Multi‐Objective Optimization and Experimental Research of Ship Form Based on Improved Bare‐Bones Multi‐Objective Particle Swarm Optimization Algorithm

ABSTRACT Ship form optimization poses a complex and high‐dimensional engineering challenge. Therefore, when conducting multi‐objective optimization research of ship forms, traditional intelligent optimization algorithms are prone to falling into local optima solution and difficult to converge. In or...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal for numerical methods in fluids Ročník 97; číslo 3; s. 267 - 282
Hlavní autoři: Liu, Jie, Zhang, Baoji, Lai, Yuyang, Fang, Liqiao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA John Wiley & Sons, Inc 01.03.2025
Wiley Subscription Services, Inc
Témata:
ISSN:0271-2091, 1097-0363
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract ABSTRACT Ship form optimization poses a complex and high‐dimensional engineering challenge. Therefore, when conducting multi‐objective optimization research of ship forms, traditional intelligent optimization algorithms are prone to falling into local optima solution and difficult to converge. In order to effectively improve the diversity and convergence performance of the algorithm, this paper improves the bare‐bones multi‐objective particle swarm optimization (BBMOPSO) algorithm by dynamically adjusting the local and global search step sizes, and verifies the algorithm's reliability through standard function testing. Then, a multi‐objective optimization design framework with high efficiency and high integration is constructed. Taking DTMB 5512 as the research case, Free Form Deformation (FFD) method is used for hull deformation, and the proposed algorithm is used for multi‐objective optimization of resistance performance and motion response. Ship model tests were conducted on the DTMB 5512's original hull. And the numerical simulations were compared with the ship model tests. Finally, under the constructed multi‐objective optimization design framework, satisfactory solutions were obtained through the improved algorithm, which confirms the effectiveness and practicality of the improved algorithm. The results show that the algorithm improved in this paper can provide some theoretical basis and technical support for green ship design and low‐carbon shipping. Conduct ship model tests to verify the reliability of simulation calculations. Introduce search range coefficient and search step size to improve algorithm performance. Build an efficient and highly integrated multi‐objective optimization design framework, and conduct multi‐objective optimization research on resistance performance and motion response.
AbstractList ABSTRACT Ship form optimization poses a complex and high‐dimensional engineering challenge. Therefore, when conducting multi‐objective optimization research of ship forms, traditional intelligent optimization algorithms are prone to falling into local optima solution and difficult to converge. In order to effectively improve the diversity and convergence performance of the algorithm, this paper improves the bare‐bones multi‐objective particle swarm optimization (BBMOPSO) algorithm by dynamically adjusting the local and global search step sizes, and verifies the algorithm's reliability through standard function testing. Then, a multi‐objective optimization design framework with high efficiency and high integration is constructed. Taking DTMB 5512 as the research case, Free Form Deformation (FFD) method is used for hull deformation, and the proposed algorithm is used for multi‐objective optimization of resistance performance and motion response. Ship model tests were conducted on the DTMB 5512's original hull. And the numerical simulations were compared with the ship model tests. Finally, under the constructed multi‐objective optimization design framework, satisfactory solutions were obtained through the improved algorithm, which confirms the effectiveness and practicality of the improved algorithm. The results show that the algorithm improved in this paper can provide some theoretical basis and technical support for green ship design and low‐carbon shipping. Conduct ship model tests to verify the reliability of simulation calculations. Introduce search range coefficient and search step size to improve algorithm performance. Build an efficient and highly integrated multi‐objective optimization design framework, and conduct multi‐objective optimization research on resistance performance and motion response.
