COVID-19 World Vaccination Progress Using Machine Learning Classification Algorithms
In December 2019, SARS-CoV-2 caused coronavirus disease (COVID-19) distributed to all countries, infecting thousands of people and causing deaths. COVID-19 induces mild sickness in most cases, although it may render some people very ill. Therefore, vaccines are in various phases of clinical progress...
Saved in:
| Published in: | Qubahan Academic Journal Vol. 1; no. 2; pp. 100 - 105 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Qubahan
03.05.2021
|
| Subjects: | |
| ISSN: | 2709-8206, 2709-8206 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In December 2019, SARS-CoV-2 caused coronavirus disease (COVID-19) distributed to all countries, infecting thousands of people and causing deaths. COVID-19 induces mild sickness in most cases, although it may render some people very ill. Therefore, vaccines are in various phases of clinical progress, and some of them being approved for national use. The current state reveals that there is a critical need for a quick and timely solution to the Covid-19 vaccine development. Non-clinical methods such as data mining and machine learning techniques may help do this. This study will focus on the COVID-19 World Vaccination Progress using Machine learning classification Algorithms. The findings of the paper show which algorithm is better for a given dataset. Weka is used to run tests on real-world data, and four output classification algorithms (Decision Tree, K-nearest neighbors, Random Tree, and Naive Bayes) are used to analyze and draw conclusions. The comparison is based on accuracy and performance period, and it was discovered that the Decision Tree outperforms other algorithms in terms of time and accuracy. |
|---|---|
| AbstractList | In December 2019, SARS-CoV-2 caused coronavirus disease (COVID-19) distributed to all countries, infecting thousands of people and causing deaths. COVID-19 induces mild sickness in most cases, although it may render some people very ill. Therefore, vaccines are in various phases of clinical progress, and some of them being approved for national use. The current state reveals that there is a critical need for a quick and timely solution to the Covid-19 vaccine development. Non-clinical methods such as data mining and machine learning techniques may help do this. This study will focus on the COVID-19 World Vaccination Progress using Machine learning classification Algorithms. The findings of the paper show which algorithm is better for a given dataset. Weka is used to run tests on real-world data, and four output classification algorithms (Decision Tree, K-nearest neighbors, Random Tree, and Naive Bayes) are used to analyze and draw conclusions. The comparison is based on accuracy and performance period, and it was discovered that the Decision Tree outperforms other algorithms in terms of time and accuracy. |
| Author | A. Hasan, Dathar Mohsin Abdulazeez, Adnan Qader Zeebaree, Diyar M. Abdulkareem, Nasiba |
| Author_xml | – sequence: 1 givenname: Nasiba surname: M. Abdulkareem fullname: M. Abdulkareem, Nasiba – sequence: 2 givenname: Adnan surname: Mohsin Abdulazeez fullname: Mohsin Abdulazeez, Adnan – sequence: 3 givenname: Diyar surname: Qader Zeebaree fullname: Qader Zeebaree, Diyar – sequence: 4 givenname: Dathar surname: A. Hasan fullname: A. Hasan, Dathar |
| BookMark | eNptkM1OwkAUhScGExHZ-QB9AIvz33ZJ8I8EgwvA5eR2OlOGlI7ONCa-vRWIMcbVvTk551t8l2jQ-tYgdE3whOdEktt32E0-SEtBsDM0pBku0pxiOfj1X6BxjK7EIieYMp4N0Wq23MzvUlIkrz40VbIBrV0LnfNt8hJ8HUyMyTq6tk6eQW9da5KFgdB-B7MGepp1-lifNrUPrtvu4xU6t9BEMz7dEVo_3K9mT-li-TifTReppoKz1GRMCEEMYWVlClwSLEAakYGktCKlzK3GTHAMFkrBNdNGC1FIU0lmNc0MG6H5kVt52Km34PYQPpUHpw6BD7WC0DndGGVKTrCxBVTMclbwPCuBZZXImai4zWXPujmydPAxBmN_eASrg2DVC1YnwX2d_qlr1x08dAFc8__oC9Ongjg |
