COVID-19 World Vaccination Progress Using Machine Learning Classification Algorithms

In December 2019, SARS-CoV-2 caused coronavirus disease (COVID-19) distributed to all countries, infecting thousands of people and causing deaths. COVID-19 induces mild sickness in most cases, although it may render some people very ill. Therefore, vaccines are in various phases of clinical progress...

Full description

Saved in:
Bibliographic Details
Published in:Qubahan Academic Journal Vol. 1; no. 2; pp. 100 - 105
Main Authors: M. Abdulkareem, Nasiba, Mohsin Abdulazeez, Adnan, Qader Zeebaree, Diyar, A. Hasan, Dathar
Format: Journal Article
Language:English
Published: Qubahan 03.05.2021
Subjects:
ISSN:2709-8206, 2709-8206
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In December 2019, SARS-CoV-2 caused coronavirus disease (COVID-19) distributed to all countries, infecting thousands of people and causing deaths. COVID-19 induces mild sickness in most cases, although it may render some people very ill. Therefore, vaccines are in various phases of clinical progress, and some of them being approved for national use. The current state reveals that there is a critical need for a quick and timely solution to the Covid-19 vaccine development. Non-clinical methods such as data mining and machine learning techniques may help do this. This study will focus on the COVID-19 World Vaccination Progress using Machine learning classification Algorithms. The findings of the paper show which algorithm is better for a given dataset. Weka is used to run tests on real-world data, and four output classification algorithms (Decision Tree, K-nearest neighbors, Random Tree, and Naive Bayes) are used to analyze and draw conclusions. The comparison is based on accuracy and performance period, and it was discovered that the Decision Tree outperforms other algorithms in terms of time and accuracy.
AbstractList In December 2019, SARS-CoV-2 caused coronavirus disease (COVID-19) distributed to all countries, infecting thousands of people and causing deaths. COVID-19 induces mild sickness in most cases, although it may render some people very ill. Therefore, vaccines are in various phases of clinical progress, and some of them being approved for national use. The current state reveals that there is a critical need for a quick and timely solution to the Covid-19 vaccine development. Non-clinical methods such as data mining and machine learning techniques may help do this. This study will focus on the COVID-19 World Vaccination Progress using Machine learning classification Algorithms. The findings of the paper show which algorithm is better for a given dataset. Weka is used to run tests on real-world data, and four output classification algorithms (Decision Tree, K-nearest neighbors, Random Tree, and Naive Bayes) are used to analyze and draw conclusions. The comparison is based on accuracy and performance period, and it was discovered that the Decision Tree outperforms other algorithms in terms of time and accuracy.
Author A. Hasan, Dathar
Mohsin Abdulazeez, Adnan
Qader Zeebaree, Diyar
M. Abdulkareem, Nasiba
Author_xml – sequence: 1
  givenname: Nasiba
  surname: M. Abdulkareem
  fullname: M. Abdulkareem, Nasiba
– sequence: 2
  givenname: Adnan
  surname: Mohsin Abdulazeez
  fullname: Mohsin Abdulazeez, Adnan
– sequence: 3
  givenname: Diyar
  surname: Qader Zeebaree
  fullname: Qader Zeebaree, Diyar
– sequence: 4
  givenname: Dathar
  surname: A. Hasan
  fullname: A. Hasan, Dathar