Ship form optimization poses a complex and high‐dimensional engineering challenge. Therefore, when conducting multi‐objective optimization research of ship forms, traditional intelligent optimization algorithms are prone to falling into local optima solution and difficult to converge. In order to effectively improve the diversity and convergence performance of the algorithm, this paper improves the bare‐bones multi‐objective particle swarm optimization (BBMOPSO) algorithm by dynamically adjusting the local and global search step sizes, and verifies the algorithm's reliability through standard function testing. Then, a multi‐objective optimization design framework with high efficiency and high integration is constructed. Taking DTMB 5512 as the research case, Free Form Deformation (FFD) method is used for hull deformation, and the proposed algorithm is used for multi‐objective optimization of resistance performance and motion response. Ship model tests were conducted on the DTMB 5512's original hull. And the numerical simulations were compared with the ship model tests. Finally, under the constructed multi‐objective optimization design framework, satisfactory solutions were obtained through the improved algorithm, which confirms the effectiveness and practicality of the improved algorithm. The results show that the algorithm improved in this paper can provide some theoretical basis and technical support for green ship design and low‐carbon shipping.
Author Liu, Jie
Zhang, Baoji
Fang, Liqiao
Lai, Yuyang
Author_xml – sequence: 1
  givenname: Jie
  orcidid: 0000-0001-9999-7274
  surname: Liu
  fullname: Liu, Jie
  organization: Shanghai Maritime University
– sequence: 2
  givenname: Baoji
  surname: Zhang
  fullname: Zhang, Baoji
  email: zbj1979@163.com
  organization: Shanghai Maritime University
– sequence: 3
  givenname: Yuyang
  surname: Lai
  fullname: Lai, Yuyang
  organization: Beijing Soyotec Co. Ltd
– sequence: 4
  givenname: Liqiao
  surname: Fang
  fullname: Fang, Liqiao
  organization: Beijing Soyotec Co. Ltd
BookMark eNp1kM1OAjEUhRujiYAmPkITN24G-8NMZ5aAoCQYjOh6UsqtlMyf7QDiykfwAXw6n8Qiboxxde_iu-ece5rosCgLQOiMkjYlhF3qbN4OeSc6QA1KEhEQHvFD1CBM0ICRhB6jpnNLQkjCYt5AH7errDafb--T2RJUbdaAJ1VtcvMqa1MWWBZzPHipwJocilpm-B4cSKsWuNR4ujAVHpY2xz3pYI49P8orW6793pMWvGzPp3P4r8mdtLVRGeDpRvr7X57d7Km0pl7kJ-hIy8zB6c9socfh4KF_E4wn16N-dxwoFnaigHIKSUcKrmOh_LvAhWYyYkoDiUUkuSJaSB6LZBaykCkVy1joOCRiLkioE95C53tdn_15Ba5Ol-XKFt4y5TTiJIoTsaMu9pSypXMWdFr5VqTdppSku-5T3326696jwR7dmAy2_3LpcHz1zX8BCWuLzw
Cites_doi 10.1016/j.ocecoaman.2023.106665
10.4031/MTSJ.53.1.10
10.1016/j.ins.2011.06.004
10.1016/j.ins.2016.08.043
10.1016/j.asoc.2022.108532
10.1016/j.advengsoft.2018.05.011
10.13195/j.kzyjc.2014.1378
10.1109/CEC.2012.6256467
10.16208/j.issn1000‐7024.2020.04.011
10.1016/j.pnucene.2023.104740
10.13195/j.kzyjc.2020.1440
10.1108/EC‐05‐2019‐0194
10.1115/1.1412235
10.1016/j.oceaneng.2018.10.025
10.1162/106365600568202
10.1155/2016/6761545
10.1016/j.asoc.2016.09.026
10.1109/4235.996017
10.1016/j.oceaneng.2022.112454
10.1007/s10661‐022‐09909‐6
10.1109/TCYB.2017.2756874
10.1007/s11047‐019‐09729‐7
10.1177/16878132221086689
10.1016/j.oceaneng.2023.114772
10.1007/s003480100293
10.1109/ACCESS.2020.3007846
10.1016/j.eswa.2011.01.169
10.1049/iet‐rsn.2017.0351
10.3233/JIFS‐181005
10.1016/j.csite.2022.102644
10.1002/fld.5291
