A performance predictor for implementation selection of parallelized static and temporal graph algorithms
Task‐based execution of graph workloads allows various ordered and unordered implementations, with tasks representing dependencies between graph vertices and edges. This work explores graph algorithms in the context of ordered and unordered task‐based implementations, that trade‐off work‐efficiency...
Gespeichert in:
| Veröffentlicht in: | Concurrency and computation Jg. 34; H. 2 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken
Wiley Subscription Services, Inc
25.01.2022
|
| Schlagworte: | |
| ISSN: | 1532-0626, 1532-0634 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Task‐based execution of graph workloads allows various ordered and unordered implementations, with tasks representing dependencies between graph vertices and edges. This work explores graph algorithms in the context of ordered and unordered task‐based implementations, that trade‐off work‐efficiency with parallelism. The monotonicity of convergent graph solutions is the reason behind the trade‐off between work‐efficiency and parallelism. This trade‐off results in variable performance‐based choices within and across different machines (CPUs and GPUs), graph algorithms, implementations (ordered, relaxed, and unordered). Input graphs also augment this choice space, with this work analyzing temporally changing graphs in addition to the static graphs explored by prior works. These algorithmic and architectural choices are first explored in this work, and it is seen that different graph workload‐input combinations perform optimally on diverse architectural configurations. The resulting choice space is analyzed and this work represents it in the form of characteristic variables that correlate with each choice space. Using these characteristic variables, this work proposes analytical and neural network models to correlate these choice spaces to find the best performing implementation. The variables and the prediction models proposed in this work are also integrated with a state‐of‐the‐art performance predictor on a multiaccelerator setup, and shows geometric performance gains of 54% on a CPU, 14% on a GPU, and 31.5% in a multiaccelerator setup over baseline implementations without performance prediction. |
|---|---|
| AbstractList | Task‐based execution of graph workloads allows various ordered and unordered implementations, with tasks representing dependencies between graph vertices and edges. This work explores graph algorithms in the context of ordered and unordered task‐based implementations, that trade‐off work‐efficiency with parallelism. The monotonicity of convergent graph solutions is the reason behind the trade‐off between work‐efficiency and parallelism. This trade‐off results in variable performance‐based choices within and across different machines (CPUs and GPUs), graph algorithms, implementations (ordered, relaxed, and unordered). Input graphs also augment this choice space, with this work analyzing temporally changing graphs in addition to the static graphs explored by prior works. These algorithmic and architectural choices are first explored in this work, and it is seen that different graph workload‐input combinations perform optimally on diverse architectural configurations. The resulting choice space is analyzed and this work represents it in the form of characteristic variables that correlate with each choice space. Using these characteristic variables, this work proposes analytical and neural network models to correlate these choice spaces to find the best performing implementation. The variables and the prediction models proposed in this work are also integrated with a state‐of‐the‐art performance predictor on a multiaccelerator setup, and shows geometric performance gains of 54% on a CPU, 14% on a GPU, and 31.5% in a multiaccelerator setup over baseline implementations without performance prediction. |
