s2MRI-ADNet: an interpretable deep learning framework integrating Euclidean-graph representations of Alzheimer’s disease solely from structural MRI

Objective To establish a multi-dimensional representation solely on structural MRI (sMRI) for early diagnosis of AD. Methods A total of 3377 participants’ sMRI from four independent databases were retrospectively identified to construct an interpretable deep learning model that integrated multi-dime...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Magma (New York, N.Y.) Ročník 37; číslo 5; s. 845 - 857
Hlavní autoři: Song, Zhiwei, Li, Honglun, Zhang, Yiyu, Zhu, Chuanzhen, Jiang, Minbo, Song, Limei, Wang, Yi, Ouyang, Minhui, Hu, Fang, Zheng, Qiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.10.2024
Témata:
ISSN:1352-8661, 1352-8661
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Objective To establish a multi-dimensional representation solely on structural MRI (sMRI) for early diagnosis of AD. Methods A total of 3377 participants’ sMRI from four independent databases were retrospectively identified to construct an interpretable deep learning model that integrated multi-dimensional representations of AD solely on sMRI (called s 2 MRI-ADNet) by a dual-channel learning strategy of gray matter volume (GMV) from Euclidean space and the regional radiomics similarity network (R2SN) from graph space. Specifically, the GMV feature map learning channel (called GMV-Channel) was to take into consideration spatial information of both long-range spatial relations and detailed localization information, while the node feature and connectivity strength learning channel (called NFCS-Channel) was to characterize the graph-structured R2SN network by a separable learning strategy. Results The s 2 MRI-ADNet achieved a superior classification accuracy of 92.1% and 91.4% under intra-database and inter-database cross-validation. The GMV-Channel and NFCS-Channel captured complementary group-discriminative brain regions, revealing a complementary interpretation of the multi-dimensional representation of brain structure in Euclidean and graph spaces respectively. Besides, the generalizable and reproducible interpretation of the multi-dimensional representation in capturing complementary group-discriminative brain regions revealed a significant correlation between the four independent databases ( p  < 0.05). Significant associations ( p  < 0.05) between attention scores and brain abnormality, between classification scores and clinical measure of cognitive ability, CSF biomarker, metabolism, and genetic risk score also provided solid neurobiological interpretation. Conclusion The s 2 MRI-ADNet solely on sMRI could leverage the complementary multi-dimensional representations of AD in Euclidean and graph spaces, and achieved superior performance in the early diagnosis of AD, facilitating its potential in both clinical translation and popularization.
AbstractList Objective To establish a multi-dimensional representation solely on structural MRI (sMRI) for early diagnosis of AD. Methods A total of 3377 participants’ sMRI from four independent databases were retrospectively identified to construct an interpretable deep learning model that integrated multi-dimensional representations of AD solely on sMRI (called s 2 MRI-ADNet) by a dual-channel learning strategy of gray matter volume (GMV) from Euclidean space and the regional radiomics similarity network (R2SN) from graph space. Specifically, the GMV feature map learning channel (called GMV-Channel) was to take into consideration spatial information of both long-range spatial relations and detailed localization information, while the node feature and connectivity strength learning channel (called NFCS-Channel) was to characterize the graph-structured R2SN network by a separable learning strategy. Results The s 2 MRI-ADNet achieved a superior classification accuracy of 92.1% and 91.4% under intra-database and inter-database cross-validation. The GMV-Channel and NFCS-Channel captured complementary group-discriminative brain regions, revealing a complementary interpretation of the multi-dimensional representation of brain structure in Euclidean and graph spaces respectively. Besides, the generalizable and reproducible interpretation of the multi-dimensional representation in capturing complementary group-discriminative brain regions revealed a significant correlation between the four independent databases ( p  < 0.05). Significant associations ( p  < 0.05) between attention scores and brain abnormality, between classification scores and clinical measure of cognitive ability, CSF biomarker, metabolism, and genetic risk score also provided solid neurobiological interpretation. Conclusion The s 2 MRI-ADNet solely on sMRI could leverage the complementary multi-dimensional representations of AD in Euclidean and graph spaces, and achieved superior performance in the early diagnosis of AD, facilitating its potential in both clinical translation and popularization.
