Computer vision methods and algorithms for automatic detection and classification of objects in decision support systems in agriculture

The paper examines aspects of developing and formalizing the task of applying computer vision methods and algorithms using OpenCV (implemented in Python version 3.13 notation) for automatic detection and classification of objects in decision support systems. A software implementation of a modular ex...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:E3S web of conferences Ročník 548; s. 3023
Hlavní autori: Yablokova, Alena, Kovalev, Igor, Kovalev, Dmitry, Podoplelova, Valeria, Kobilova, Aziza
Médium: Journal Article Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: Les Ulis EDP Sciences 01.01.2024
Predmet:
ISSN:2267-1242, 2555-0403, 2267-1242
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The paper examines aspects of developing and formalizing the task of applying computer vision methods and algorithms using OpenCV (implemented in Python version 3.13 notation) for automatic detection and classification of objects in decision support systems. A software implementation of a modular example is provided, enabling automatic detection and classification for the detection of plant diseases based on their external characteristics in decision support systems in agriculture. This approach will facilitate prompt response to plant diseases and the implementation of necessary measures for their treatment.
Bibliografia:ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
ISSN:2267-1242
2555-0403
2267-1242
DOI:10.1051/e3sconf/202454803023