10.1109/CEC.2002.1007032
10.1016/j.ress.2014.03.006
10.1109/SIS.2008.4668301
10.1504/IJICA.2009.031779
10.1007/s00773‐019‐00640‐5
10.1109/SIS.2003.1202251
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2025 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2025 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7QH
7SC
7TB
7U5
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
DOI 10.1002/fld.5346
DatabaseName CrossRef
Aqualine
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1097-0363
EndPage 282
ExternalDocumentID 10_1002_fld_5346
FLD5346
Genre researchArticle
GrantInformation_xml – fundername: Natural Science Foundation of Shanghai Municipality
  funderid: 14ZR1419500
– fundername: National Natural Science Foundation of China
  funderid: 51779135; 51009087
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
VH1
VOH
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~02
~A~
~IA
~WT
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
O8X
7QH
7SC
7TB
7U5
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c2546-131e94a73f87c363e37f2a62cfe0876a3c0f7a3879b5252cc8a87f8507d705f93
IEDL.DBID DRFUL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001336594600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0271-2091
IngestDate Fri Jul 25 12:13:27 EDT 2025
Sat Nov 29 03:28:01 EST 2025
Wed Jun 11 08:26:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2546-131e94a73f87c363e37f2a62cfe0876a3c0f7a3879b5252cc8a87f8507d705f93
Notes Funding
This work was supported by the National Natural Science Foundation of China (Nos. 51779135 and 51009087), and the Natural Science Foundation of Shanghai Municipality (No. 14ZR1419500).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9999-7274
PQID 3163068979
PQPubID 996375
PageCount 16
ParticipantIDs proquest_journals_3163068979
crossref_primary_10_1002_fld_5346
wiley_primary_10_1002_fld_5346_FLD5346
PublicationCentury 2000
PublicationDate March 2025
2025-03-00
20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Bognor Regis
PublicationTitle International journal for numerical methods in fluids
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2001; 123
2012; 2012
2023; 280
2022; 194
2023; 241
2019; 53
2020; 41
2023; 161
2018; 123
2015; 30
2000; 8
2019; 36
2008
2020; 37
2024; 96
2003
2002b; 1
2017; 375
2022; 119
2011; 38
2018; 48
2020; 19
2016; 12
2020; 8
2014; 127
2023; 41
2017; 52
2022; 264
2002a; 6
2012; 192
2018
2022; 14
2020; 25
2022; 37
2018; 12
2009; 2
2019; 171
2001; 31
1989
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Zhang B. J. (e_1_2_9_2_1) 2018
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
Deb K. (e_1_2_9_37_1) 1989
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 375
  start-page: 30
  year: 2017
  end-page: 47
  article-title: Multi‐Objective Particle Swarm Optimization Based on Global Margin Ranking
  publication-title: Information Sciences
– volume: 12
  start-page: 485
  issue: 5
  year: 2018
  end-page: 493
  article-title: Deployment of Multistatic Radar System Using Multi‐Objective Particle Swarm Optimization
  publication-title: IET Radar, Sonar and Navigation
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 8
  article-title: On Extending Quantum Behaved Particle Swarm Optimization to Multiobjective Context
  publication-title: IEEE Congress on Evolutionary Computation