| CitedBy_id | crossref_primary_10_1007_s12553_022_00712_4 crossref_primary_10_1016_j_compeleceng_2022_108055 crossref_primary_10_1007_s13198_024_02354_3 crossref_primary_10_3390_s22187065 crossref_primary_10_3390_computers11020029 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.48161/qaj.v1n2a53 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2709-8206 |
| EndPage | 105 |
| ExternalDocumentID | oai_doaj_org_article_eb410ef9ad3f439487ba37d5835d4f86 10_48161_qaj_v1n2a53 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E |
| ID | FETCH-LOGICAL-c2543-e735551e13bde90b105a6e57a622d1b68fc03540afab54c3cec5596ed63fc27e3 |
| IEDL.DBID | DOA |
| ISSN | 2709-8206 |
| IngestDate | Tue Oct 14 14:38:49 EDT 2025 Tue Nov 18 22:40:11 EST 2025 Sat Nov 29 03:42:32 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2543-e735551e13bde90b105a6e57a622d1b68fc03540afab54c3cec5596ed63fc27e3 |
| OpenAccessLink | https://doaj.org/article/eb410ef9ad3f439487ba37d5835d4f86 |
| PageCount | 6 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_eb410ef9ad3f439487ba37d5835d4f86 crossref_primary_10_48161_qaj_v1n2a53 crossref_citationtrail_10_48161_qaj_v1n2a53 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-03 |
| PublicationDateYYYYMMDD | 2021-05-03 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationTitle | Qubahan Academic Journal |
| PublicationYear | 2021 |
| Publisher | Qubahan |
| Publisher_xml | – name: Qubahan |
| SSID | ssib058102347 |
| Score | 2.3315408 |
| Snippet | In December 2019, SARS-CoV-2 caused coronavirus disease (COVID-19) distributed to all countries, infecting thousands of people and causing deaths. COVID-19... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 100 |
| SubjectTerms | COVID-19 Vaccine, Machine learning, Classification algorithm, Dataset, weka |
| Title | COVID-19 World Vaccination Progress Using Machine Learning Classification Algorithms |
| URI | https://doaj.org/article/eb410ef9ad3f439487ba37d5835d4f86 |
| Volume | 1 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2709-8206 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib058102347 issn: 2709-8206 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2709-8206 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib058102347 issn: 2709-8206 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yPHgRRcX5ixz0JGVt0zTJcc4NBTd3mGO3kr6kczA3dXNH_3Zf0jrmQbx4KaE8QnkJyffSL99HyKWB3DCtTGBjqZ2FGa6DDIpA5lg9awuMe2_A4YPo9eRopPobVl-OE1bKA5eJa9g8iUJbKG1Y4W5xSpFrJgxH5GCSQnqx7VCojWIKZxKXTpEgESXTPZEIaxpv2PEqmsWasx970IZUv99TOntktwKDtFl-xD7ZsrMDMmg9Du9vg0hRT3ShQw0wKc_saN-xqXBtov5PP-16JqSllUjqmHqLS0f-KcOb0_Eci__nl8Uheeq0B627oPI-CMBdTw-sQCDAIxux3FgV5giDdGq50GkcmyhPZQGhO7LRhc55AgwsYG2QWpOyAmJh2RGpzeYze0yoCg1LgUlhQCY6EUoV2GIgJSBY5WmdXH9nI4NKGNz5U0wzLBB87jLMXVblrk6u1tGvpSDGL3E3LrHrGCdj7V_g4GbV4GZ_De7Jf3RySnZiR0RxLEV2RmrL9w97TrZhtZws3i_8vMFn97P9BYmJy4U |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COVID-19+World+Vaccination+Progress+Using+Machine+Learning+Classification+Algorithms&rft.jtitle=Qubahan+Academic+Journal&rft.au=Nasiba+M.+Abdulkareem&rft.au=Adnan+Mohsin+Abdulazeez&rft.au=Diyar+Qader+Zeebaree&rft.au=Dathar+A.+Hasan&rft.date=2021-05-03&rft.pub=Qubahan&rft.eissn=2709-8206&rft.volume=1&rft.issue=2&rft_id=info:doi/10.48161%2Fqaj.v1n2a53&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_eb410ef9ad3f439487ba37d5835d4f86 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2709-8206&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2709-8206&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2709-8206&client=summon |