Optimized Hybrid CNN Framework for Enhanced Tumor Classification in Breast Cancer Diagnosis

Convolutional neural networks (CNNs) have augmented conventional approaches in medical imaging by improving tumor detection and classification efficacy. To enable oncologists to diagnose abnormalities promptly, this research proposes an innovative classification framework for breast cancer diagnosis...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of imaging systems and technology Ročník 35; číslo 6
Hlavní autoři: Batool, Shumaila, Zainab, Saima, Usman, Muhammad, Pu, Juhua
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Wiley Subscription Services, Inc 01.11.2025
Témata:
ISSN:0899-9457, 1098-1098
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Convolutional neural networks (CNNs) have augmented conventional approaches in medical imaging by improving tumor detection and classification efficacy. To enable oncologists to diagnose abnormalities promptly, this research proposes an innovative classification framework for breast cancer diagnosis. It integrates an improved optimization method with a hybridized CNN architecture. In this article, a custom CNN, feed‐forward and backpropagation have been implemented. The scaled conjugate algorithm is employed in the feed‐forward paradigm, yielding a formidable accuracy of 99.1%. On the other hand, backpropagation implements stochastic gradient descent and exhibits a remarkable accuracy rate of 97.3%. Additionally, by integrating the grey wolf optimization (GWO) algorithm with the Backpropagation Neural Network (BPNN), model performance is enhanced by optimizing parameters and accuracy to 100%. Furthermore, the custom CNN achieves an incredible 98% accuracy by utilizing the Adam optimizer in conjunction with the ReduceLROnPlateau approach. Statistical analysis utilizing Analysis of Variance (ANOVA) and Honestly Significant Difference (HSD) tests has demonstrated that the suggested hybrid model improves detection accuracy and reliability. These results highlight the adaptability and effectiveness of various optimization techniques in enhancing the performance of neural network models on a range of demanding tasks related to machine learning and pattern recognition.
AbstractList Convolutional neural networks (CNNs) have augmented conventional approaches in medical imaging by improving tumor detection and classification efficacy. To enable oncologists to diagnose abnormalities promptly, this research proposes an innovative classification framework for breast cancer diagnosis. It integrates an improved optimization method with a hybridized CNN architecture. In this article, a custom CNN, feed‐forward and backpropagation have been implemented. The scaled conjugate algorithm is employed in the feed‐forward paradigm, yielding a formidable accuracy of 99.1%. On the other hand, backpropagation implements stochastic gradient descent and exhibits a remarkable accuracy rate of 97.3%. Additionally, by integrating the grey wolf optimization (GWO) algorithm with the Backpropagation Neural Network (BPNN), model performance is enhanced by optimizing parameters and accuracy to 100%. Furthermore, the custom CNN achieves an incredible 98% accuracy by utilizing the Adam optimizer in conjunction with the ReduceLROnPlateau approach. Statistical analysis utilizing Analysis of Variance (ANOVA) and Honestly Significant Difference (HSD) tests has demonstrated that the suggested hybrid model improves detection accuracy and reliability. These results highlight the adaptability and effectiveness of various optimization techniques in enhancing the performance of neural network models on a range of demanding tasks related to machine learning and pattern recognition.