– volume: 264
  year: 2022
  article-title: Ship Maneuverability Modeling and Numerical Prediction Using CFD With Body Force Propeller
  publication-title: Ocean Engineering
– volume: 2
  start-page: 86
  issue: 2
  year: 2009
  end-page: 99
  article-title: Barebones Particle Swarm for Multi‐Objective Optimisation Problems
  publication-title: International Journal of Innovative Computing and Applications
– volume: 48
  start-page: 3067
  issue: 11
  year: 2018
  end-page: 3079
  article-title: Adaptive Gradient Multiobjective Particle Swarm Optimization
  publication-title: IEEE Transactions on Cybernetics
– volume: 38
  start-page: 12051
  issue: 10
  year: 2011
  end-page: 12057
  article-title: Comparisons of Some Improving Strategies on MOPSO for Multi‐Objective (r,Q) Inventory System
  publication-title: Expert Systems with Applications
– volume: 123
  start-page: 51
  year: 2018
  end-page: 61
  article-title: Parameter Optimization Design of Vehicle E‐HHPS System Based on an Improved MOPSO Algorithm
  publication-title: Advances in Engineering Software
– volume: 37
  start-page: 2085
  issue: 6
  year: 2020
  end-page: 2110
  article-title: Optimal Energy Management of Microgrid Using Advanced Multi‐Objective Particle Swarm Optimization
  publication-title: Engineering Computations
– volume: 36
  start-page: 1823
  issue: 2
  year: 2019
  end-page: 1836
  article-title: Integrated MOPSO Algorithms for Task Scheduling in Cloud Computing
  publication-title: Journal of Intelligent Fuzzy Systems
– volume: 241
  year: 2023
  article-title: Carbon Emission Allowance Allocation Based on a Bi‐Level Multi‐Objective Model in Maritime Shipping
  publication-title: Ocean and Coastal Management
– volume: 53
  start-page: 97
  issue: 1
  year: 2019
  end-page: 106
  article-title: Numerical Simulation of Ship Motions in Regular and Irregular Waves
  publication-title: Marine Technology Society Journal
– volume: 41
  start-page: 964
  issue: 4
  year: 2020
  end-page: 971
  article-title: Multi Objective Particle Swarm Optimization Algorithm Based on Game Mechanism
  publication-title: Computer Engineering and Design
– volume: 12
  start-page: 1
  year: 2016
  end-page: 15
  article-title: A Decomposition‐Based Unified Evolutionary Algorithm for Many‐Objective Problems Using Particle Swarm Optimization
  publication-title: Mathematical Problems in Engineering
– year: 2018
– volume: 194
  start-page: 261
  year: 2022
  article-title: An Improved MOPSO Algorithm for Multi‐Objective Optimization of Reservoir Operation Under Climate Change
  publication-title: Environmental Monitoring and Assessment
– volume: 192
  start-page: 213
  year: 2012
  end-page: 227
  article-title: A Bare‐Bones Multi‐Objective Particle Swarm Optimization Algorithm for Environmental/Economic Dispatch
  publication-title: Information Sciences
– volume: 41
  year: 2023
  article-title: Design Optimization of a Shell‐And‐Tube Heat Exchanger With Disc‐And‐Doughnut Baffles for Aero‐Engine Using One Hybrid Method of NSGA II and MOPSO
  publication-title: Case Studies in Thermal Engineering
– volume: 37
  start-page: 997
  issue: 4
  year: 2022
  end-page: 1004
  article-title: Economic Emission Dispatch of Power System Based on Improved Bare‐Bone Multi‐Objective Particle Swarm Optimization Algorithm