To establish a multi-dimensional representation solely on structural MRI (sMRI) for early diagnosis of AD.OBJECTIVETo establish a multi-dimensional representation solely on structural MRI (sMRI) for early diagnosis of AD.A total of 3377 participants' sMRI from four independent databases were retrospectively identified to construct an interpretable deep learning model that integrated multi-dimensional representations of AD solely on sMRI (called s2MRI-ADNet) by a dual-channel learning strategy of gray matter volume (GMV) from Euclidean space and the regional radiomics similarity network (R2SN) from graph space. Specifically, the GMV feature map learning channel (called GMV-Channel) was to take into consideration spatial information of both long-range spatial relations and detailed localization information, while the node feature and connectivity strength learning channel (called NFCS-Channel) was to characterize the graph-structured R2SN network by a separable learning strategy.METHODSA total of 3377 participants' sMRI from four independent databases were retrospectively identified to construct an interpretable deep learning model that integrated multi-dimensional representations of AD solely on sMRI (called s2MRI-ADNet) by a dual-channel learning strategy of gray matter volume (GMV) from Euclidean space and the regional radiomics similarity network (R2SN) from graph space. Specifically, the GMV feature map learning channel (called GMV-Channel) was to take into consideration spatial information of both long-range spatial relations and detailed localization information, while the node feature and connectivity strength learning channel (called NFCS-Channel) was to characterize the graph-structured R2SN network by a separable learning strategy.The s2MRI-ADNet achieved a superior classification accuracy of 92.1% and 91.4% under intra-database and inter-database cross-validation. The GMV-Channel and NFCS-Channel captured complementary group-discriminative brain regions, revealing a complementary interpretation of the multi-dimensional representation of brain structure in Euclidean and graph spaces respectively. Besides, the generalizable and reproducible interpretation of the multi-dimensional representation in capturing complementary group-discriminative brain regions revealed a significant correlation between the four independent databases (p < 0.05). Significant associations (p < 0.05) between attention scores and brain abnormality, between classification scores and clinical measure of cognitive ability, CSF biomarker, metabolism, and genetic risk score also provided solid neurobiological interpretation.RESULTSThe s2MRI-ADNet achieved a superior classification accuracy of 92.1% and 91.4% under intra-database and inter-database cross-validation. The GMV-Channel and NFCS-Channel captured complementary group-discriminative brain regions, revealing a complementary interpretation of the multi-dimensional representation of brain structure in Euclidean and graph spaces respectively. Besides, the generalizable and reproducible interpretation of the multi-dimensional representation in capturing complementary group-discriminative brain regions revealed a significant correlation between the four independent databases (p < 0.05). Significant associations (p < 0.05) between attention scores and brain abnormality, between classification scores and clinical measure of cognitive ability, CSF biomarker, metabolism, and genetic risk score also provided solid neurobiological interpretation.The s2MRI-ADNet solely on sMRI could leverage the complementary multi-dimensional representations of AD in Euclidean and graph spaces, and achieved superior performance in the early diagnosis of AD, facilitating its potential in both clinical translation and popularization.CONCLUSIONThe s2MRI-ADNet solely on sMRI could leverage the complementary multi-dimensional representations of AD in Euclidean and graph spaces, and achieved superior performance in the early diagnosis of AD, facilitating its potential in both clinical translation and popularization.
Author Wang, Yi
Ouyang, Minhui
Li, Honglun
Hu, Fang
Zhu, Chuanzhen
Zheng, Qiang
Jiang, Minbo
Song, Limei
Song, Zhiwei
Zhang, Yiyu
Author_xml – sequence: 1
  givenname: Zhiwei
  surname: Song
  fullname: Song, Zhiwei
  organization: School of Computer and Control Engineering, Yantai University
– sequence: 2
  givenname: Honglun
  surname: Li
  fullname: Li, Honglun
  organization: Department of Radiology, Yantai Yuhuangding Hospital Affiliated with Qingdao University Medical College
– sequence: 3
  givenname: Yiyu
  surname: Zhang
  fullname: Zhang, Yiyu
  organization: School of Computer and Control Engineering, Yantai University
– sequence: 4
  givenname: Chuanzhen
  surname: Zhu
  fullname: Zhu, Chuanzhen
  organization: School of Computer and Control Engineering, Yantai University
– sequence: 5
  givenname: Minbo
  surname: Jiang
  fullname: Jiang, Minbo
  organization: School of Computer and Control Engineering, Yantai University
– sequence: 6
  givenname: Limei
  surname: Song
  fullname: Song, Limei
  organization: School of Medical Imaging, Weifang Medical University
– sequence: 7
  givenname: Yi
  surname: Wang
  fullname: Wang, Yi
  organization: School of Computer and Control Engineering, Yantai University, Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan Province, Xiangnan University
– sequence: 8
  givenname: Minhui
  surname: Ouyang
  fullname: Ouyang, Minhui
  organization: Department of Radiology, Children’s Hospital of Philadelphia, Department of Radiology, Perelman School of Medicine, University of Pennsylvania
– sequence: 9
  givenname: Fang
  surname: Hu
  fullname: Hu, Fang
  organization: Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan Province, Xiangnan University
– sequence: 10
  givenname: Qiang
  orcidid: 0000-0002-7853-8033
  surname: Zheng
  fullname: Zheng, Qiang
  email: zhengqiang@ytu.edu.cn
  organization: School of Computer and Control Engineering, Yantai University
BookMark eNp9kb1uFTEQhS0UJJLAC1C5pFnwz_7c0F2FAJECSAhqy9c7vnHw2suMVyhUvAQFr8eT4JulQBQpLFsz5zua8TlhRyknYOypFM-lEMMLkkLrthGqHimHTaMfsGOpO9Vs-l4e_fN-xE6IboRQshP6mP0k9e7jZbN99R7KS24TD6kAzgjF7iLwEWDmESymkPbco53gW8Yvd6o92nKoXiwuhhFsamplvuYIFSdIpbZzIp4938bv1xAmwN8_fhEfA4El4JQjxNvqmidOBRdXFrSR13kes4feRoInf-9T9vn1xafzt83VhzeX59urxqmuLU3bS-c7qftOOVC98oPwHsQoPHg7KjF43e5UP551nYTeqt1obeu921kvRl27p-zZ6jtj_roAFTMFchCjTZAXMlr0w5nU7UZX6WaVOsxECN64sG5Y0IZopDCHJMyahKlJmLskzAFV_6Ezhsni7f2QXiGq4rQHNDd5wVR_4z7qD-dqopY
CitedBy_id crossref_primary_10_1016_j_bspc_2024_107067
Cites_doi 10.1371/journal.pone.0068910
10.1212/WNL.52.9.1861
10.1162/jocn.2007.19.9.1498
10.1016/j.neuroimage.2019.116459
10.1093/brain/awaa137
10.3233/JAD-150988
10.1109/TPAMI.2022.3152247
10.1073/pnas.1902376116
10.1016/j.bspc.2022.103565
10.1007/s00330-023-09519-x
10.1148/radiol.2015150220
10.1038/35084005
10.1148/radiol.2021200643
10.1002/jmri.21049
10.1148/radiol.2018180958
10.1148/radiol.2020192541
10.1038/nature06976
10.1016/j.neuroimage.2016.03.067
10.1056/NEJMra0909142
10.3233/JAD-2011-0007
10.1002/advs.202104538
10.1109/TMI.2021.3051604
10.1145/3633518
10.1148/radiol.2015142766
10.1016/j.neubiorev.2016.11.023
10.1016/j.media.2023.102932
10.1002/advs.202000675
10.1016/j.scib.2020.04.003
10.1038/nrn3465
10.1148/radiol.212400
10.1016/j.compbiomed.2022.106043
10.1016/j.jneumeth.2021.109376
10.1016/j.media.2022.102413
10.1016/j.neurobiolaging.2010.04.007
10.1109/MLCCIM55934.2022.00067
10.1109/CVPR.2016.90
10.3389/fpsyg.2018.00386
10.1007/978-3-319-60801-3_27
10.1109/IVCNZ51579.2020.9290616
10.1109/CVPR52688.2022.01186
ContentType Journal Article
Copyright The Author(s), under exclusive licence to European Society for Magnetic Resonance in Medicine and Biology (ESMRMB) 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024. The Author(s), under exclusive licence to European Society for Magnetic Resonance in Medicine and Biology (ESMRMB).
