Computer vision methods and algorithms for automatic detection and classification of objects in decision support systems in agriculture

The paper examines aspects of developing and formalizing the task of applying computer vision methods and algorithms using OpenCV (implemented in Python version 3.13 notation) for automatic detection and classification of objects in decision support systems. A software implementation of a modular ex...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:E3S web of conferences Ročník 548; s. 3023
Hlavní autoři: Yablokova, Alena, Kovalev, Igor, Kovalev, Dmitry, Podoplelova, Valeria, Kobilova, Aziza
Médium: Journal Article Konferenční příspěvek
Jazyk:angličtina
Vydáno: Les Ulis EDP Sciences 01.01.2024
Témata:
ISSN:2267-1242, 2555-0403, 2267-1242
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The paper examines aspects of developing and formalizing the task of applying computer vision methods and algorithms using OpenCV (implemented in Python version 3.13 notation) for automatic detection and classification of objects in decision support systems. A software implementation of a modular example is provided, enabling automatic detection and classification for the detection of plant diseases based on their external characteristics in decision support systems in agriculture. This approach will facilitate prompt response to plant diseases and the implementation of necessary measures for their treatment.
Bibliografie:ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
ISSN:2267-1242
2555-0403
2267-1242
DOI:10.1051/e3sconf/202454803023