  publication-title: Control and Decision‐Making
– volume: 6
  start-page: 182
  issue: 2
  year: 2002a
  end-page: 197
  article-title: A Fast and Elitist Multi‐Objective Genetic Algorithm: NSGA‐II
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 119
  year: 2022
  article-title: A Multi‐Objective Particle Swarm Optimization Algorithm Based on Two‐Archive Mechanism
  publication-title: Applied Soft Computing
– volume: 96
  start-page: 1445
  issue: 8
  year: 2024
  end-page: 1460
  article-title: Hull Form Optimization Research Based on Multi‐Precision Back‐Propagation Neural Network Approximation Model
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 31
  start-page: 336
  issue: 3
  year: 2001
  end-page: 346
  article-title: Towing Tank Piv Measurement System, Data and Uncertainty Assessment for Dtmb Model 5512
  publication-title: Experiments in Fluids
– year: 2008
– start-page: 80
  year: 2003
  end-page: 87
– volume: 14
  issue: 3
  year: 2022
  article-title: Line Heating Process Parameter Forecasting Method Based on Optimization Concept
  publication-title: Advances in Mechanical Engineering
– volume: 19
  start-page: 733
  year: 2020
  end-page: 742
  article-title: Optimal Shape Design of an Autonomous Underwater Vehicle Based on Multi‐Objective Particle Swarm Optimization
  publication-title: Natural Computing
– volume: 161
  year: 2023
  article-title: Multi‐Objective Optimization of Marine Nuclear Power Secondary Circuit System Based on Improved Multi‐Objective Particle Swarm Optimization Algorithm
  publication-title: Progress in Nuclear Energy
– volume: 1
  start-page: 825
  year: 2002b
  end-page: 830
  article-title: Scalable Multi‐Objective Optimization Test Problems
  publication-title: Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)
– volume: 25
  start-page: 185
  year: 2020
  end-page: 195
  article-title: Multiple Speed Integrated Optimization Design for a SWATH Using SBD Technique
  publication-title: Journal of Marine Science and Technology
– start-page: 42
  year: 1989
  end-page: 50
– volume: 8
  start-page: 124734
  year: 2020
  end-page: 124754
  article-title: A Fast Multi‐Objective Particle Swarm Optimization Algorithm Based on a New Archive Updating Mechanism
  publication-title: IEEE Access
– volume: 123
  start-page: 792
  issue: 4
  year: 2001
  end-page: 802
  article-title: Comprehensive Approach to Verification and Validation of CFD Simulations‐Part 1: Methodology and Procedures
  publication-title: ASME Journal of Fluids Engineering
– volume: 8
  start-page: 173
  issue: 2
  year: 2000
  end-page: 195
  article-title: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results
  publication-title: Evolutionary Computation
– volume: 52
  start-page: 1042
  year: 2017
  end-page: 1057
  article-title: Movpso: Vortex Multi‐Objective Particle Swarm Optimization
  publication-title: Applied Soft Computing
– volume: 280
  year: 2023
  article-title: A Multi‐Objective Cooperative Particle Swarm Optimization Based on Hybrid Dimensions for Ship Pipe Route Design
  publication-title: Ocean Engineering
– volume: 30
  start-page: 1945
  issue: 11
  year: 2015
  end-page: 1952
  article-title: Three State Coordinated Search Multi‐Objective Particle Swarm Optimization
  publication-title: Control and Decision Making