Copyright_xml – notice: The Author(s), under exclusive licence to European Society for Magnetic Resonance in Medicine and Biology (ESMRMB) 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024. The Author(s), under exclusive licence to European Society for Magnetic Resonance in Medicine and Biology (ESMRMB).
DBID AAYXX
CITATION
7X8
DOI 10.1007/s10334-024-01178-3
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1352-8661
EndPage 857
ExternalDocumentID 10_1007_s10334_024_01178_3
GrantInformation_xml – fundername: Open Project of Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan Province, Xiangnan University
  grantid: YXZN2022002
– fundername: Yantai City Science and Technology Innovation Development Plan
  grantid: 2023XDRH006
– fundername: National Natural Science Foundation of China
  grantid: 61802330, ; 61802331
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID ---
--K
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1B1
1N0
1SB
203
28-
29M
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
7X7
88E
88I
8FE
8FG
8FH
8FI
8FJ
8FW
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANXM
AANZL
AAQFI
AAQXK
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABWVN
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIUM
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACRPL
ACSNA
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMUD
ADNMO
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
AKRWK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FDB
FEDTE
FERAY
FFXSO
FGOYB
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAK
LK5
LLZTM
M1P
M2P
M41
M4Y
M7R
MA-
N2Q
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9S
PCBAR
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R2-
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SEW
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
SSZ
STPWE
SV3
SZ9
SZN
T13
T16
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UHS
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
YLTOR
Z45
Z7X
Z82
Z83
Z88
Z8R
Z8V
Z8W
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7X8
ID FETCH-LOGICAL-c254t-461cf513652ce262f70ffe0d0fefad207f34b26d9551e6a2bdaa4ffcbaf0d37f3
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001247228100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1352-8661
IngestDate Sun Nov 09 13:48:42 EST 2025
Sat Nov 29 03:00:50 EST 2025
Tue Nov 18 22:27:05 EST 2025
Fri Feb 21 02:40:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Deep learning
Structural MRI
Multi-dimensional representations
Alzheimer’s disease
Interpretability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c254t-461cf513652ce262f70ffe0d0fefad207f34b26d9551e6a2bdaa4ffcbaf0d37f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7853-8033
PQID 3067913483
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_3067913483
crossref_citationtrail_10_1007_s10334_024_01178_3
crossref_primary_10_1007_s10334_024_01178_3
springer_journals_10_1007_s10334_024_01178_3
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSubtitle Official Journal of the European Society for Magnetic Resonance in Medicine and Biology
PublicationTitle Magma (New York, N.Y.)
PublicationTitleAbbrev Magn Reson Mater Phy
PublicationYear 2024
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Rowe, Ellis, Rimajova, Bourgeat, Pike, Jones, Fripp, Tochon-Danguy, Morandeau, O’Keefe (CR46) 2010; 31
Zhao, Yan, Luo, Zhi, Fu, Du, Yu, Jiang, Calhoun, Sui (CR23) 2022; 78
CR35
CR34
Wang, Wang, Xia, Liao, Evans, He (CR27) 2015; 9
CR33
CR32
Möller, Pijnenburg, van der Flier, Versteeg, Tijms, de Munck, Hafkemeijer, Rombouts, van der Grond, van Swieten (CR44) 2016; 279
Jack, Bernstein, Fox, Thompson, Alexander, Harvey, Borowski, BritsonWhitwell, Ward (CR45) 2008; 27
Zhao, Ding, Han, Fan, Alexander-Bloch, Han, Jin, Liu, Lu, Song (CR7) 2020; 65
CR30
Mehta, Carpenter, Mehta, Haut, Ranjan, Najib, Lockman, Wang, D’haese, Rezai (CR49) 2021; 298
Caso, Agosta, Mattavelli, Migliaccio, Canu, Magnani, Marcone, Copetti, Falautano, Comi (CR43) 2015; 277
Oishi, Mielke, Albert, Lyketsos, Mori (CR3) 2011; 26
Marcus, Wang, Parker, Csernansky, Morris, Buckner (CR48) 2007; 19
Khoshraftar, An (CR22) 2024; 15
Jin, Zhou, Han, Ren, Han, Liu, Lu, Song, Wang, Wang (CR29) 2020; 7
Yao, Sui, Yang, Yap, Shen, Liu (CR14) 2020
Ding, Sohn, Kawczynski, Trivedi, Harnish, Jenkins, Lituiev, Copeland, Aboian, Mari Aparici (CR42) 2019; 290
Brueggen, Grothe, Dyrba, Fellgiebel, Fischer, Filippi, Agosta, Nestor, Meisenzahl, Blautzik (CR47) 2017; 144
Choi, Moon, Kim, Yim, Lee, Moon (CR50) 2022; 304
Zhang, Gordon, Goldberg (CR4) 2017; 72
Bäckman, Andersson, Nyberg, Winblad, Nordberg, Almkvist (CR40) 1999; 52
Zhang, Wang, Phillips, Yang, Yuan (CR41) 2016; 50
Querfurth, Laferla (CR1) 2010; 362
CR19
CR18
CR17
Damulina, Pirpamer, Soellradl, Sackl, Tinauer, Hofer, Enzinger, Gesierich, Duering, Ropele (CR51) 2020; 296
Zhao, Zheng, Dyrba, Rittman, Li, Che, Chen, Sun, Kang, Li (CR13) 2022; 9
CR10
Xia, Wang, He (CR26) 2013; 8
Kong, Zhang, Zhu, Yi, Wang, Zhang (CR36) 2022; 75
Yao, Sui, Wang, Yang, Jiaerken, Luo, Yap, Liu, Shen (CR15) 2021; 40
Wang, Knol, Tiulpin, Dubost, de Bruijne, Vernooij, Adams, Ikram, Niessen, Roshchupkin (CR16) 2019; 116
Logothetis (CR2) 2008; 453
Alexander-Bloch, Giedd, Bullmore (CR11) 2013; 14
Zhao, Zheng, Che, Dyrba, Li, Ding, Zheng, Liu, Li (CR12) 2021; 5
AI-Tam, AI-Hejri, Narangale, Samee, Mahmoud, AI-Masni, AI-Antari (CR31) 2022; 10
CR24
Logothetis, Pauls, Augath, Trinath, Oeltermann (CR6) 2001; 412
CR21
CR20
Rasheed, Qayyum, Ghaly, Al-Fuqaha, Razi, Qadir (CR38) 2022; 149
Liu, Li, Yan, Wang, Ma, Shen, Xu, AsDN (CR5) 2020; 208
Qiu, Joshi, Miller, Xue, Zhou, Karjadi, Chang, Joshi, Dwyer, Zhu (CR39) 2020; 143
Zhang, Li, Zheng (CR28) 2023; 33
Pan, Lei, Shen, Liu, Feng, Wang (CR37) 2021
Zhang, Teng, Liu, Liu, He (CR8) 2022; 365
Han, Wang, Chen, Chen, Guo, Liu, Tang, Xiao, Xu, Xu (CR9) 2022; 45
Zhang, Chen, Shen, Ren, Yu, Yang, Jiang, Shen, Zhou, Zhang (CR25) 2023; 90
CR Jack (1178_CR45) 2008; 27
K Rasheed (1178_CR38) 2022; 149
L Bäckman (1178_CR40) 1999; 52
J Wang (1178_CR27) 2015; 9
CC Rowe (1178_CR46) 2010; 31
S Zhang (1178_CR25) 2023; 90
N Zhang (1178_CR4) 2017; 72
S Khoshraftar (1178_CR22) 2024; 15
F Caso (1178_CR43) 2015; 277
1178_CR30
1178_CR35
1178_CR34
JD Choi (1178_CR50) 2022; 304
1178_CR33
1178_CR32
DS Marcus (1178_CR48) 2007; 19
D Jin (1178_CR29) 2020; 7
J Pan (1178_CR37) 2021
M Xia (1178_CR26) 2013; 8
D Yao (1178_CR14) 2020
Z Kong (1178_CR36) 2022; 75
A Alexander-Bloch (1178_CR11) 2013; 14
Y Zhang (1178_CR28) 2023; 33
1178_CR17
Y Zhang (1178_CR41) 2016; 50
C Möller (1178_CR44) 2016; 279
RM AI-Tam (1178_CR31) 2022; 10
1178_CR19
1178_CR18
K Zhao (1178_CR7) 2020; 65
A Damulina (1178_CR51) 2020; 296
Y Zhang (1178_CR8) 2022; 365
K Oishi (1178_CR3) 2011; 26
S Qiu (1178_CR39) 2020; 143
K Han (1178_CR9) 2022; 45
K Zhao (1178_CR12) 2021; 5
Y Ding (1178_CR42) 2019; 290
NK Logothetis (1178_CR6) 2001; 412
M Liu (1178_CR5) 2020; 208
RI Mehta (1178_CR49) 2021; 298
D Yao (1178_CR15) 2021; 40
1178_CR10
K Brueggen (1178_CR47) 2017; 144
K Zhao (1178_CR13) 2022; 9
NK Logothetis (1178_CR2) 2008; 453
M Zhao (1178_CR23) 2022; 78
HW Querfurth (1178_CR1) 2010; 362
1178_CR20
J Wang (1178_CR16) 2019; 116
1178_CR24
1178_CR21
References_xml – volume: 8
  start-page: e68910
  issue: 7
  year: 2013
  ident: CR26
  article-title: BrainNet Viewer: a network visualization tool for human brain connectomics
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0068910
– volume: 52
  start-page: 1861
  issue: 9
  year: 1999
  end-page: 1861
  ident: CR40
  article-title: Brain regions associated with episodic retrieval in normal aging and Alzheimer’s disease
  publication-title: Neurology
  doi: 10.1212/WNL.52.9.1861
– volume: 19
  start-page: 1498
  issue: 9
  year: 2007
  end-page: 1507
  ident: CR48
  article-title: Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults
  publication-title: J Cogn Neurosci
  doi: 10.1162/jocn.2007.19.9.1498
– volume: 208
  year: 2020
  ident: CR5
  article-title: A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116459