Author Usman, Muhammad
Pu, Juhua
Batool, Shumaila
Zainab, Saima
Author_xml – sequence: 1
  givenname: Shumaila
  surname: Batool
  fullname: Batool, Shumaila
  organization: Department of Mathematics The Women University Multan Multan Pakistan
– sequence: 2
  givenname: Saima
  surname: Zainab
  fullname: Zainab, Saima
  organization: Department of Mathematics The Women University Multan Multan Pakistan
– sequence: 3
  givenname: Muhammad
  orcidid: 0000-0001-7776-6811
  surname: Usman
  fullname: Usman, Muhammad
  organization: School of Computer Science and Engineering Beihang University Beijing China
– sequence: 4
  givenname: Juhua
  surname: Pu
  fullname: Pu, Juhua
  organization: School of Computer Science and Engineering Beihang University Beijing China
BookMark eNotkEFPwjAYhhuDiYAe_AdNPHkYtl27rkedICYELnjy0HSl1SJrsR0h-OvdxMv75U2efG_yjMDAB28AuMVoghEiD65RE44IIxdgiJEosz4GYIhKITJBGb8Co5S2CGHMEBuC99W-dY37MRs4P9XRbWC1XMJZVI05hvgFbYhw6j-V1x2xPjRdrXYqJWedVq0LHjoPn6JRqYVVT0X47NSHD8mla3Bp1S6Zm_87Bm-z6bqaZ4vVy2v1uMg0YbTNSsGULoyyvFAs58RwyhWuCeXMFBprXjBT2lojLHKumNHWCop5WddcWWpIPgZ357_7GL4PJrVyGw7Rd5MyJ5xRRjnpqfszpWNIKRor97GzFU8SI9m7k12Tf-7yXzqZY18
Cites_doi 10.1007/s10853‐024‐09799‐8
10.1016/j.iswa.2022.20
10.3390/cancers15030885
10.1016/j.asej.2024.102734
10.32604/cmc.2023.031723
10.3390/diagnostics13132191
10.1109/ACCESS.2020.3021557
10.1109/ACCESS.2023.3310429
10.1016/j.mlwa.2024.100555
10.1007/s11042‐023‐16431‐5
10.1007/s00521‐022‐07895‐x
10.1016/j.advengsoft.2013.12.007
10.3390/jimaging5030037
10.1016/j.compbiomed.2022.105812
10.1038/s41598‐020‐67441‐4
10.1101/2022.04.29.22274513
10.3390/diagnostics13091582
10.1007/s00521‐023‐08771‐y
10.3390/app12041957
10.61356/j.mawa.2024.3237
10.3390/app13010156
10.1109/ACCESS.2022.3212081
10.1109/ITSIM.2010.5561599
10.54021/seesv5n1‐008
10.1038/s41598-024-67424-9
10.17559/TV‐20230621000751
10.1002/ima.23133
10.1109/ACCESS.2023.3298955
10.31557/APJCP.2023.24.2.531
10.1007/s10916‐011‐9768‐0
10.3390/healthcare8020111
10.1007/s00521‐022‐07445‐5
10.1007/s12652‐022‐03713‐3
10.1007/s00530‐024‐01295‐y
10.1186/s12880‐023‐00964‐0
10.3390/diagnostics13172746
10.1016/j.bbe.2023.12.003
10.1016/j.physa.2019.123592
10.1007/s42979‐020‐00305‐w
10.1007/s00521‐023‐09202‐8
10.36227/techrxiv.23283533
ContentType Journal Article
Copyright 2025 Wiley Periodicals, LLC.
Copyright_xml – notice: 2025 Wiley Periodicals, LLC.