| Author | Rehman, Akif Ahmad, Masab Khan, Omer |
| Author_xml | – sequence: 1 givenname: Akif orcidid: 0000-0003-3285-4150 surname: Rehman fullname: Rehman, Akif email: akif.rehman@uconn.edu organization: University of Connecticut – sequence: 2 givenname: Masab surname: Ahmad fullname: Ahmad, Masab organization: University of Connecticut – sequence: 3 givenname: Omer surname: Khan fullname: Khan, Omer email: omer.khan@uconn.edu organization: University of Connecticut |
| BookMark | eNp10M1KAzEQAOAgFWyr4CMEvHjZmmR3s91jKfUHCnrQc0iTSZuS3cRki9Snd7cVb55mmPmYYWaCRq1vAaFbSmaUEPagAsw449UFGtMyZxnheTH6yxm_QpOU9oRQSnI6RnaBA0TjYyNbBThE0FZ1PuK-hG0THDTQdrKzvsUJHKhT5g0OMkrnwNlv0DgNQmHZatxBE3zfwtsoww5Lt_XRdrsmXaNLI12Cm984RR-Pq_flc7Z-fXpZLtaZYmVRZbDhuibVXKs5o7UGYCWndVFuNDfUFLkshzOBcrWhUG10pauid7Ukuq6kMfkU3Z3nhug_D5A6sfeH2PYrBeOUMZazedGr-7NS0acUwYgQbSPjUVAihg2if6QYHtnT7Ey_rIPjv04s31Yn_wOY5Hfh |
| Cites_doi | 10.1109/IISWC.2015.11 10.1145/3380536.3380540 10.1017/CBO9780511815478 10.1109/ISPASS.2019.00039 10.1109/MM.2017.16 10.1145/2628071.2628092 10.1145/3108140 10.1145/1543135.1542481 10.1145/2049662.2049663 10.1145/2775054.2694363 10.1109/LCA.2020.3045670 10.1145/2644865.2541964 10.1109/DCC.2015.8 10.1609/aaai.v29i1.9277 10.1145/1772690.1772751 10.1145/2939672.2939860 10.1109/TPDS.2015.2485994 10.1109/IISWC.2013.6704684 10.1145/2517349.2522739 10.1016/j.trc.2015.01.002 10.1109/IISWC.2016.7581278 10.1145/2451116.2451162 10.1109/INFCOM.2010.5461987 10.1145/3087556.3087580 10.1016/j.neuron.2014.10.015 10.1145/2038037.1941557 10.1145/2737924.2737969 10.1109/HPEC.2012.6408680 |
| ContentType | Journal Article |
| Copyright | 2021 John Wiley & Sons Ltd. 2022 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2021 John Wiley & Sons Ltd. – notice: 2022 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/cpe.6267 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1532-0634 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_cpe_6267 CPE6267 |
| Genre | article |
| GrantInformation_xml | – fundername: U.S. Naval Research Laboratory – fundername: National Science Foundation funderid: CNS‐1718481 |
| GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCFJ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION O8X 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2547-eb6d9078dc8219dee2561945bd6f1f43a51002e16cb1e7bd7d7419d9a0d97aff3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000643913900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1532-0626 |
| IngestDate | Sun Nov 30 04:04:38 EST 2025 Sat Nov 29 01:41:25 EST 2025 Wed Jan 22 16:26:29 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2547-eb6d9078dc8219dee2561945bd6f1f43a51002e16cb1e7bd7d7419d9a0d97aff3 |
| Notes | Funding information National Science Foundation, CNS‐1718481; U.S. Naval Research Laboratory ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3285-4150 |
| PQID | 2612223284 |
| PQPubID | 2045170 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2612223284 crossref_primary_10_1002_cpe_6267 wiley_primary_10_1002_cpe_6267_CPE6267 |
| PublicationCentury | 2000 |
| PublicationDate | 25 January 2022 |
| PublicationDateYYYYMMDD | 2022-01-25 |
| PublicationDate_xml | – month: 01 year: 2022 text: 25 January 2022 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Concurrency and computation |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2009; 44 2010; 11 2017; 4 2017; 37 2012 2011 2010 2015; 50 2020 2015; 52 2014; 49 2019 2006 2017 2016 1994 2015 2014 2013 2014; 84 2011; 38 2016; 27 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 Bojarski M (e_1_2_9_4_1) 2016 Leskovec J (e_1_2_9_30_1) 2010; 11 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_25_1 Xin RS (e_1_2_9_9_1) 2014 e_1_2_9_28_1 e_1_2_9_27_1 Bader DA (e_1_2_9_29_1) 2006 |
