining Inf. Anal. Bull. – volume: 80 start-page: 811 year: 2015 ident: R4 publication-title: Psychometrika doi: 10.1007/s11336-014-9413-1 – volume: 108 start-page: 1 year: 2017 ident: R6 publication-title: International journal of medical informatics doi: 10.1016/j.ijmedinf.2017.09.013 – volume: 11 start-page: 5515 year: 2020 ident: R2 publication-title: Nature communications doi: 10.1038/s41467-020-18996-3 – volume: 11-1 start-page: 175 year: 2023 ident: R11 publication-title: MIAB. Mining Inf. Anal. Bull. – volume: 431 start-page: 03005 year: 2023 ident: R17 publication-title: E3S Web of Conferences, doi: 10.1051/e3sconf/202343103005 – ident: R14 doi: 10.3390/polym16010115 – volume: 23 start-page: 1299 issue: 6 year: 2017 ident: R5 publication-title: Journal of evaluation in clinical practice doi: 10.1111/jep.12779 – volume: 16 start-page: 3490 issue: 9 year: 2023 ident: R8 publication-title: Materials. Т. doi: 10.3390/ma16093490 – volume: 2373 start-page: 062015 issue: 6 year: 2022 ident: R16 publication-title: Journal of Physics: Conference Series. – IOP Publishing – volume: 14 start-page: 13083 issue: 20 year: 2022 ident: R10 publication-title: Sustainability. – doi: 10.3390/su142013083 – volume: 16 start-page: 729 issue: 2 year: 2023 ident: R7 publication-title: Energies. Т. doi: 10.3390/en16020729 – volume: 117 start-page: 33358 issue: 52 year: 2020 ident: R3 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.2003873117 – volume: 17 start-page: 17 issue: 1 year: 2023 ident: R23 publication-title: Energies doi: 10.3390/en17010017 – volume: 200 start-page: 83 year: 2022 ident: R19 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2022.01.207 |
| SSID | ssj0001258404 |
| Score | 2.2422945 |
| Snippet | This article discusses the application of machine learning algorithms to predict the survival of trees in agroforestry systems. Forests play a key role in... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 2018 |
| SubjectTerms | Accuracy Agroforestry Algorithms Anthropogenic factors Arbuscular mycorrhizas Biodiversity Carbohydrates Classification Climate change Correlation analysis Decision trees Ecological balance Ecology Forest ecosystems Forest management Human influences Learning algorithms Machine learning Pests Phenols Survival Sustainability management Terrestrial ecosystems |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEB1BChInoLQiUNAeuFrNetdr51SpKBUHFEUIUG_WfsyaSm1S7BSp_74zm00TCYkLV9uyVp6PfZ6ZfQ_gk0ZCqZIZLq1pCm1kLFxNceWmZTl12tiYeAp-fq3n8-bycrrIBbchj1Vuc2JK1GHluUZ-qliYhCJCyrPb3wWrRnF3NUtoPIUDZirTIzg4n80X3_aqLLTBJg1Bgs5VQR6rtufnKnmKaqCfzsgFAG4fEnJi7Y-9_SnR-P-VpdPWc_Hyfxf9Co52p_rE4nG_eg1PcHkIz2eJtvr-EI5nuzNv9lrkoB_egF303M3h-WjBPWwx3FF-IQ8VV0thO0rkKxb46O_FhhZ6EDxM34mbNKeJIgtTdMIzUufRpOQNwl53tNb1r5vhCH5czL5__lJkZYbC03dsiuBRqzJMSnQT74xFU9NPdtn44JrGTrXTsbaoQvTKhEgY0hvj0TVB1S6oKqpjGC1XS3wLwnotUU0i4cyoFZomeqldKS3hOHqBHEOxtUd7uyHgaFPjvJJttl-7b78xnLPRHp9l-ux0YdV3bY7GVrtQl-gdwUWrkXNUpSzz-DijcIJhDCdbe7Y5pod2Z8x3_779Hl7wijaFmhMYrfs7_ADP_J_11dB_zC76AEiq8XQ priority: 102 providerName: ProQuest |
| Title | Predicting tree survival in agroforestry systems using machine learning classification algorithms |
| URI | https://www.proquest.com/docview/3184388711 https://doaj.org/article/4bd72ecb551a4e179353a7418b63e0ed |
| Volume | 583 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2267-1242 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001258404 issn: 2267-1242 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2267-1242 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001258404 issn: 2267-1242 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2267-1242 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001258404 issn: 2267-1242 databaseCode: PCBAR dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2267-1242 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001258404 issn: 2267-1242 databaseCode: M7S dateStart: 20130101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 2267-1242 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001258404 issn: 2267-1242 databaseCode: PATMY dateStart: 20130101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2267-1242 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001258404 issn: 2267-1242 databaseCode: BENPR dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 2267-1242 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001258404 issn: 2267-1242 databaseCode: PIMPY dateStart: 20130101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9tAEF0h4NBLVaCoKRDtgasVr3ezto8EBYEEkQW0Sk_WfsymkUpS2Uml_vvO2E6x1EMvXG1LXs3szLzZmX3D2KUCRKmCGC6NziKlRYhsinZl8yTJrdImNDwFX-_T2Sybz_OiN-qLesJaeuBWcCNlfZqAsxjZjQLaTmNpiHLFagkxePK-iHp6yVR7uoKBNVa7u3JjMQJZY4IZKNmnUiGiJJrz0YtFDWX_Px65CTM3H9j7Dh_yq3ZdR2wPVsfsdPp6HQ1fdvZYnzBTVFRoodZlTuVlXm_R9HHz8OWKmwX62DXN3qh-85axuebU577gL00LJfBuZsSCOwLR1DXUKIqbH4t1tdx8f6k_si830-fr26gbmhA5zA6yyDtQMvFxAjZ2VhvQKea_Sea8zTKTK6tCakD64KT2AeGd09qBzbxMrZfjIE_Z_mq9gk-MG6cEyDggBAxKgs6CE8omqAfUgQ9iwKKd-MqfLTdG2dS0x6LsxF32xT1gE5Lx32-J2bp5gPouO32X_9P3gJ3vNFR25laXkqbWoLsU4vNb_OOMvaN1tyct52x_U23hgh26X5tlXQ3ZwWQ6Kx6HzY4bUrPoEz4r7h6Kb38AK2DfNw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAQnoLQiUGAPcLQae9dr54CQgFSNmkY-FFROZp9upTYpdgrKn-I3MrOxm0hI3Hrgaltre_ebx87OzAfwVjj0UmPqcKlkHgkZ-0hnKFd6mCRDLaTyoU_B10k2neZnZ8NiC353tTCUVtnpxKCo7dxQjPyAEzEJSkQcf7j-ERFrFJ2udhQaK1gcu-Uv3LI178efcX3fJcnh6PTTUdSyCkQG3ec8ssYJnthB4vTAaKmczHCDmOTG6jxXQ6GFz5Tj1hsurUf_x0hpnM4tz7Tlqec47j3YFgj2vAfbxfik-LYR1UGDHjgL8V1phBLCu3q9ND5wvMFNrqeAAx1XoqdGXCMb9jDQBvxlFYKpO3z8v03SE9hdVy2y4tYeP4UtN9uBB6PQlnu5A3ujdU2fumStUmuegSpqOq2i_G9GZ_SsuUH9iRLILmZMVWio5kRgUi_Zqu11w6hYoGJXIQ_VsZZ4o2KGdiKUehXQztRlhXOzOL9qduHLnfz-HvRm85l7DkwZETs-8OhHe8GdzL2JhU5ihX4qDhD3IerWv7xeNRgpQ2JAGpctXspNvPThI4Hk9llqDx4uzOuqbLVNKbTNEmc0usNKONLBKVfUp0hL7gbO9mG_w0_Z6qymXIPnxb9vv4GHR6cnk3Iynh6_hEf0daug1D70FvWNewX3zc_FRVO_bsWDwfe7Btsf37pRqQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=E3S+web+of+conferences&rft.atitle=Predicting+tree+survival+in+agroforestry+systems+using+machine+learning+classification+algorithms&rft.au=Kravtsov%2C+Kirill&rft.au=Kukartsev%2C+Vladislav&rft.au=Stepanova%2C+Elina&rft.au=Soloveva%2C+Tatiana&rft.date=2024-01-01&rft.pub=EDP+Sciences&rft.issn=2555-0403&rft.eissn=2267-1242&rft.volume=583&rft_id=info:doi/10.1051%2Fe3sconf%2F202458302018 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2267-1242&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2267-1242&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2267-1242&client=summon |