DBID AAYXX
CITATION
DOI 10.1002/ima.70252
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1098-1098
ExternalDocumentID 10_1002_ima_70252
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIACR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CITATION
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HDBZQ
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O8X
O9-
OIG
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WOHZO
WQJ
WVDHM
WXI
WXSBR
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
ID FETCH-LOGICAL-c254t-895ac6eaf76a5372e747a1b2475e6c1c765e8fbc01937a5ecff94178bb7af4e23
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001611489000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0899-9457
IngestDate Fri Nov 28 08:12:31 EST 2025
Sat Nov 29 06:53:14 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c254t-895ac6eaf76a5372e747a1b2475e6c1c765e8fbc01937a5ecff94178bb7af4e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7776-6811
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ima.70252
PQID 3275454722
PQPubID 1026352
ParticipantIDs proquest_journals_3275454722
crossref_primary_10_1002_ima_70252
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of imaging systems and technology
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_16_25_1
e_1_2_16_23_1
Yu M. (e_1_2_16_29_1) 2017
e_1_2_16_27_1
Salaheldin A. M. (e_1_2_16_44_1) 2024; 34
e_1_2_16_42_1
e_1_2_16_21_1
e_1_2_16_40_1
Lu S.‐Y. (e_1_2_16_18_1) 2022; 148
Atteia G. (e_1_2_16_46_1) 2023; 75
e_1_2_16_15_1
e_1_2_16_38_1
Azmi M. S. B. M. (e_1_2_16_35_1) 2010
Mirjalili S. (e_1_2_16_37_1) 2014; 69
e_1_2_16_13_1
e_1_2_16_19_1
Shah A. (e_1_2_16_50_1) 2025
e_1_2_16_17_1
e_1_2_16_36_1
e_1_2_16_30_1
e_1_2_16_11_1
Singhal S. (e_1_2_16_32_1) 2018
e_1_2_16_7_1
e_1_2_16_9_1
e_1_2_16_3_1
e_1_2_16_5_1
e_1_2_16_26_1
e_1_2_16_24_1
Saleh N. (e_1_2_16_43_1) 2024; 14
Khodadadi N. (e_1_2_16_51_1) 2023; 11
e_1_2_16_45_1
e_1_2_16_28_1
e_1_2_16_41_1
e_1_2_16_22_1
e_1_2_16_20_1
Khodadadi N. (e_1_2_16_52_1) 2022; 10
e_1_2_16_14_1
e_1_2_16_39_1
El‐Kenawy E. S. M. (e_1_2_16_48_1) 2025; 9
e_1_2_16_12_1
e_1_2_16_16_1
e_1_2_16_31_1
e_1_2_16_33_1
e_1_2_16_10_1
Awujoola O. J. (e_1_2_16_2_1) 2024
Abdalla O. A. (e_1_2_16_34_1) 2010
Abdelhamid A. A. (e_1_2_16_47_1) 2023; 11
e_1_2_16_8_1
e_1_2_16_4_1
e_1_2_16_6_1
Dutta P. K. (e_1_2_16_49_1) 2025; 4
References_xml – ident: e_1_2_16_39_1
  doi: 10.1007/s10853‐024‐09799‐8
– ident: e_1_2_16_12_1
  doi: 10.1016/j.iswa.2022.20
– ident: e_1_2_16_13_1
  doi: 10.3390/cancers15030885
– ident: e_1_2_16_25_1
  doi: 10.1016/j.asej.2024.102734
– volume: 75
  start-page: 1883
  issue: 1
  year: 2023
  ident: e_1_2_16_46_1
  article-title: Adaptive Dynamic Dipper Throated Optimization for Feature Selection in Medical Data
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2023.031723
– ident: e_1_2_16_7_1
  doi: 10.3390/diagnostics13132191
– ident: e_1_2_16_9_1
  doi: 10.1109/ACCESS.2020.3021557
– volume: 11
  start-page: 94094
  year: 2023
  ident: e_1_2_16_51_1
  article-title: BAOA: Binary Arithmetic Optimization Algorithm With K‐Nearest Neighbor Classifier for Feature Selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3310429
– ident: e_1_2_16_26_1
  doi: 10.1016/j.mlwa.2024.100555
– ident: e_1_2_16_24_1
  doi: 10.1007/s11042‐023‐16431‐5
– ident: e_1_2_16_30_1
– volume: 4
  start-page: 33
  year: 2025
  ident: e_1_2_16_49_1
  article-title: Ethical Challenges and Regulatory Compliance in AI‐Driven Neurological Diagnostics: A Review of Standards and Practices
  publication-title: Metaheuristic Optimization Review
– start-page: 221
  volume-title: Machine Learning Algorithms Using Scikit and TensorFlow Environments
  year: 2024
  ident: e_1_2_16_2_1
– ident: e_1_2_16_16_1
  doi: 10.1007/s00521‐022‐07895‐x
– volume: 69
  start-page: 46
  year: 2014
  ident: e_1_2_16_37_1
  article-title: Grey Wolf Optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: e_1_2_16_23_1
  doi: 10.3390/jimaging5030037
– volume: 148
  year: 2022
  ident: e_1_2_16_18_1
  article-title: SAFNet: A Deep Spatial Attention Network With Classifier Fusion for Breast Cancer Detection
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2022.105812
– ident: e_1_2_16_20_1
  doi: 10.1038/s41598‐020‐67441‐4
– ident: e_1_2_16_31_1
  doi: 10.1101/2022.04.29.22274513
– ident: e_1_2_16_19_1
  doi: 10.3390/diagnostics13091582
– ident: e_1_2_16_27_1
– volume-title: Breast Cancer Prediction Using Machine Learning Algorithm. Approved by Supervising Committee: M. J. Daniels and E. C. Theriot
  year: 2017
  ident: e_1_2_16_29_1
– ident: e_1_2_16_17_1
  doi: 10.1007/s00521‐023‐08771‐y
– start-page: 164
  volume-title: 2010 IEEE Student Conference on Research and Development (SCOReD)
  year: 2010
  ident: e_1_2_16_35_1
– ident: e_1_2_16_5_1
  doi: 10.3390/app12041957
– ident: e_1_2_16_14_1
  doi: 10.61356/j.mawa.2024.3237
– ident: e_1_2_16_6_1
  doi: 10.3390/app13010156
– volume: 10
  start-page: 106673
  year: 2022
  ident: e_1_2_16_52_1
  article-title: An Archive‐Based Multi‐Objective Arithmetic Optimization Algorithm for Solving Industrial Engineering Problems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3212081
– start-page: 994
  volume-title: 2010 International Symposium on Information Technology
  year: 2010
  ident: e_1_2_16_34_1
  doi: 10.1109/ITSIM.2010.5561599
– ident: e_1_2_16_40_1
  doi: 10.54021/seesv5n1‐008
– volume: 14
  issue: 1
  year: 2024
  ident: e_1_2_16_43_1
  article-title: Skin Cancer Classification Based on an Optimized Convolutional Neural Network and Multicriteria Decision‐Making
  publication-title: Scientific Reports
  doi: 10.1038/s41598-024-67424-9
– ident: e_1_2_16_36_1
  doi: 10.17559/TV‐20230621000751
– volume: 34
  issue: 4
  year: 2024
  ident: e_1_2_16_44_1
  article-title: Deep Learning‐Based Automated Detection and Grading of Papilledema From OCT Images: A Promising Approach for Improved Clinical Diagnosis and Management
  publication-title: International Journal of Imaging Systems and Technology
  doi: 10.1002/ima.23133
– volume: 11
  start-page: 79750
  year: 2023
  ident: e_1_2_16_47_1
  article-title: Innovative Feature Selection Method Based on Hybrid Sine Cosine and Dipper Throated Optimization Algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3298955
– ident: e_1_2_16_4_1
  doi: 10.31557/APJCP.2023.24.2.531
– volume: 9
  start-page: 1
  year: 2025
  ident: e_1_2_16_48_1
  article-title: Hybrid Ensemble Learning for Flow‐Level IoT Traffic Classification Using ACI Dataset: Towards Scalable and Real‐Time Threat Detection
  publication-title: Journal of Artificial Intelligence and Metaheuristics
– ident: e_1_2_16_33_1
  doi: 10.1007/s10916‐011‐9768‐0
– ident: e_1_2_16_45_1
  doi: 10.3390/healthcare8020111
– ident: e_1_2_16_15_1
  doi: 10.1007/s00521‐022‐07445‐5
– ident: e_1_2_16_22_1
  doi: 10.1007/s12652‐022‐03713‐3
– ident: e_1_2_16_8_1
  doi: 10.1007/s00530‐024‐01295‐y
– ident: e_1_2_16_21_1
  doi: 10.1186/s12880‐023‐00964‐0
– start-page: 464
  volume-title: 2018 2nd International Conference on I‐SMAC (IoT in Social, Mobile, Analytics and Cloud)
  year: 2018
  ident: e_1_2_16_32_1
– ident: e_1_2_16_28_1
– ident: e_1_2_16_3_1
  doi: 10.3390/diagnostics13172746
– ident: e_1_2_16_11_1
  doi: 10.1016/j.bbe.2023.12.003
– ident: e_1_2_16_42_1
  doi: 10.1016/j.physa.2019.123592
– volume-title: Breast Ultrasound Images Dataset
  year: 2025
  ident: e_1_2_16_50_1
– ident: e_1_2_16_10_1
  doi: 10.1007/s42979‐020‐00305‐w
– ident: e_1_2_16_38_1
  doi: 10.1007/s00521‐023‐09202‐8
– ident: e_1_2_16_41_1
  doi: 10.36227/techrxiv.23283533
SSID ssj0011505
Score 2.3920932
Snippet Convolutional neural networks (CNNs) have augmented conventional approaches in medical imaging by improving tumor detection and classification efficacy. To...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Abnormalities
Accuracy
Algorithms
Artificial neural networks
Back propagation
Back propagation networks
Breast cancer
Classification
Diagnosis
Effectiveness
Machine learning
Medical diagnosis
Medical imaging
Neural networks
Optimization
Optimization techniques
Pattern recognition
Performance enhancement
Statistical analysis
Tumors
Variance analysis
Title Optimized Hybrid CNN Framework for Enhanced Tumor Classification in Breast Cancer Diagnosis
URI https://www.proquest.com/docview/3275454722
Volume 35
WOSCitedRecordID wos001611489000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1098-1098
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011505
  issn: 0899-9457
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwELZKBxJ7QDCY2BjIQoiXKSNx4jh5ZKXTHkaGIJUqeIgc11EjLaE0yTT4XfxAznaSpgKh8cCL1aRWk_o-3Z3Pd98h9CoDo8IzR1o09Knl-bZrcWGnFpXegkuX89ATutkEi6JgPg8_jEY_u1qY6ytWlsHNTbj6r6KGeyBsVTr7D-LufxRuwGcQOowgdhhvJfhLUAJF_gMcyfPvqhzreBJFyj81OVg6rXBaLs3Bf9wUcKkbY6qUId5lPp6qVPX6eKJmrUEt6nS8vBp6stuhxCEBRWEaHxmOaEMBXf8WwD-Fzb5p7vVJtQnMr3rz8FnXc5lodb6xGrOqjdW-b5a8KPiiV-qNqS5ZNnwYwiC0reW7vaIcKkXFKOoZUusTaZS24kRVw1CrGxKUFr3-H42FIZ-Ff3LC4KXIxiJ2WQDRZXI2u7hI4uk8fr36ZqleZepMv23ccgftEEbDYIx23n2Eif3pFTjZOnW2e9eO0comb_qnbftB226A9m3ih-hBuynBbw2YHqGRLPfQ7oCqcg_d06nConqMvvQAwwZgGACGe4BhABjuAIY1wPA2wHBeYgMwbACGe4A9QbOzaTw5t9oWHZYg1KutIKRc-JJnzOfUZUTC7pQ7KfEYlb5wBPOpDLJUwEbCZZxKkWWh57AgTRnPPEncfTQuv5byKcKcwtRASl9zMqY0FAsGZtzO7MzJPEoO0MtuwZKVYWJJDOc2SeAq0at6gI66pUxa5FeJC1JSvHWEHP7962fo_gaeR2hcrxv5HN0V13VerV-0Uv4FHBuNRw
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+Hybrid+CNN+Framework+for+Enhanced+Tumor+Classification+in+Breast+Cancer+Diagnosis&rft.jtitle=International+journal+of+imaging+systems+and+technology&rft.au=Batool%2C+Shumaila&rft.au=Zainab%2C+Saima&rft.au=Usman%2C+Muhammad&rft.au=Pu%2C+Juhua&rft.date=2025-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0899-9457&rft.eissn=1098-1098&rft.volume=35&rft.issue=6&rft_id=info:doi/10.1002%2Fima.70252&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-9457&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-9457&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-9457&client=summon