– volume: 171
  start-page: 33
  year: 2019
  end-page: 48
  article-title: Hydrodynamic Coefficients Identification of Pitch and Heave Using Multi‐Objective Evolutionary Algorithm
  publication-title: Ocean Engineering
– volume: 127
  start-page: 65
  year: 2014
  end-page: 76
  article-title: A Practical Approach for Solving Multi‐Objective Reliability Redundancy Allocation Problems Using Extended Bare‐Bones Particle Swarm Optimization
  publication-title: Reliability Engineering & System Safety
– ident: e_1_2_9_25_1
  doi: 10.1016/j.ocecoaman.2023.106665
– ident: e_1_2_9_30_1
  doi: 10.4031/MTSJ.53.1.10
– ident: e_1_2_9_36_1
  doi: 10.1016/j.ins.2011.06.004
– ident: e_1_2_9_13_1
  doi: 10.1016/j.ins.2016.08.043
– ident: e_1_2_9_23_1
  doi: 10.1016/j.asoc.2022.108532
– ident: e_1_2_9_4_1
  doi: 10.1016/j.advengsoft.2018.05.011
– ident: e_1_2_9_12_1
  doi: 10.13195/j.kzyjc.2014.1378
– ident: e_1_2_9_19_1
  doi: 10.1109/CEC.2012.6256467
– start-page: 42
  volume-title: Proceeding of the 3rd International Conference on Genetic Algorithms
  year: 1989
  ident: e_1_2_9_37_1
– ident: e_1_2_9_16_1
  doi: 10.16208/j.issn1000‐7024.2020.04.011
– ident: e_1_2_9_18_1
  doi: 10.1016/j.pnucene.2023.104740
– volume-title: Research on Ship Design and Optimization Based on Simulation‐Based Design (SBD) Technique
  year: 2018
  ident: e_1_2_9_2_1
– ident: e_1_2_9_17_1
  doi: 10.13195/j.kzyjc.2020.1440
– ident: e_1_2_9_5_1
  doi: 10.1108/EC‐05‐2019‐0194
– ident: e_1_2_9_31_1
  doi: 10.1115/1.1412235
– ident: e_1_2_9_10_1
  doi: 10.1016/j.oceaneng.2018.10.025
– ident: e_1_2_9_40_1
  doi: 10.1162/106365600568202
– ident: e_1_2_9_20_1
  doi: 10.1155/2016/6761545
– ident: e_1_2_9_21_1
  doi: 10.1016/j.asoc.2016.09.026
– ident: e_1_2_9_38_1
  doi: 10.1109/4235.996017
– ident: e_1_2_9_28_1
  doi: 10.1016/j.oceaneng.2022.112454
– ident: e_1_2_9_6_1
  doi: 10.1007/s10661‐022‐09909‐6
– ident: e_1_2_9_15_1
  doi: 10.1109/TCYB.2017.2756874
– ident: e_1_2_9_8_1
  doi: 10.1007/s11047‐019‐09729‐7
– ident: e_1_2_9_26_1
  doi: 10.1177/16878132221086689
– ident: e_1_2_9_24_1
  doi: 10.1016/j.oceaneng.2023.114772
– ident: e_1_2_9_27_1
  doi: 10.1007/s003480100293
– ident: e_1_2_9_22_1
  doi: 10.1109/ACCESS.2020.3007846
– ident: e_1_2_9_11_1
  doi: 10.1016/j.eswa.2011.01.169
– ident: e_1_2_9_14_1
  doi: 10.1049/iet‐rsn.2017.0351
– ident: e_1_2_9_7_1
  doi: 10.3233/JIFS‐181005
– ident: e_1_2_9_3_1
  doi: 10.1016/j.csite.2022.102644
– ident: e_1_2_9_29_1
  doi: 10.1002/fld.5291
– ident: e_1_2_9_39_1
  doi: 10.1109/CEC.2002.1007032
– ident: e_1_2_9_35_1
  doi: 10.1016/j.ress.2014.03.006
– ident: e_1_2_9_33_1
  doi: 10.1109/SIS.2008.4668301
– ident: e_1_2_9_34_1
  doi: 10.1504/IJICA.2009.031779
– ident: e_1_2_9_9_1
  doi: 10.1007/s00773‐019‐00640‐5
– ident: e_1_2_9_32_1
  doi: 10.1109/SIS.2003.1202251
SSID ssj0009283
Score 2.4324944
Snippet ABSTRACT Ship form optimization poses a complex and high‐dimensional engineering challenge. Therefore, when conducting multi‐objective optimization research of...
Ship form optimization poses a complex and high‐dimensional engineering challenge. Therefore, when conducting multi‐objective optimization research of ship...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 267
SubjectTerms algorithm improvement
Algorithms
Bones
Deformation
Deformation effects
Design
Design optimization