BookMark eNptkM1OwkAUhScGExHZ-QB9AIvz33ZJ8I8EgwvA5eR2OlOGlI7ONCa-vRWIMcbVvTk551t8l2jQ-tYgdE3whOdEktt32E0-SEtBsDM0pBku0pxiOfj1X6BxjK7EIieYMp4N0Wq23MzvUlIkrz40VbIBrV0LnfNt8hJ8HUyMyTq6tk6eQW9da5KFgdB-B7MGepp1-lifNrUPrtvu4xU6t9BEMz7dEVo_3K9mT-li-TifTReppoKz1GRMCEEMYWVlClwSLEAakYGktCKlzK3GTHAMFkrBNdNGC1FIU0lmNc0MG6H5kVt52Km34PYQPpUHpw6BD7WC0DndGGVKTrCxBVTMclbwPCuBZZXImai4zWXPujmydPAxBmN_eASrg2DVC1YnwX2d_qlr1x08dAFc8__oC9Ongjg
CitedBy_id crossref_primary_10_1007_s12553_022_00712_4
crossref_primary_10_1016_j_compeleceng_2022_108055
crossref_primary_10_1007_s13198_024_02354_3
crossref_primary_10_3390_s22187065
crossref_primary_10_3390_computers11020029
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.48161/qaj.v1n2a53
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2709-8206
EndPage 105
ExternalDocumentID oai_doaj_org_article_eb410ef9ad3f439487ba37d5835d4f86
10_48161_qaj_v1n2a53
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ID FETCH-LOGICAL-c2543-e735551e13bde90b105a6e57a622d1b68fc03540afab54c3cec5596ed63fc27e3
IEDL.DBID DOA
ISSN 2709-8206
IngestDate Tue Oct 14 14:38:49 EDT 2025
Tue Nov 18 22:40:11 EST 2025
Sat Nov 29 03:42:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2543-e735551e13bde90b105a6e57a622d1b68fc03540afab54c3cec5596ed63fc27e3
OpenAccessLink https://doaj.org/article/eb410ef9ad3f439487ba37d5835d4f86
PageCount 6
ParticipantIDs doaj_primary_oai_doaj_org_article_eb410ef9ad3f439487ba37d5835d4f86
crossref_primary_10_48161_qaj_v1n2a53
crossref_citationtrail_10_48161_qaj_v1n2a53
PublicationCentury 2000
PublicationDate 2021-05-03
PublicationDateYYYYMMDD 2021-05-03
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-03
  day: 03
PublicationDecade 2020
PublicationTitle Qubahan Academic Journal
PublicationYear 2021
Publisher Qubahan
Publisher_xml – name: Qubahan
SSID ssib058102347
Score 2.3315408
Snippet In December 2019, SARS-CoV-2 caused coronavirus disease (COVID-19) distributed to all countries, infecting thousands of people and causing deaths. COVID-19...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 100
SubjectTerms COVID-19 Vaccine, Machine learning, Classification algorithm, Dataset, weka
Title COVID-19 World Vaccination Progress Using Machine Learning Classification Algorithms
URI https://doaj.org/article/eb410ef9ad3f439487ba37d5835d4f86
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2709-8206
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib058102347
  issn: 2709-8206
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2709-8206
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib058102347
  issn: 2709-8206
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yPHgRRcX5ixz0JGVt0zTJcc4NBTd3mGO3kr6kczA3dXNH_3Zf0jrmQbx4KaE8QnkJyffSL99HyKWB3DCtTGBjqZ2FGa6DDIpA5lg9awuMe2_A4YPo9eRopPobVl-OE1bKA5eJa9g8iUJbKG1Y4W5xSpFrJgxH5GCSQnqx7VCojWIKZxKXTpEgESXTPZEIaxpv2PEqmsWasx970IZUv99TOntktwKDtFl-xD7ZsrMDMmg9Du9vg0hRT3ShQw0wKc_saN-xqXBtov5PP-16JqSllUjqmHqLS0f-KcOb0_Eci__nl8Uheeq0B627oPI-CMBdTw-sQCDAIxux3FgV5giDdGq50GkcmyhPZQGhO7LRhc55AgwsYG2QWpOyAmJh2RGpzeYze0yoCg1LgUlhQCY6EUoV2GIgJSBY5WmdXH9nI4NKGNz5U0wzLBB87jLMXVblrk6u1tGvpSDGL3E3LrHrGCdj7V_g4GbV4GZ_De7Jf3RySnZiR0RxLEV2RmrL9w97TrZhtZws3i_8vMFn97P9BYmJy4U
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COVID-19+World+Vaccination+Progress+Using+Machine+Learning+Classification+Algorithms&rft.jtitle=Qubahan+Academic+Journal&rft.au=Nasiba+M.+Abdulkareem&rft.au=Adnan+Mohsin+Abdulazeez&rft.au=Diyar+Qader+Zeebaree&rft.au=Dathar+A.+Hasan&rft.date=2021-05-03&rft.pub=Qubahan&rft.eissn=2709-8206&rft.volume=1&rft.issue=2&rft_id=info:doi/10.48161%2Fqaj.v1n2a53&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_eb410ef9ad3f439487ba37d5835d4f86
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2709-8206&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2709-8206&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2709-8206&client=summon