| References_xml | – year: 2011 – year: 2014 article-title: GraphX: unifying data‐parallel and graph‐parallel analytics publication-title: CoRR – start-page: 1 year: 2020 article-title: Accelerating concurrent priority scheduling using adaptive in‐hardware task distribution in multicores publication-title: IEEE Comput Arch Lett – start-page: 431 year: 2013 end-page: 444 – volume: 44 start-page: 38 issue: 6 year: 2009 end-page: 49 article-title: PetaBricks: a language and compiler for algorithmic choice publication-title: ACM Sigplan Not – volume: 4 start-page: 3:1 issue: 1 year: 2017 end-page: 3:49 article-title: Gunrock: GPU graph analytics publication-title: ACM Trans Parall Comput – year: 2016 – volume: 27 start-page: 2222 issue: 8 year: 2016 end-page: 2233 article-title: An efficient implementation of the bellman‐ford algorithm for Kepler GPU architectures publication-title: IEEE Trans Parall Distrib Syst – year: 1994 – year: 2010 – volume: 84 start-page: 262 issue: 2 year: 2014 end-page: 274 article-title: The chronnectome: time‐varying connectivity networks as the next frontier in fMRI data discovery publication-title: Neuron – start-page: 303 year: 2014 end-page: 316 – year: 2012 – volume: 49 start-page: 499 issue: 4 year: 2014 end-page: 512 article-title: Deterministic Galois: on‐demand, portable and parameterless publication-title: ACM SIGPLAN Not – volume: 11 start-page: 985 issue: Feb year: 2010 end-page: 1042 article-title: Kronecker graphs: an approach to modeling networks publication-title: J Mach Learn Res – volume: 52 start-page: 1 year: 2015 end-page: 14 article-title: Autonomous cars: the tension between occupant experience and intersection capacity publication-title: Transp Res C Emerg Technol – volume: 37 start-page: 30 issue: 1 year: 2017 end-page: 40 article-title: Efficient situational scheduling of graph workloads on single‐chip multicores and gpus publication-title: IEEE Micro – volume: 38 start-page: 25 issue: 1 year: 2011 article-title: The university of Florida sparse matrix collection publication-title: ACM Trans Math Softw – year: 2006 – year: 2020 – year: 2016 article-title: End to end learning for self‐driving cars publication-title: CoRR – year: 2017 – year: 2019 – start-page: 38 year: 2006 – year: 2015 – year: 2013 – volume: 50 start-page: 457 issue: 4 year: 2015 end-page: 471 article-title: Kinetic dependence graphs publication-title: ACM SIGPLAN Not – ident: e_1_2_9_31_1 doi: 10.1109/IISWC.2015.11 – ident: e_1_2_9_21_1 doi: 10.1145/3380536.3380540 – year: 2016 ident: e_1_2_9_4_1 article-title: End to end learning for self‐driving cars publication-title: CoRR – ident: e_1_2_9_27_1 doi: 10.1017/CBO9780511815478 – ident: e_1_2_9_6_1 – ident: e_1_2_9_24_1 doi: 10.1109/ISPASS.2019.00039 – start-page: 38 volume-title: A Synthetic Graph Generator Suite year: 2006 ident: e_1_2_9_29_1 – volume: 11 start-page: 985 year: 2010 ident: e_1_2_9_30_1 article-title: Kronecker graphs: an approach to modeling networks publication-title: J Mach Learn Res – ident: e_1_2_9_36_1 – ident: e_1_2_9_20_1 doi: 10.1109/MM.2017.16 – ident: e_1_2_9_16_1 – ident: e_1_2_9_17_1 doi: 10.1145/2628071.2628092 – ident: e_1_2_9_33_1 doi: 10.1145/3108140 – ident: e_1_2_9_22_1 doi: 10.1145/1543135.1542481 – ident: e_1_2_9_35_1 doi: 10.1145/2049662.2049663 – year: 2014 ident: e_1_2_9_9_1 article-title: GraphX: unifying data‐parallel and graph‐parallel analytics publication-title: CoRR – ident: e_1_2_9_12_1 doi: 10.1145/2775054.2694363 – ident: e_1_2_9_14_1 doi: 10.1109/LCA.2020.3045670 – ident: e_1_2_9_28_1 doi: 10.1145/2644865.2541964 – ident: e_1_2_9_25_1 doi: 10.1109/DCC.2015.8 – ident: e_1_2_9_37_1 doi: 10.1609/aaai.v29i1.9277 – ident: e_1_2_9_3_1 doi: 10.1145/1772690.1772751 – ident: e_1_2_9_5_1 doi: 10.1145/2939672.2939860 – ident: e_1_2_9_11_1 doi: 10.1109/TPDS.2015.2485994 – ident: e_1_2_9_10_1 doi: 10.1109/IISWC.2013.6704684 – ident: e_1_2_9_13_1 doi: 10.1145/2517349.2522739 – ident: e_1_2_9_2_1 doi: 10.1016/j.trc.2015.01.002 – ident: e_1_2_9_19_1 doi: 10.1109/IISWC.2016.7581278 – ident: e_1_2_9_23_1 doi: 10.1145/2451116.2451162 – ident: e_1_2_9_8_1 doi: 10.1109/INFCOM.2010.5461987 – ident: e_1_2_9_32_1 doi: 10.1145/3087556.3087580 – ident: e_1_2_9_7_1 doi: 10.1016/j.neuron.2014.10.015 – ident: e_1_2_9_34_1 – ident: e_1_2_9_15_1 doi: 10.1145/2038037.1941557 – ident: e_1_2_9_18_1 doi: 10.1145/2737924.2737969 – ident: e_1_2_9_26_1 doi: 10.1109/HPEC.2012.6408680 |