Design standards
Experimental research
Free form
Laboratory experimentation
motion response
multi‐objective optimization
Naval engineering
Optimization
Particle swarm optimization
Ship design
Ship hulls
ship model test
Ship models
Shipping
total resistance in waves
Title Multi‐Objective Optimization and Experimental Research of Ship Form Based on Improved Bare‐Bones Multi‐Objective Particle Swarm Optimization Algorithm
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.5346
https://www.proquest.com/docview/3163068979
Volume 97
WOSCitedRecordID wos001336594600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0363
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009283
  issn: 0271-2091
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTgMhFL3R6kIXvo31FUyMu9EWZmBYqu3EhanGR-JuAgzYGq2mrbr1E_wAv84vEWYY28aYmLgaFlwgcF9DuOcA7JqYypALGRhDwyBkVAcyMyRQhDssaB1KKnKyCdZqxTc3_Ny_qnS1MAU-xPeFm7OM3F87AxeyfzAEDTX32X5EQjoJU9iqbVSBqcZFcn06hNzFBQgnZnWrC7xeQs_W8EEpOx6MhhnmaJ6aB5pk_j9LXIA5n16iw0IfFmFCd5dg3qeayBtyfwlmR3AIl-EjL8P9fHs_k3eFA0Rn1pU8-BpNJLoZao5QAaDyvR56NOiy3XlCiU190ZGNiBmy_YubCtt2bAp22CNHCIB-TnLu9RZdvgorPzbn4f3tY68zaD-swHXSvDo-CTxtQ6AcuH5QJ3XNQ8GIiZkilGjCDBYUK6Md_p0gqmaYIDHjMsIRVioWMTOxTUwzVosMJ6tQ6dp1rQHKuDQ0w45ci4cOy09jIiThRFOVmUhVYac8v_SpQOdICxxmnNrNT93mV2GzPNjU22c_tSPaf6WYM16FvfwIf5VPk9OG-67_teMGzGBHEpw_VNuEyqD3rLdgWr0MOv3ettfSL6sP8Qg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFL34AnVhfWJ9RhB3o51kJpngymoHxVrFB7gbMplEK1qlrbr1E_wAv84vMZmHbRFBcDVZ5CYh99zkTEjOBdjUAY09LmJHa-o5HqPKiRNNHEm41YJWXkxFmmyCNRrB9TU_G4Ld4i1Mpg_xfeBmIyNdr22A2wPpnZ5qqL5Ptn3i0WEY9QyKDLxHD87Dq3pPcxdnKpyYuQYM3C20Zyt4p7Ad3I16FLOfqKY7TVj61xinYSonmGgvQ8QMDKnWLJRysonyUO7MwmSfEuEcfKQPcT_f3k_ju2wJRKdmMXnIX2ki0UpQrS8ZACpu7KFHjS5um08oNOQXVc2emCBTPzurMGWbT8E0W7UpAdDPTs5y5KKLV2HsB_rcu795bDe7tw_zcBXWLvcPnTxxgyOtvL7jEldxTzCiAyYJJYowjQXFUiurgCeIrGgmSMB47GMfSxmIgOnAUNOEVXzNyQKMtMy4FgElPNY0wTa9Fvesmp_CRMSEE0Vlon1Zho3CgdFTps8RZUrMODKTH9nJL8NK4dkoj9BOZFo0f0sBZ7wMW6kPf7WPwvqB_S79teI6jB9entSj-lHjeBkmsOFB9tqa667ASLf9rFZhTL50m532Wg7ZLwkZ9Pg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSisxGP7xVDnowrtYrxHE3dg2mUkmuFLroFhq8QLuhkwuWtFa2qpbH8EH8Ol8EpO52IoIB85qssifhPzXCcn3AWybkCY-F4lnDPU9n1HtJcoQTxLusKC1n1CRkk2wZjO8vuatMdgr3sJk-BBfB27OM9J47Rxcd5WpDFFDzb3aDYhP_8C47zhkSjBeP4-uGkPMXZyhcGJWs8bAawX2bBVXCtnv2WhYYo4WqmmmiWb-a42zMJ0XmGg_s4g5GNOdeZjJi02Uu3J_HqZGkAgX4D19iPvx-naW3GUhEJ3ZYPKQv9JEoqPQ0QgZACpu7KFHgy5u210U2eIXHdicqJDtn51V2LbjU7DDHjhKAPRzklZuuejiRVj5b3Pu39889tqD24dFuIqOLg-PvZy4wZMOXt-rkZrmvmDEhEwSSjRhBguKpdEOAU8QWTVMkJDxJMABljIUITOhLU0VqwaGkyUodey6lgEpnhiqsKPX4r5D89OYiIRwoqlUJpBl2CoUGHczfI44Q2LGsd382G1-GdYKzca5h_ZjO6L9Wwo542XYSXX4q3wcNeruu_KvHTfhb6sexY2T5ukqTGLHGJzeWluD0qD3pNdhQj4P2v3eRm6xn6c29HM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi%E2%80%90Objective+Optimization+and+Experimental+Research+of+Ship+Form+Based+on+Improved+Bare%E2%80%90Bones+Multi%E2%80%90Objective+Particle+Swarm+Optimization+Algorithm&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Liu%2C+Jie&rft.au=Zhang%2C+Baoji&rft.au=Lai%2C+Yuyang&rft.au=Fang%2C+Liqiao&rft.date=2025-03-01&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=97&rft.issue=3&rft.spage=267&rft.epage=282&rft_id=info:doi/10.1002%2Ffld.5346&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_fld_5346
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon