A performance predictor for implementation selection of parallelized static and temporal graph algorithms

Task‐based execution of graph workloads allows various ordered and unordered implementations, with tasks representing dependencies between graph vertices and edges. This work explores graph algorithms in the context of ordered and unordered task‐based implementations, that trade‐off work‐efficiency...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concurrency and computation Jg. 34; H. 2
Hauptverfasser: Rehman, Akif, Ahmad, Masab, Khan, Omer
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken Wiley Subscription Services, Inc 25.01.2022
Schlagworte:
ISSN:1532-0626, 1532-0634
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Task‐based execution of graph workloads allows various ordered and unordered implementations, with tasks representing dependencies between graph vertices and edges. This work explores graph algorithms in the context of ordered and unordered task‐based implementations, that trade‐off work‐efficiency with parallelism. The monotonicity of convergent graph solutions is the reason behind the trade‐off between work‐efficiency and parallelism. This trade‐off results in variable performance‐based choices within and across different machines (CPUs and GPUs), graph algorithms, implementations (ordered, relaxed, and unordered). Input graphs also augment this choice space, with this work analyzing temporally changing graphs in addition to the static graphs explored by prior works. These algorithmic and architectural choices are first explored in this work, and it is seen that different graph workload‐input combinations perform optimally on diverse architectural configurations. The resulting choice space is analyzed and this work represents it in the form of characteristic variables that correlate with each choice space. Using these characteristic variables, this work proposes analytical and neural network models to correlate these choice spaces to find the best performing implementation. The variables and the prediction models proposed in this work are also integrated with a state‐of‐the‐art performance predictor on a multiaccelerator setup, and shows geometric performance gains of 54% on a CPU, 14% on a GPU, and 31.5% in a multiaccelerator setup over baseline implementations without performance prediction.
AbstractList Task‐based execution of graph workloads allows various ordered and unordered implementations, with tasks representing dependencies between graph vertices and edges. This work explores graph algorithms in the context of ordered and unordered task‐based implementations, that trade‐off work‐efficiency with parallelism. The monotonicity of convergent graph solutions is the reason behind the trade‐off between work‐efficiency and parallelism. This trade‐off results in variable performance‐based choices within and across different machines (CPUs and GPUs), graph algorithms, implementations (ordered, relaxed, and unordered). Input graphs also augment this choice space, with this work analyzing temporally changing graphs in addition to the static graphs explored by prior works. These algorithmic and architectural choices are first explored in this work, and it is seen that different graph workload‐input combinations perform optimally on diverse architectural configurations. The resulting choice space is analyzed and this work represents it in the form of characteristic variables that correlate with each choice space. Using these characteristic variables, this work proposes analytical and neural network models to correlate these choice spaces to find the best performing implementation. The variables and the prediction models proposed in this work are also integrated with a state‐of‐the‐art performance predictor on a multiaccelerator setup, and shows geometric performance gains of 54% on a CPU, 14% on a GPU, and 31.5% in a multiaccelerator setup over baseline implementations without performance prediction.
Author Rehman, Akif
Ahmad, Masab
Khan, Omer
Author_xml – sequence: 1
  givenname: Akif
  orcidid: 0000-0003-3285-4150
  surname: Rehman
  fullname: Rehman, Akif
  email: akif.rehman@uconn.edu
  organization: University of Connecticut
– sequence: 2
  givenname: Masab
  surname: Ahmad
  fullname: Ahmad, Masab
  organization: University of Connecticut
– sequence: 3
  givenname: Omer
  surname: Khan
  fullname: Khan, Omer
  email: omer.khan@uconn.edu
  organization: University of Connecticut
BookMark eNp10M1KAzEQAOAgFWyr4CMEvHjZmmR3s91jKfUHCnrQc0iTSZuS3cRki9Snd7cVb55mmPmYYWaCRq1vAaFbSmaUEPagAsw449UFGtMyZxnheTH6yxm_QpOU9oRQSnI6RnaBA0TjYyNbBThE0FZ1PuK-hG0THDTQdrKzvsUJHKhT5g0OMkrnwNlv0DgNQmHZatxBE3zfwtsoww5Lt_XRdrsmXaNLI12Cm984RR-Pq_flc7Z-fXpZLtaZYmVRZbDhuibVXKs5o7UGYCWndVFuNDfUFLkshzOBcrWhUG10pauid7Ukuq6kMfkU3Z3nhug_D5A6sfeH2PYrBeOUMZazedGr-7NS0acUwYgQbSPjUVAihg2if6QYHtnT7Ey_rIPjv04s31Yn_wOY5Hfh
Cites_doi 10.1109/IISWC.2015.11
10.1145/3380536.3380540
10.1017/CBO9780511815478
10.1109/ISPASS.2019.00039
10.1109/MM.2017.16
10.1145/2628071.2628092
10.1145/3108140
10.1145/1543135.1542481
10.1145/2049662.2049663
10.1145/2775054.2694363
10.1109/LCA.2020.3045670
10.1145/2644865.2541964
10.1109/DCC.2015.8
10.1609/aaai.v29i1.9277
10.1145/1772690.1772751
10.1145/2939672.2939860
10.1109/TPDS.2015.2485994
10.1109/IISWC.2013.6704684
10.1145/2517349.2522739
10.1016/j.trc.2015.01.002
10.1109/IISWC.2016.7581278
10.1145/2451116.2451162
10.1109/INFCOM.2010.5461987
10.1145/3087556.3087580
10.1016/j.neuron.2014.10.015
10.1145/2038037.1941557
10.1145/2737924.2737969
10.1109/HPEC.2012.6408680
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.6267
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_6267
CPE6267
Genre article
GrantInformation_xml – fundername: U.S. Naval Research Laboratory
– fundername: National Science Foundation
  funderid: CNS‐1718481
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2547-eb6d9078dc8219dee2561945bd6f1f43a51002e16cb1e7bd7d7419d9a0d97aff3
IEDL.DBID DRFUL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000643913900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1532-0626
IngestDate Sun Nov 30 04:04:38 EST 2025
Sat Nov 29 01:41:25 EST 2025
Wed Jan 22 16:26:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2547-eb6d9078dc8219dee2561945bd6f1f43a51002e16cb1e7bd7d7419d9a0d97aff3
Notes Funding information
National Science Foundation, CNS‐1718481; U.S. Naval Research Laboratory
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3285-4150
PQID 2612223284
PQPubID 2045170
PageCount 19
ParticipantIDs proquest_journals_2612223284
crossref_primary_10_1002_cpe_6267
wiley_primary_10_1002_cpe_6267_CPE6267
PublicationCentury 2000
PublicationDate 25 January 2022
PublicationDateYYYYMMDD 2022-01-25
PublicationDate_xml – month: 01
  year: 2022
  text: 25 January 2022
  day: 25
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 44
2010; 11
2017; 4
2017; 37
2012
2011
2010
2015; 50
2020
2015; 52
2014; 49
2019
2006
2017
2016
1994
2015
2014
2013
2014; 84
2011; 38
2016; 27
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
Bojarski M (e_1_2_9_4_1) 2016
Leskovec J (e_1_2_9_30_1) 2010; 11
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_25_1
Xin RS (e_1_2_9_9_1) 2014
e_1_2_9_28_1
e_1_2_9_27_1
Bader DA (e_1_2_9_29_1) 2006
References_xml – year: 2011
– year: 2014
  article-title: GraphX: unifying data‐parallel and graph‐parallel analytics
  publication-title: CoRR
– start-page: 1
  year: 2020
  article-title: Accelerating concurrent priority scheduling using adaptive in‐hardware task distribution in multicores
  publication-title: IEEE Comput Arch Lett
– start-page: 431
  year: 2013
  end-page: 444
– volume: 44
  start-page: 38
  issue: 6
  year: 2009
  end-page: 49
  article-title: PetaBricks: a language and compiler for algorithmic choice
  publication-title: ACM Sigplan Not
– volume: 4
  start-page: 3:1
  issue: 1
  year: 2017
  end-page: 3:49
  article-title: Gunrock: GPU graph analytics
  publication-title: ACM Trans Parall Comput
– year: 2016
– volume: 27
  start-page: 2222
  issue: 8
  year: 2016
  end-page: 2233
  article-title: An efficient implementation of the bellman‐ford algorithm for Kepler GPU architectures
  publication-title: IEEE Trans Parall Distrib Syst
– year: 1994
– year: 2010
– volume: 84
  start-page: 262
  issue: 2
  year: 2014
  end-page: 274
  article-title: The chronnectome: time‐varying connectivity networks as the next frontier in fMRI data discovery
  publication-title: Neuron
– start-page: 303
  year: 2014
  end-page: 316
– year: 2012
– volume: 49
  start-page: 499
  issue: 4
  year: 2014
  end-page: 512
  article-title: Deterministic Galois: on‐demand, portable and parameterless
  publication-title: ACM SIGPLAN Not
– volume: 11
  start-page: 985
  issue: Feb
  year: 2010
  end-page: 1042
  article-title: Kronecker graphs: an approach to modeling networks
  publication-title: J Mach Learn Res
– volume: 52
  start-page: 1
  year: 2015
  end-page: 14
  article-title: Autonomous cars: the tension between occupant experience and intersection capacity
  publication-title: Transp Res C Emerg Technol
– volume: 37
  start-page: 30
  issue: 1
  year: 2017
  end-page: 40
  article-title: Efficient situational scheduling of graph workloads on single‐chip multicores and gpus
  publication-title: IEEE Micro
– volume: 38
  start-page: 25
  issue: 1
  year: 2011
  article-title: The university of Florida sparse matrix collection
  publication-title: ACM Trans Math Softw
– year: 2006
– year: 2020
– year: 2016
  article-title: End to end learning for self‐driving cars
  publication-title: CoRR
– year: 2017
– year: 2019
– start-page: 38
  year: 2006
– year: 2015
– year: 2013
– volume: 50
  start-page: 457
  issue: 4
  year: 2015
  end-page: 471
  article-title: Kinetic dependence graphs
  publication-title: ACM SIGPLAN Not
– ident: e_1_2_9_31_1
  doi: 10.1109/IISWC.2015.11
– ident: e_1_2_9_21_1
  doi: 10.1145/3380536.3380540
– year: 2016
  ident: e_1_2_9_4_1
  article-title: End to end learning for self‐driving cars
  publication-title: CoRR
– ident: e_1_2_9_27_1
  doi: 10.1017/CBO9780511815478
– ident: e_1_2_9_6_1
– ident: e_1_2_9_24_1
  doi: 10.1109/ISPASS.2019.00039
– start-page: 38
  volume-title: A Synthetic Graph Generator Suite
  year: 2006
  ident: e_1_2_9_29_1
– volume: 11
  start-page: 985
  year: 2010
  ident: e_1_2_9_30_1
  article-title: Kronecker graphs: an approach to modeling networks
  publication-title: J Mach Learn Res
– ident: e_1_2_9_36_1
– ident: e_1_2_9_20_1
  doi: 10.1109/MM.2017.16
– ident: e_1_2_9_16_1
– ident: e_1_2_9_17_1
  doi: 10.1145/2628071.2628092
– ident: e_1_2_9_33_1
  doi: 10.1145/3108140
– ident: e_1_2_9_22_1
  doi: 10.1145/1543135.1542481
– ident: e_1_2_9_35_1
  doi: 10.1145/2049662.2049663
– year: 2014
  ident: e_1_2_9_9_1
  article-title: GraphX: unifying data‐parallel and graph‐parallel analytics
  publication-title: CoRR
– ident: e_1_2_9_12_1
  doi: 10.1145/2775054.2694363
– ident: e_1_2_9_14_1
  doi: 10.1109/LCA.2020.3045670
– ident: e_1_2_9_28_1
  doi: 10.1145/2644865.2541964
– ident: e_1_2_9_25_1
  doi: 10.1109/DCC.2015.8
– ident: e_1_2_9_37_1
  doi: 10.1609/aaai.v29i1.9277
– ident: e_1_2_9_3_1
  doi: 10.1145/1772690.1772751
– ident: e_1_2_9_5_1
  doi: 10.1145/2939672.2939860
– ident: e_1_2_9_11_1
  doi: 10.1109/TPDS.2015.2485994
– ident: e_1_2_9_10_1
  doi: 10.1109/IISWC.2013.6704684
– ident: e_1_2_9_13_1
  doi: 10.1145/2517349.2522739
– ident: e_1_2_9_2_1
  doi: 10.1016/j.trc.2015.01.002
– ident: e_1_2_9_19_1
  doi: 10.1109/IISWC.2016.7581278
– ident: e_1_2_9_23_1
  doi: 10.1145/2451116.2451162
– ident: e_1_2_9_8_1
  doi: 10.1109/INFCOM.2010.5461987
– ident: e_1_2_9_32_1
  doi: 10.1145/3087556.3087580
– ident: e_1_2_9_7_1
  doi: 10.1016/j.neuron.2014.10.015
– ident: e_1_2_9_34_1
– ident: e_1_2_9_15_1
  doi: 10.1145/2038037.1941557
– ident: e_1_2_9_18_1
  doi: 10.1145/2737924.2737969
– ident: e_1_2_9_26_1
  doi: 10.1109/HPEC.2012.6408680
SSID ssj0011031
Score 2.2844143
Snippet Task‐based execution of graph workloads allows various ordered and unordered implementations, with tasks representing dependencies between graph vertices and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Apexes
Graph theory
Graphical representations
Graphs
Neural networks
ordered algorithms
parallel graph algorithms
Performance prediction
Prediction models
temporal graphs
unordered algorithms
Variables
Workload
Title A performance predictor for implementation selection of parallelized static and temporal graph algorithms
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.6267
https://www.proquest.com/docview/2612223284
Volume 34
WOSCitedRecordID wos000643913900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_o5sGL8xOnUyKIt7q2S5v2OOaGhzGGONmtpEmqha4b7fTgX-9LPzY9CIKnlpJA-j6SX_Lyfg_gVrq-Egw9LXKVY1ARUcNX6O5UOqEKfWqJIqL7MmaTiTef-9PqVqXOhSn5ITYHbtozivlaOzgP8-6WNFSs1D2icbYLTRvNljag-fA0mo03MQRdwKBkS7UNE1vW1LOm3a37_lyMtgjzO04tFppR6z9DPISDCl6SfmkPR7Cj0mNo1aUbSOXJJxD3yWqbMkBWmY7X4Pab4CcSL-pL5VprJC9K5ei3ZUQ0VXiS4Lg-lSQ6GykWhKeSVBRXCSkYsAlPXpdZvH5b5KcwGw2fB49GVXXBELhZZIYKXYk7Zk8KD2czqRSCIsunTijdyIpojzv675TlitBSLJRMIijxpc9N6TMeRb0zaKTLVJ0DQbSmHGFS7noeDW3NicwiqjGU8rjrsDbc1OIPViW5RlDSKNsByi7QsmtDp9ZLULlXHmjeM8Q1uLS24a7QwK_9g8F0qJ8Xf214Cfu2TnEwLcN2OtBYZ-_qCvbExzrOs-vKyL4AEdzXBQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oJuiL84rTqRHEt7q2S5sWn8bcmFjHkE32Vtok1UJ3YZs--Os96WXTB0HwqaUkkJ5L8iUn5zsA18J2JWfoaZEtLY3yiGquRHenwgpl6FKDpxHdF4_1es5o5PY34K7Ihcn4IVYHbsoz0vlaObg6kK6vWUP5TN4iHGebUKZoRVYJyvfPnaG3CiKoCgYZXaqp6diy4J7VzXrR9-dqtIaY34FqutJ0Kv8a4x7s5gCTNDOL2IcNOTmASlG8geS-fAhxk8zWSQNkNlcRG9yAE_xE4nFxrVzpjSzSYjnqbRoRRRaeJDiwTymIykeKOQkmguQkVwlJObBJkLxO5_Hybbw4gmGnPWh1tbzugsZxu8g0GdoC98yO4A7OZ0JKhEWGS61Q2JER0UZgqb-Ths1DQ7JQMIGwxBVuoAuXBVHUOIbSZDqRJ0AQr0mL6zSwHYeGpmJFZhFVKEo6gW2xKlwV8vdnGb2GnxEpmz7Kzleyq0KtUIyfO9jCV8xniGxwca3CTaqCX_v7rX5bPU__2vAStruDJ8_3HnqPZ7BjqoQH3dBMqwal5fxdnsMW_1jGi_lFbnFf83La9Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IV5cn7g-I4i3alvTpsHToi6Ky7KIirfSJhMtrLtld_Xgr3fSh6sHQfDUUhJIZ_IlXzqdbwCOdChRCUKaCTFwuDLckUhw5zpIMZXcU0VE97Ejut3o6Un2ZuC8zoUp9SG-PrhZZBTrtQU45tqcTlVDVY4nRMfFLMzzQIaEyvnLu_ZD5yuIYCsYlHKpvuNSy1p71vVP674_d6MpxfxOVIudpt341xhXYLkimKxVzohVmMHBGjTq4g2swvI6ZC2WT5MGWD6yERs6gDN6xLLX-rdy6zc2Lorl2LuhYVYsvN-ngX2gZjYfKVMsGWhWiVz1WaGBzZL-83CUTV5exxvw0L66v7h2qroLjqLjonAwDTWdmSOtIlrPNCLRIk_yINWh8Qw_SwL7duiFKvVQpFpooiVSy8TVUiTGnG3C3GA4wC1gxNcwUC5PwijiqW9VkYXhlkVhlISBaMJhbf84L-U14lJI2Y_JdrG1XRN2a8fEFcDGsVU-I2ZDm2sTjgsX_No_vuhd2ev2XxsewGLvsh13brq3O7Dk23wH13P8YBfmJqM33IMF9T7JxqP9asJ9ArYG2nA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+performance+predictor+for+implementation+selection+of+parallelized+static+and+temporal+graph+algorithms&rft.jtitle=Concurrency+and+computation&rft.au=Rehman%2C+Akif&rft.au=Ahmad%2C+Masab&rft.au=Khan%2C+Omer&rft.date=2022-01-25&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=34&rft.issue=2&rft_id=info:doi/10.1002%2Fcpe.6267&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_6267
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon