Generalized Correntropy for Robust Adaptive Filtering

As a robust nonlinear similarity measure in kernel space, correntropy has received increasing attention in domains of machine learning and signal processing. In particular, the maximum correntropy criterion (MCC) has recently been successfully applied in robust regression and filtering. The default...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 64; číslo 13; s. 3376 - 3387
Hlavní autoři: Badong Chen, Lei Xing, Haiquan Zhao, Nanning Zheng, Principe, Jose C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.07.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:As a robust nonlinear similarity measure in kernel space, correntropy has received increasing attention in domains of machine learning and signal processing. In particular, the maximum correntropy criterion (MCC) has recently been successfully applied in robust regression and filtering. The default kernel function in correntropy is the Gaussian kernel, which is, of course, not always the best choice. In this paper, we propose a generalized correntropy that adopts the generalized Gaussian density (GGD) function as the kernel, and present some important properties. We further propose the generalized maximum correntropy criterion (GMCC) and apply it to adaptive filtering. An adaptive algorithm, called the GMCC algorithm, is derived, and the stability problem and steady-state performance are studied. We show that the proposed algorithm is very stable and can achieve zero probability of divergence (POD). Simulation results confirm the theoretical expectations and demonstrate the desirable performance of the new algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2016.2539127