– volume: 143
  start-page: 1920
  issue: 6
  year: 2020
  end-page: 1933
  ident: CR39
  article-title: Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification
  publication-title: Brain
  doi: 10.1093/brain/awaa137
– volume: 10
  start-page: 1971
  issue: 11
  year: 2022
  ident: CR31
  article-title: A hybrid workflow of residual convolutional transformer encoder for breast cancer classificationi using digital X-ray mammograms
  publication-title: Biomedicines
– ident: CR35
– volume: 50
  start-page: 1163
  issue: 4
  year: 2016
  end-page: 1179
  ident: CR41
  article-title: Three-dimensional eigenbrain for the detection of subjects and brain regions related with Alzheimer’s disease
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-150988
– volume: 45
  start-page: 87
  issue: 1
  year: 2022
  end-page: 110
  ident: CR9
  article-title: A survey on vision transformer
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2022.3152247
– volume: 116
  start-page: 21213
  issue: 42
  year: 2019
  end-page: 21218
  ident: CR16
  article-title: Gray matter age prediction as a biomarker for risk of dementia
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1902376116
– ident: CR21
– volume: 75
  start-page: 103565
  year: 2022
  ident: CR36
  article-title: Multi-modal data Alzheimer’s disease detection based on 3D convolution
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.103565
– ident: CR19
– volume: 33
  start-page: 5385
  issue: 8
  year: 2023
  end-page: 5397
  ident: CR28
  article-title: A comprehensive characterization of hippocampal feature ensemble serves as individualized brain signature for Alzheimer’s disease: deep learning analysis in 3238 participants worldwide
  publication-title: Eur Radiol
  doi: 10.1007/s00330-023-09519-x
– volume: 279
  start-page: 838
  issue: 3
  year: 2016
  end-page: 848
  ident: CR44
  article-title: Alzheimer disease and behavioral variant frontotemporal dementia: automatic classification based on cortical atrophy for single-subject diagnosis
  publication-title: Radiology
  doi: 10.1148/radiol.2015150220
– volume: 412
  start-page: 150
  issue: 6843
  year: 2001
  end-page: 157
  ident: CR6
  article-title: Neurophysiological investigation of the basis of the fMRI signal
  publication-title: Nature
  doi: 10.1038/35084005
– volume: 298
  start-page: 654
  issue: 3
  year: 2021
  end-page: 662
  ident: CR49
  article-title: Blood-brain barrier opening with MRI-guided focused ultrasound elicits meningeal venous permeability in humans with early Alzheimer disease
  publication-title: Radiology
  doi: 10.1148/radiol.2021200643
– start-page: 1
  year: 2020
  end-page: 10
  ident: CR14
  article-title: Temporal-adaptive graph convolutional network for automated identification of major depressive disorder using resting-state fMRI
  publication-title: International workshop on machine learning in medical imaging
– ident: CR32
– volume: 27
  start-page: 685
  issue: 4
  year: 2008
  end-page: 691
  ident: CR45
  article-title: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.21049
– volume: 5
  start-page: 783
  issue: 3
  year: 2021
  end-page: 797
  ident: CR12
  article-title: Regional radiomics similarity networks (R2SNs) in the human brain: reproducibility, small-world properties and a biological basis
  publication-title: Netw Neurosci
– volume: 290
  start-page: 456
  issue: 2
  year: 2019
  end-page: 464
  ident: CR42
  article-title: A deep learning model to predict a diagnosis of Alzheimer disease by using 18F-FDG PET of the brain
  publication-title: Radiology
  doi: 10.1148/radiol.2018180958
– volume: 296
  start-page: 619
  issue: 3
  year: 2020
  end-page: 626
  ident: CR51
  article-title: Cross-sectional and longitudinal assessment of brain iron level in Alzheimer disease using 3-T MRI
  publication-title: Radiology
  doi: 10.1148/radiol.2020192541
– volume: 453
  start-page: 869
  issue: 7197
  year: 2008
  end-page: 878
  ident: CR2
  article-title: What we can do and what we cannot do with fMRI
  publication-title: Nature
  doi: 10.1038/nature06976
– ident: CR18
– start-page: 467
  year: 2021
  end-page: 478
  ident: CR37
  article-title: Characterization multimodal connectivity of brain network by hypergraph GAN for Alzheimer’s disease analysis
  publication-title: Chinese conference on pattern recognition and computer vision (PRCV)
– volume: 144
  start-page: 305
  year: 2017
  end-page: 308
  ident: CR47
  article-title: The European DTI study on dementia—a multicenter DTI and MRI study on Alzheimer’s disease and mild cognitive impairment
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.03.067
– volume: 362
  start-page: 329
  issue: 4
  year: 2010
  ident: CR1
  article-title: Alzheimer’s disease
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra0909142
– volume: 26
  start-page: 287
  issue: s3
  year: 2011
  end-page: 296
  ident: CR3
  article-title: DTI analyses and clinical applications in Alzheimer’s disease
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-2011-0007
– ident: CR30
– volume: 9
  start-page: 2104538
  issue: 12
  year: 2022
  ident: CR13
  article-title: Regional radiomics similarity networks reveal distinct subtypes and abnormality patterns in mild cognitive impairment
  publication-title: Adv Sci
  doi: 10.1002/advs.202104538
– ident: CR10
– volume: 40
  start-page: 1279
  issue: 4
  year: 2021
  end-page: 1289
  ident: CR15
  article-title: A mutual multi-scale triplet graph convolutional network for classification of brain disorders using functional or structural connectivity
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2021.3051604
– ident: CR33
– volume: 15
  start-page: 1
  issue: 1
  year: 2024
  end-page: 55
  ident: CR22
  article-title: A survey on graph representation learning methods
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/3633518
– volume: 9
  start-page: 386
  year: 2015
  ident: CR27
  article-title: GRETNA: a graph theoretical network analysis toolbox for imaging connectomics
  publication-title: Front Hum Neurosci
– volume: 277
  start-page: 162
  issue: 1
  year: 2015
  end-page: 172
  ident: CR43
  article-title: White matter degeneration in atypical Alzheimer disease
  publication-title: Radiology
  doi: 10.1148/radiol.2015142766
– volume: 72
  start-page: 168
  year: 2017
  end-page: 175
  ident: CR4
  article-title: Cerebral blood flow measured by arterial spin labeling MRI at resting state in normal aging and Alzheimer’s disease
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2016.11.023
– volume: 90
  start-page: 102932
  year: 2023
  ident: CR25
  article-title: A-GCL: Adversarial graph contrastive learning for fMRI analysis to diagnose neurodevelopmental disorders
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2023.102932
– volume: 7
  start-page: 2000675
  issue: 14
  year: 2020
  ident: CR29
  article-title: Generalizable, reproducible, and neuroscientifically interpretable imaging biomarkers for Alzheimer’s disease
  publication-title: Adv Sci
  doi: 10.1002/advs.202000675
– volume: 65
  start-page: 1103
  issue: 13
  year: 2020
  end-page: 1113
  ident: CR7
  article-title: Independent and reproducible hippocampal radiomic biomarkers for multisite Alzheimer’s disease: diagnosis, longitudinal progress and biological basis
  publication-title: Sci Bull
  doi: 10.1016/j.scib.2020.04.003
– volume: 14
  start-page: 322
  issue: 5
  year: 2013
  end-page: 336
  ident: CR11
  article-title: Imaging structural co-variance between human brain regions
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn3465
– ident: CR17
– volume: 304
  start-page: 635
  issue: 3
  year: 2022
  end-page: 645
  ident: CR50
  article-title: Choroid plexus volume and permeability at brain MRI within the Alzheimer disease clinical spectrum
  publication-title: Radiology
  doi: 10.1148/radiol.212400
– volume: 149
  start-page: 106043
  year: 2022
  ident: CR38
  article-title: Explainable, trustworthy, and ethical machine learning for healthcare: a survey
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.106043
– volume: 365
  year: 2022
  ident: CR8
  article-title: Diagnosis of Alzheimer’s disease based on regional attention with sMRI gray matter slices
  publication-title: J Neurosci Method
  doi: 10.1016/j.jneumeth.2021.109376
– volume: 78
  start-page: 102413
  year: 2022
  ident: CR23
  article-title: An attention-based hybrid deep learning framework integrating brain connectivity and activity of resting-state functional MRI data
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2022.102413
– ident: CR34
– ident: CR24
– volume: 31
  start-page: 1275
  issue: 8
  year: 2010
  end-page: 1283
  ident: CR46
  article-title: Amyloid imaging results from the Australian imaging, biomarkers and lifestyle (AIBL) study of aging
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2010.04.007
– ident: CR20
– volume: 277
  start-page: 162
  issue: 1
  year: 2015
  ident: 1178_CR43
  publication-title: Radiology
  doi: 10.1148/radiol.2015142766
– volume: 149
  start-page: 106043
  year: 2022
  ident: 1178_CR38
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.106043
– ident: 1178_CR20
– volume: 14
  start-page: 322
  issue: 5
  year: 2013
  ident: 1178_CR11
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn3465
– volume: 412
  start-page: 150
  issue: 6843
  year: 2001
  ident: 1178_CR6
  publication-title: Nature
  doi: 10.1038/35084005
– volume: 75
  start-page: 103565
  year: 2022
  ident: 1178_CR36
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.103565
– volume: 45
  start-page: 87
  issue: 1
  year: 2022
  ident: 1178_CR9
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2022.3152247
– volume: 362
  start-page: 329
  issue: 4
  year: 2010
  ident: 1178_CR1
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra0909142
– volume: 116
  start-page: 21213
  issue: 42
  year: 2019
  ident: 1178_CR16
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1902376116
– ident: 1178_CR34
– volume: 7
  start-page: 2000675
  issue: 14
  year: 2020
  ident: 1178_CR29
  publication-title: Adv Sci
  doi: 10.1002/advs.202000675
– ident: 1178_CR21
– volume: 78
  start-page: 102413
  year: 2022
  ident: 1178_CR23
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2022.102413
– volume: 296
  start-page: 619
  issue: 3
  year: 2020
  ident: 1178_CR51
  publication-title: Radiology
  doi: 10.1148/radiol.2020192541
– volume: 90
  start-page: 102932
  year: 2023
  ident: 1178_CR25
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2023.102932
– volume: 27
  start-page: 685
  issue: 4
  year: 2008
  ident: 1178_CR45
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.21049
– volume: 52
  start-page: 1861
  issue: 9
  year: 1999
  ident: 1178_CR40
  publication-title: Neurology
  doi: 10.1212/WNL.52.9.1861
– volume: 33
  start-page: 5385
  issue: 8
  year: 2023
  ident: 1178_CR28
  publication-title: Eur Radiol
  doi: 10.1007/s00330-023-09519-x
– volume: 72
  start-page: 168
  year: 2017
  ident: 1178_CR4
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2016.11.023
– volume: 8
  start-page: e68910
  issue: 7
  year: 2013
  ident: 1178_CR26
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0068910
– ident: 1178_CR18
– ident: 1178_CR35
– volume: 26
  start-page: 287
  issue: s3
  year: 2011
  ident: 1178_CR3
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-2011-0007
– ident: 1178_CR10
– start-page: 1
  volume-title: International workshop on machine learning in medical imaging
  year: 2020
  ident: 1178_CR14
– volume: 453
  start-page: 869
  issue: 7197
  year: 2008
  ident: 1178_CR2
  publication-title: Nature
  doi: 10.1038/nature06976
– ident: 1178_CR24
  doi: 10.1109/MLCCIM55934.2022.00067
– volume: 19
  start-page: 1498
  issue: 9
  year: 2007
  ident: 1178_CR48
  publication-title: J Cogn Neurosci
  doi: 10.1162/jocn.2007.19.9.1498
– volume: 65
  start-page: 1103
  issue: 13
  year: 2020
  ident: 1178_CR7
  publication-title: Sci Bull
  doi: 10.1016/j.scib.2020.04.003
– volume: 298
  start-page: 654
  issue: 3
  year: 2021
  ident: 1178_CR49
  publication-title: Radiology
  doi: 10.1148/radiol.2021200643
– volume: 9
  start-page: 2104538
  issue: 12
  year: 2022
  ident: 1178_CR13
  publication-title: Adv Sci
  doi: 10.1002/advs.202104538
– ident: 1178_CR17
  doi: 10.1109/CVPR.2016.90
– volume: 144
  start-page: 305
  year: 2017
  ident: 1178_CR47
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.03.067
– volume: 50
  start-page: 1163
  issue: 4
  year: 2016
  ident: 1178_CR41
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-150988
– volume: 10
  start-page: 1971
  issue: 11
  year: 2022
  ident: 1178_CR31
  publication-title: Biomedicines
– volume: 40
  start-page: 1279
  issue: 4
  year: 2021
  ident: 1178_CR15
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2021.3051604
– volume: 5
  start-page: 783
  issue: 3
  year: 2021
  ident: 1178_CR12
  publication-title: Netw Neurosci
– volume: 9
  start-page: 386
  year: 2015
  ident: 1178_CR27
  publication-title: Front Hum Neurosci
  doi: 10.3389/fpsyg.2018.00386
– volume: 279
  start-page: 838
  issue: 3
  year: 2016
  ident: 1178_CR44
  publication-title: Radiology
  doi: 10.1148/radiol.2015150220
– ident: 1178_CR32
– volume: 15
  start-page: 1
  issue: 1
  year: 2024
  ident: 1178_CR22
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/3633518
– volume: 31
  start-page: 1275
  issue: 8
  year: 2010
  ident: 1178_CR46
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2010.04.007
– ident: 1178_CR33
  doi: 10.1007/978-3-319-60801-3_27
– volume: 365
  year: 2022
  ident: 1178_CR8
  publication-title: J Neurosci Method
  doi: 10.1016/j.jneumeth.2021.109376
– ident: 1178_CR30
  doi: 10.1109/IVCNZ51579.2020.9290616
– volume: 208
  year: 2020
  ident: 1178_CR5
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116459
– volume: 304
  start-page: 635
  issue: 3
  year: 2022
  ident: 1178_CR50
  publication-title: Radiology
  doi: 10.1148/radiol.212400
– ident: 1178_CR19
  doi: 10.1109/CVPR52688.2022.01186
– start-page: 467
  volume-title: Chinese conference on pattern recognition and computer vision (PRCV)
  year: 2021
  ident: 1178_CR37
– volume: 143
  start-page: 1920
  issue: 6
  year: 2020
  ident: 1178_CR39
  publication-title: Brain
  doi: 10.1093/brain/awaa137
– volume: 290
  start-page: 456
  issue: 2
  year: 2019
  ident: 1178_CR42
  publication-title: Radiology
  doi: 10.1148/radiol.2018180958
SSID ssj0021503
Score 2.392644
Snippet Objective To establish a multi-dimensional representation solely on structural MRI (sMRI) for early diagnosis of AD. Methods A total of 3377 participants’ sMRI...
To establish a multi-dimensional representation solely on structural MRI (sMRI) for early diagnosis of AD.OBJECTIVETo establish a multi-dimensional...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 845
SubjectTerms Basic Science - Reconstruction algorithms and artificial intelligence
Biomedical Engineering and Bioengineering
Computer Appl. in Life Sciences
Health Informatics
Imaging
Medicine
Medicine & Public Health
Radiology
Research Article
Solid State Physics
Title s2MRI-ADNet: an interpretable deep learning framework integrating Euclidean-graph representations of Alzheimer’s disease solely from structural MRI
URI https://link.springer.com/article/10.1007/s10334-024-01178-3
https://www.proquest.com/docview/3067913483
Volume 37
WOSCitedRecordID wos001247228100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1352-8661
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021503
  issn: 1352-8661
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aRbz4FuuLCN40sJvdbna9FW3RQ4v4orclm0y0sG7FbQU9-Sc8-Pf8JSbbbKsiBb3uTkLITObBzHyD0L4LEY9ExEjAfUqMhJCIuZRIJhJXJokOyUQxbIK122GnE53bprC8rHYvU5KFpv7S7OZ5PtE2hRgcs5B402hGm7vQDGy4uLwZhVnaxfFse8zv676boLFf-SMVWliY5uL_zraEFqxHietDEVhGU5CtoLmWzZmvorecti7OSP2kDf0jzDPcHdUZJilgCfCA7eyIW6zKWi1c4kiYr42BSLsSeEYKfGtcIGGWXUtZjnsK19OXO-jew-PH63uObdoHa8GG9BmbHhY8RKo1KB9Yn2cNXTcbV8enxA5jIELHkH3iB65QNVMURwXQgCrmKAWOdBQoLqnDlOcnNJCRdsEg4DSRnPtKiYQrR3r67zqqZL0MNhCugZvwSNUYr3k-Z6ZVlmnHByKtb7S6lVXklvyJhUUqNwMz0niMsWzuO9b3HRf3HXtVdDBa8zDE6ZhIvVeyPdbPyeRIeAa9QR6bCMoUI4Sa5rDkdWzfdT5hy82_kW-heVqIiykl3EYVzQLYQbPiqd_NH3fRNOuEu4VYfwL2RPWV
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6-UC--xfUZwZsG2rTbbL0tuqLoLuILbyFNJrpQu2JXQU_-CQ_-PX-JSTddH4ig13YSQmYyD2bmG4Q2fIhFLGNGIhFSYiWExMynRDGZ-CpJTEgmi2ETrNWqXV7Gx64pLC-r3cuUZKGpPzW7BUFIjE0hFsesRoJBNBwai2UR809OL_phlnFxAtce8_O6rybow6_8lgotLMze5P_ONoUmnEeJ6z0RmEYDkM2g0abLmc-il5w2Tw5IfbcF3W0sMtzu1xkmKWAFcIvd7IgrrMtaLVziSNivjXuZthWIjBT41rhAwiy7lrIcdzSup0_X0L6Bu7fn1xy7tA82gg3pI7Y9LLiHVGtRPrA5zxw632uc7ewTN4yBSBNDdkkY-VJXbVEclUAjqpmnNXjK06CFoh7TQZjQSMXGBYNI0EQJEWotE6E9FZi_82go62SwgHAV_ETEuspENQgFs62yzDg-EBt9Y9StqiC_5A-XDqncDsxI-QfGsr1vbu6bF_fNgwra7K-57eF0_Eq9XrKdm-dkcyQig859zm0EZYsRaoZmq-Q1d-86_2XLxb-Rr6Gx_bPmET86aB0uoXFqRacoEVxGQ4YdsIJG5EO3nd-tFsL9Drel94o
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7eEF-8i_MawTcNtmnXrL4NdSi6Id7wLaTJiQ5qN9ZN0Cf_hA_-PX-JSdfOKSKIr20SQnKSnMP5vu8gtO1CKEIZMhIInxJrISRkLiWKychVUWRCMpkVm2CNRuX2NjwfYvFnaPciJdnnNFiVpqS711Z6b4j45nk-Me8LsZpmFeKNonHfAultvH55Mwi5jLvj5VSZn_t9fY4-fcxvadHstanN_H-es2g69zRxtW8ac2gEknk0Wc9z6QvoNaX1ixNSPWxAdx-LBDcH-MMoBqwA2jivKXGHdYHhwoW-hP161JNxU4FISKZ7jTOFzILNlKS4pXE1fr6H5gN03l_eUpyng7AxeIifsOW24L6CrVX_wGY-i-i6dnR1cEzyIg1EmtiyS_zAlbpswXJUAg2oZo7W4ChHgxaKOkx7fkQDFRrXDAJBIyWEr7WMhHaUZ_4uobGklcAywmVwIxHqMhNlzxfMUmiZcYggNPeQuYZVCbnFXnGZK5jbQhox_9RetuvNzXrzbL25V0I7gz7tvn7Hr623ChPg5pjZ3IlIoNVLuY2sLEihYtrsFvvO8_Oe_jLkyt-ab6LJ88MaPztpnK6iKWotJ0MOrqExsxuwjibkY7eZdjYyO_8AGgUAfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=s2MRI-ADNet%3A+an+interpretable+deep+learning+framework+integrating+Euclidean-graph+representations+of+Alzheimer%E2%80%99s+disease+solely+from+structural+MRI&rft.jtitle=Magma+%28New+York%2C+N.Y.%29&rft.au=Song%2C+Zhiwei&rft.au=Li%2C+Honglun&rft.au=Zhang%2C+Yiyu&rft.au=Zhu%2C+Chuanzhen&rft.date=2024-10-01&rft.issn=1352-8661&rft.eissn=1352-8661&rft.volume=37&rft.issue=5&rft.spage=845&rft.epage=857&rft_id=info:doi/10.1007%2Fs10334-024-01178-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10334_024_01178_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-8661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-8661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-8661&client=summon