Network inference in the nonequilibrium steady state

Nonequilibrium systems lack an explicit characterization of their steady state like the Boltzmann distribution for equilibrium systems. This has drastic consequences for the inference of the parameters of a model when its dynamics lacks detailed balance. Such nonequilibrium systems occur naturally i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physical review. E Ročník 94; číslo 5-1; s. 052116
Hlavní autoři: Dettmer, Simon L, Nguyen, H Chau, Berg, Johannes
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.11.2016
ISSN:2470-0053, 2470-0053
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Nonequilibrium systems lack an explicit characterization of their steady state like the Boltzmann distribution for equilibrium systems. This has drastic consequences for the inference of the parameters of a model when its dynamics lacks detailed balance. Such nonequilibrium systems occur naturally in applications like neural networks and gene regulatory networks. Here, we focus on the paradigmatic asymmetric Ising model and show that we can learn its parameters from independent samples of the nonequilibrium steady state. We present both an exact inference algorithm and a computationally more efficient, approximate algorithm for weak interactions based on a systematic expansion around mean-field theory. Obtaining expressions for magnetizations and two- and three-point spin correlations, we establish that these observables are sufficient to infer the model parameters. Further, we discuss the symmetries characterizing the different orders of the expansion around the mean field and show how different types of dynamics can be distinguished on the basis of samples from the nonequilibrium steady state.
AbstractList Nonequilibrium systems lack an explicit characterization of their steady state like the Boltzmann distribution for equilibrium systems. This has drastic consequences for the inference of the parameters of a model when its dynamics lacks detailed balance. Such nonequilibrium systems occur naturally in applications like neural networks and gene regulatory networks. Here, we focus on the paradigmatic asymmetric Ising model and show that we can learn its parameters from independent samples of the nonequilibrium steady state. We present both an exact inference algorithm and a computationally more efficient, approximate algorithm for weak interactions based on a systematic expansion around mean-field theory. Obtaining expressions for magnetizations and two- and three-point spin correlations, we establish that these observables are sufficient to infer the model parameters. Further, we discuss the symmetries characterizing the different orders of the expansion around the mean field and show how different types of dynamics can be distinguished on the basis of samples from the nonequilibrium steady state.
Nonequilibrium systems lack an explicit characterization of their steady state like the Boltzmann distribution for equilibrium systems. This has drastic consequences for the inference of the parameters of a model when its dynamics lacks detailed balance. Such nonequilibrium systems occur naturally in applications like neural networks and gene regulatory networks. Here, we focus on the paradigmatic asymmetric Ising model and show that we can learn its parameters from independent samples of the nonequilibrium steady state. We present both an exact inference algorithm and a computationally more efficient, approximate algorithm for weak interactions based on a systematic expansion around mean-field theory. Obtaining expressions for magnetizations and two- and three-point spin correlations, we establish that these observables are sufficient to infer the model parameters. Further, we discuss the symmetries characterizing the different orders of the expansion around the mean field and show how different types of dynamics can be distinguished on the basis of samples from the nonequilibrium steady state.Nonequilibrium systems lack an explicit characterization of their steady state like the Boltzmann distribution for equilibrium systems. This has drastic consequences for the inference of the parameters of a model when its dynamics lacks detailed balance. Such nonequilibrium systems occur naturally in applications like neural networks and gene regulatory networks. Here, we focus on the paradigmatic asymmetric Ising model and show that we can learn its parameters from independent samples of the nonequilibrium steady state. We present both an exact inference algorithm and a computationally more efficient, approximate algorithm for weak interactions based on a systematic expansion around mean-field theory. Obtaining expressions for magnetizations and two- and three-point spin correlations, we establish that these observables are sufficient to infer the model parameters. Further, we discuss the symmetries characterizing the different orders of the expansion around the mean field and show how different types of dynamics can be distinguished on the basis of samples from the nonequilibrium steady state.
Author Berg, Johannes
Dettmer, Simon L
Nguyen, H Chau
Author_xml – sequence: 1
  givenname: Simon L
  surname: Dettmer
  fullname: Dettmer, Simon L
  organization: Institute for Theoretical Physics, University of Cologne, Zülpicher Straße 77, 50937 Cologne, Germany
– sequence: 2
  givenname: H Chau
  surname: Nguyen
  fullname: Nguyen, H Chau
  organization: Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, 01187 Dresden, Germany
– sequence: 3
  givenname: Johannes
  surname: Berg
  fullname: Berg, Johannes
  organization: Institute for Theoretical Physics, University of Cologne, Zülpicher Straße 77, 50937 Cologne, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27967084$$D View this record in MEDLINE/PubMed
BookMark eNpNj09Lw0AUxBep2Fr7BTxIjl5a32529-0epbQqFBXRc9hmX2g0f9psouTbG7GCl5k5_Jhhztmoqiti7JLDgnOIb553fXihz9XCygUowbk-YRMhEeYAKh79y2M2C-EdALgGi1ycsbFAqxGMnDD5SO1X3XxEeZVRQ1VKQ4raHUU_e4cuL_Jtk3dlFFpyvh_MtXTBTjNXBJodfcre1qvX5f1883T3sLzdzFOhZDuokJkzW_BAAtB5bY0x1ltEQtBa-9QieDSxIsi84sZaokzFGCtUTogpu_7t3Tf1oaPQJmUeUioKV1HdhYQbJTRKGeOAXh3RbluST_ZNXrqmT_6eim9hK1gj
ContentType Journal Article
DBID NPM
7X8
DOI 10.1103/PhysRevE.94.052116
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 2470-0053
ExternalDocumentID 27967084
Genre Journal Article
GroupedDBID 3MX
53G
5VS
ABSSX
AEQTI
AFGMR
AGDNE
ALMA_UNASSIGNED_HOLDINGS
AUAIK
EBS
EJD
NPBMV
NPM
ROL
S7W
7X8
ID FETCH-LOGICAL-c254t-c224fa8b0d0e207ad698889d977e70666dc970d7835e0fd51899eef5373575a22
IEDL.DBID 7X8
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000387543700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2470-0053
IngestDate Fri Jul 11 11:38:02 EDT 2025
Mon Jul 21 05:40:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5-1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c254t-c224fa8b0d0e207ad698889d977e70666dc970d7835e0fd51899eef5373575a22
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27967084
PQID 1852674437
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1852674437
pubmed_primary_27967084
PublicationCentury 2000
PublicationDate 2016-Nov
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-Nov
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review. E
PublicationTitleAlternate Phys Rev E
PublicationYear 2016
SSID ssj0001609712
Score 2.0382996
Snippet Nonequilibrium systems lack an explicit characterization of their steady state like the Boltzmann distribution for equilibrium systems. This has drastic...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 052116
Title Network inference in the nonequilibrium steady state
URI https://www.ncbi.nlm.nih.gov/pubmed/27967084
https://www.proquest.com/docview/1852674437
Volume 94
WOSCitedRecordID wos000387543700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7UKnjx_agvInhNu0k2u9mTiLR4MRRR6C0k-4AeTFvTFPz3zm4SehIEL0suYcPM7OSbx7cD8BAUrOCR1r7REfOpxgAlxwjMLxCahnmi44IZN2yCp2kynYpJm3Cr2rbKzic6R63m0ubIh5bkyzilEX9cLH07NcpWV9sRGtvQixDK2IPJp8kmx8LsDUm2kBBSO18FDa7jzZBoaFss3_R6NBB0YCmsAfsdZbq_zfjwv995BActzvSeGsM4hi1dnsCe6_eU1SnQtGn_9mYd4Q-fPASDXjkv9bKeOSpA_ek5I_j2HO_oDD7Go_fnF78doOBLjPtWuIbU5ElBFEEl8FwxgQGvUIj5NLeBi5KCE2WTP5oYFQcYfGlt4ohHiOLyMDyHHbvrJXhUSqE0OgdlKFVUJSIOCy5pQFC1xCR9uO_EkaGB2qpDXup5XWUbgfThopFptmhu0shCLhgnCb36w9vXsI9ghTU8wBvoGTye-hZ25Xo1q77unOZxTSevPx1Gtz0
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network+inference+in+the+nonequilibrium+steady+state&rft.jtitle=Physical+review.+E&rft.au=Dettmer%2C+Simon+L&rft.au=Nguyen%2C+H+Chau&rft.au=Berg%2C+Johannes&rft.date=2016-11-01&rft.eissn=2470-0053&rft.volume=94&rft.issue=5-1&rft.spage=052116&rft_id=info:doi/10.1103%2FPhysRevE.94.052116&rft_id=info%3Apmid%2F27967084&rft_id=info%3Apmid%2F27967084&rft.externalDocID=27967084
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-0053&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-0053&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-0053&client=summon