| SSID | ssj0011031 |
| Score | 2.2844143 |
| Snippet | Task‐based execution of graph workloads allows various ordered and unordered implementations, with tasks representing dependencies between graph vertices and... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| SubjectTerms | Algorithms Apexes Graph theory Graphical representations Graphs Neural networks ordered algorithms parallel graph algorithms Performance prediction Prediction models temporal graphs unordered algorithms Variables Workload |
| Title | A performance predictor for implementation selection of parallelized static and temporal graph algorithms |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.6267 https://www.proquest.com/docview/2612223284 |
| Volume | 34 |
| WOSCitedRecordID | wos000643913900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1532-0634 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011031 issn: 1532-0626 databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_o5sGL8xOnUyKIt7q2S5v2OOaGhzGGONmtpEmqha4b7fTgX-9LPzY9CIKnlpJA-j6SX_Lyfg_gVrq-Egw9LXKVY1ARUcNX6O5UOqEKfWqJIqL7MmaTiTef-9PqVqXOhSn5ITYHbtozivlaOzgP8-6WNFSs1D2icbYLTRvNljag-fA0mo03MQRdwKBkS7UNE1vW1LOm3a37_lyMtgjzO04tFppR6z9DPISDCl6SfmkPR7Cj0mNo1aUbSOXJJxD3yWqbMkBWmY7X4Pab4CcSL-pL5VprJC9K5ei3ZUQ0VXiS4Lg-lSQ6GykWhKeSVBRXCSkYsAlPXpdZvH5b5KcwGw2fB49GVXXBELhZZIYKXYk7Zk8KD2czqRSCIsunTijdyIpojzv675TlitBSLJRMIijxpc9N6TMeRb0zaKTLVJ0DQbSmHGFS7noeDW3NicwiqjGU8rjrsDbc1OIPViW5RlDSKNsByi7QsmtDp9ZLULlXHmjeM8Q1uLS24a7QwK_9g8F0qJ8Xf214Cfu2TnEwLcN2OtBYZ-_qCvbExzrOs-vKyL4AEdzXBQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oJuiL84rTqRHEt7q2S5sWn8bcmFjHkE32Vtok1UJ3YZs--Os96WXTB0HwqaUkkJ5L8iUn5zsA18J2JWfoaZEtLY3yiGquRHenwgpl6FKDpxHdF4_1es5o5PY34K7Ihcn4IVYHbsoz0vlaObg6kK6vWUP5TN4iHGebUKZoRVYJyvfPnaG3CiKoCgYZXaqp6diy4J7VzXrR9-dqtIaY34FqutJ0Kv8a4x7s5gCTNDOL2IcNOTmASlG8geS-fAhxk8zWSQNkNlcRG9yAE_xE4nFxrVzpjSzSYjnqbRoRRRaeJDiwTymIykeKOQkmguQkVwlJObBJkLxO5_Hybbw4gmGnPWh1tbzugsZxu8g0GdoC98yO4A7OZ0JKhEWGS61Q2JER0UZgqb-Ths1DQ7JQMIGwxBVuoAuXBVHUOIbSZDqRJ0AQr0mL6zSwHYeGpmJFZhFVKEo6gW2xKlwV8vdnGb2GnxEpmz7Kzleyq0KtUIyfO9jCV8xniGxwca3CTaqCX_v7rX5bPU__2vAStruDJ8_3HnqPZ7BjqoQH3dBMqwal5fxdnsMW_1jGi_lFbnFf83La9Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IV5cn7g-I4i3alvTpsHToi6Ky7KIirfSJhMtrLtld_Xgr3fSh6sHQfDUUhJIZ_IlXzqdbwCOdChRCUKaCTFwuDLckUhw5zpIMZXcU0VE97Ejut3o6Un2ZuC8zoUp9SG-PrhZZBTrtQU45tqcTlVDVY4nRMfFLMzzQIaEyvnLu_ZD5yuIYCsYlHKpvuNSy1p71vVP674_d6MpxfxOVIudpt341xhXYLkimKxVzohVmMHBGjTq4g2swvI6ZC2WT5MGWD6yERs6gDN6xLLX-rdy6zc2Lorl2LuhYVYsvN-ngX2gZjYfKVMsGWhWiVz1WaGBzZL-83CUTV5exxvw0L66v7h2qroLjqLjonAwDTWdmSOtIlrPNCLRIk_yINWh8Qw_SwL7duiFKvVQpFpooiVSy8TVUiTGnG3C3GA4wC1gxNcwUC5PwijiqW9VkYXhlkVhlISBaMJhbf84L-U14lJI2Y_JdrG1XRN2a8fEFcDGsVU-I2ZDm2sTjgsX_No_vuhd2ev2XxsewGLvsh13brq3O7Dk23wH13P8YBfmJqM33IMF9T7JxqP9asJ9ArYG2nA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+performance+predictor+for+implementation+selection+of+parallelized+static+and+temporal+graph+algorithms&rft.jtitle=Concurrency+and+computation&rft.au=Rehman%2C+Akif&rft.au=Ahmad%2C+Masab&rft.au=Khan%2C+Omer&rft.date=2022-01-25&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=34&rft.issue=2&rft_id=info:doi/10.1002%2Fcpe.6267&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_6267 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |