A Novel One‐Class Convolutional Autoencoder Combined With Excitation–Emission Matrix Fluorescence Spectroscopy for Authenticity Identification of Food

ABSTRACT In this work, a novel one‐class classification algorithm one‐class convolutional autoencoder (OC‐CAE) was proposed for the detection of abnormal samples in the excitation–emission matrix (EEM) fluorescence spectra dataset. The OC‐CAE used Boxplot to analyze the reconstruction errors and use...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of chemometrics Ročník 38; číslo 11
Hlavní autori: Yan, Xiaoqin, Jia, Baoshuo, Long, Wanjun, Huang, Kun, Wang, Tong, Wu, Hailong, Yu, Ruqin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Chichester Wiley Subscription Services, Inc 01.11.2024
Predmet:
ISSN:0886-9383, 1099-128X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract ABSTRACT In this work, a novel one‐class classification algorithm one‐class convolutional autoencoder (OC‐CAE) was proposed for the detection of abnormal samples in the excitation–emission matrix (EEM) fluorescence spectra dataset. The OC‐CAE used Boxplot to analyze the reconstruction errors and used the LOF algorithm to handle features extracted by the hidden layer in the convolutional autoencoder (CAE). The fused information provides the basis for more accurate pattern recognition, ensures flexibility in model training, and can obtain higher model specificity, which is important in the field of food quality control. To demonstrate the reliability and advantages of OC‐CAE, two EEM cases related to the authentication of food including the Zhenjiang aromatic vinegar (ZAV) case and the camellia oil (CAO) case were studied. The results showed that OC‐CAE identified all abnormal samples in the two cases, reflecting excellent performance in the detection of abnormal samples, and that it, coupled with EEM, would be an effective tool for the authenticity identification of food.
AbstractList In this work, a novel one‐class classification algorithm one‐class convolutional autoencoder (OC‐CAE) was proposed for the detection of abnormal samples in the excitation–emission matrix (EEM) fluorescence spectra dataset. The OC‐CAE used Boxplot to analyze the reconstruction errors and used the LOF algorithm to handle features extracted by the hidden layer in the convolutional autoencoder (CAE). The fused information provides the basis for more accurate pattern recognition, ensures flexibility in model training, and can obtain higher model specificity, which is important in the field of food quality control. To demonstrate the reliability and advantages of OC‐CAE, two EEM cases related to the authentication of food including the Zhenjiang aromatic vinegar (ZAV) case and the camellia oil (CAO) case were studied. The results showed that OC‐CAE identified all abnormal samples in the two cases, reflecting excellent performance in the detection of abnormal samples, and that it, coupled with EEM, would be an effective tool for the authenticity identification of food.
ABSTRACT In this work, a novel one‐class classification algorithm one‐class convolutional autoencoder (OC‐CAE) was proposed for the detection of abnormal samples in the excitation–emission matrix (EEM) fluorescence spectra dataset. The OC‐CAE used Boxplot to analyze the reconstruction errors and used the LOF algorithm to handle features extracted by the hidden layer in the convolutional autoencoder (CAE). The fused information provides the basis for more accurate pattern recognition, ensures flexibility in model training, and can obtain higher model specificity, which is important in the field of food quality control. To demonstrate the reliability and advantages of OC‐CAE, two EEM cases related to the authentication of food including the Zhenjiang aromatic vinegar (ZAV) case and the camellia oil (CAO) case were studied. The results showed that OC‐CAE identified all abnormal samples in the two cases, reflecting excellent performance in the detection of abnormal samples, and that it, coupled with EEM, would be an effective tool for the authenticity identification of food.
Author Yan, Xiaoqin
Long, Wanjun
Yu, Ruqin
Wu, Hailong
Wang, Tong
Jia, Baoshuo
Huang, Kun
Author_xml – sequence: 1
  givenname: Xiaoqin
  surname: Yan
  fullname: Yan, Xiaoqin
  organization: Hunan University
– sequence: 2
  givenname: Baoshuo
  surname: Jia
  fullname: Jia, Baoshuo
  organization: Hunan University
– sequence: 3
  givenname: Wanjun
  surname: Long
  fullname: Long, Wanjun
  organization: South‐Central Minzu University
– sequence: 4
  givenname: Kun
  surname: Huang
  fullname: Huang, Kun
  organization: Hunan University
– sequence: 5
  givenname: Tong
  orcidid: 0000-0002-5062-6103
  surname: Wang
  fullname: Wang, Tong
  email: wangtong@hnu.edu.cn
  organization: Hunan University
– sequence: 6
  givenname: Hailong
  orcidid: 0000-0003-4483-2557
  surname: Wu
  fullname: Wu, Hailong
  email: hlwu@hnu.edu.cn
  organization: Hunan University
– sequence: 7
  givenname: Ruqin
  surname: Yu
  fullname: Yu, Ruqin
  organization: Hunan University
BookMark eNp1kM1Kw0AUhQdRsK2CjzDgxk10fpJmZllCq0KrCxXdhcnkBqekmTqTqN35CII7H69P4sS6dXUPnO8eOGeI9hvbAEInlJxTQtiFhtU5TyTbQwNKpIwoE0_7aECEGEeSC36Iht4vCQkejwfoe4Jv7CvU-LaB7cdnVivvcWabV1t3rbGNqvGkay002pbggrMqTAMlfjTtM56-a9OqHtt-fE1Xxvsg8UK1zrzjWd1ZB16HV8B3a9Cts17b9QZX1vWhz9C0JgRs8HXZy8ro3yxsKzyztjxCB5WqPRz_3RF6mE3vs6tofnt5nU3mkWZJzCIm0zEZC6CUShErqkvgpSyEJqygVcwBUqZlKWPFKOepJoKVIFVBVUIlT4GP0Okud-3sSwe-zZe2c6G5zzlliaDjhKWBOttROtTwDqp87cxKuU1OSd4vn4fl8375gEY79M3UsPmXy7Pp4pf_AeGMixA
Cites_doi 10.1088/1742-6596/1237/5/052007
10.1111/j.1750-3841.2011.02417.x
10.1145/342009.335388
10.1016/j.fbio.2022.101855
10.1016/j.ins.2023.119758
10.1016/j.rse.2018.09.018
10.1016/0893-6080(95)00120-4
10.1109/ACCESS.2022.3187961
10.1016/j.foodchem.2022.135050
10.1039/c3ay40582f
10.1016/j.tifs.2019.01.017
10.1109/FG.2019.8756525
10.1186/s40537-021-00514-x
10.1002/cem.3371
10.1109/TSMC.2017.2771341
10.1016/j.tifs.2021.06.010
10.1080/09537287.2023.2175736
10.3390/foods10020344
10.1016/j.chemolab.2016.10.002
10.1017/S026988891300043X
10.1016/j.foodchem.2023.136406
10.1109/ACCESS.2020.2988796
10.1016/j.aca.2017.05.013
10.1016/j.patrec.2020.03.016
10.1016/j.foodchem.2019.04.109
10.1214/aoms/1177704472
10.1002/cem.3173
10.1016/j.chemolab.2020.104064
10.1002/jsfa.8364
10.1080/00401706.1999.10485670
10.3390/sym13091705
10.1016/j.chemolab.2017.05.010
10.1007/978-3-642-21735-7_7
10.1002/cem.3252
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cem.3592
DatabaseName CrossRef
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1099-128X
EndPage n/a
ExternalDocumentID 10_1002_cem_3592
CEM3592
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22204049; 22174036
– fundername: Key Scientific Research Project of Hunan Provincial Department of Education
  funderid: 23A0028
– fundername: Natural Science Foundation of Hunan Province
  funderid: 2022JJ40042
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQPKS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH5
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
UB1
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WRJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2542-2976068e111984a1cde3d9b8c02b1f43ee72c9d94a21337c082de9ab1a51937e3
IEDL.DBID DRFUL
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001283263500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0886-9383
IngestDate Fri Jul 25 19:36:01 EDT 2025
Sat Nov 29 07:13:34 EST 2025
Wed Jan 22 17:15:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2542-2976068e111984a1cde3d9b8c02b1f43ee72c9d94a21337c082de9ab1a51937e3
Notes Funding
This work was supported by the National Natural Science Foundation of China (nos. 22204049 and 22174036), the Key Scientific Research Project of Hunan Provincial Department of Education (no. 23A0028), and the Natural Science Foundation of Hunan Province (no. 2022JJ40042).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4483-2557
0000-0002-5062-6103
PQID 3125816527
PQPubID 37374
PageCount 10
ParticipantIDs proquest_journals_3125816527
crossref_primary_10_1002_cem_3592
wiley_primary_10_1002_cem_3592_CEM3592
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Journal of chemometrics
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 8
2011
2023; 37
2023; 424
2020; 203
2011; 76
1999; 41
2020; 34
2023; 406
2014; 29
1962; 33
2013; 5
2022; 49
1977
2020; 8
2021; 13
2019; 1237
2017; 97
2021; 10
2023
2019; 85
2000
2018; 218
2020; 50
2021; 114
2019
2020; 133
2022; 10
2024; 652
2016; 159
2017; 167
2017; 982
2019; 293
1996; 9
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_29_1
Tukey J. W. (e_1_2_7_27_1) 1977
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
References_xml – start-page: 1
  year: 2019
  end-page: 8
– volume: 293
  start-page: 348
  year: 2019
  end-page: 357
  article-title: Rapid Identification and Quantification of Cheaper Vegetable Oil Adulteration in Camellia Oil by Using Excitation‐Emission Matrix Fluorescence Spectroscopy Combined With Chemometrics
  publication-title: Food Chemistry
– start-page: 52
  year: 2011
  end-page: 59
– volume: 13
  start-page: 1705
  issue: 9
  year: 2021
  article-title: Plant Leaves Recognition Based on a Hierarchical One‐Class Learning Scheme With Convolutional Auto‐Encoder and Siamese Neural Network
  publication-title: Symmetry
– volume: 76
  start-page: R157
  issue: 9
  year: 2011
  end-page: R163
  article-title: Defining the Public Health Threat of Food Fraud
  publication-title: Journal of Food Science
– volume: 85
  start-page: 163
  year: 2019
  end-page: 176
  article-title: Current Trends and Recent Advances on Food Authenticity Technologies and Chemometric Approaches
  publication-title: Trends in Food Science and Technology
– volume: 8
  start-page: 80716
  year: 2020
  end-page: 80727
  article-title: Unsupervised K‐Means Clustering Algorithm
  publication-title: IEEE Access
– volume: 10
  start-page: 70645
  year: 2022
  end-page: 70661
  article-title: The Deep Radial Basis Function Data Descriptor (D‐RBFDD) Network: A One‐Class Neural Network for Anomaly Detection
  publication-title: IEEE Access
– volume: 424
  year: 2023
  article-title: Classification of Chinese Traditional Cereal Vinegars and Antioxidant Property Predication by Fluorescence Spectroscopy
  publication-title: Food Chemistry
– volume: 50
  start-page: 386
  issue: 2
  year: 2020
  end-page: 396
  article-title: One‐Class Convex Hull‐Based Algorithm for Classification in Distributed Environments
  publication-title: IEEE Transactions on Systems, man, and Cybernetics: Systems
– volume: 133
  start-page: 280
  year: 2020
  end-page: 286
  article-title: Sample Imbalance Disease Classification Model Based on Association Rule Feature Selection
  publication-title: Pattern Recognition Letters
– volume: 159
  start-page: 89
  year: 2016
  end-page: 96
  article-title: Rigorous and Compliant Approaches to One‐Class Classification
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 97
  start-page: 3877
  issue: 12
  year: 2017
  end-page: 3896
  article-title: Modern Analytical Methods for the Detection of Food Fraud and Adulteration by Food Category
  publication-title: Journal of the Science of Food and Agriculture
– year: 1977
– volume: 29
  start-page: 345
  issue: 3
  year: 2014
  end-page: 374
  article-title: One‐Class Classification: Taxonomy of Study and Review of Techniques
  publication-title: Knowledge Engineering Review
– start-page: 1
  year: 2023
  end-page: 9
  article-title: Machine Learning Based Fault Detection Approach to Enhance Quality Control in Smart Manufacturing
  publication-title: Production Planning and Control
– volume: 34
  issue: 12
  year: 2020
  article-title: Traceability of Soybeans Produced in Argentina Based on Their Trace Element Profiles
  publication-title: Journal of Chemometrics
– volume: 1237
  issue: 5
  year: 2019
  article-title: Research on Abnormal Detection of One‐Class Support Vector Machine Based on Ensemble Cooperative Semi‐Supervised Learning
  publication-title: Journal of Physics Conference Series
– volume: 8
  start-page: 122
  issue: 1
  year: 2021
  article-title: A Literature Review on One‐Class Classification and Its Potential Applications in Big Data
  publication-title: Journal of Big Data
– volume: 9
  start-page: 463
  issue: 3
  year: 1996
  end-page: 474
  article-title: Network Constraints and Multi‐Objective Optimization for One‐Class Classification
  publication-title: Neural Networks
– volume: 41
  start-page: 212
  issue: 3
  year: 1999
  end-page: 223
  article-title: A Fast Algorithm for the Minimum Covariance Determinant Estimator
  publication-title: Technometrics
– volume: 34
  issue: 7
  year: 2020
  article-title: Incorporating Brand Variability Into Classification of Edible Oils by Raman Spectroscopy
  publication-title: Journal of Chemometrics
– volume: 49
  year: 2022
  article-title: Bioactive Substances and Therapeutic Potential of Camellia Oil: An Overview
  publication-title: Food Bioscience
– volume: 203
  year: 2020
  article-title: PLS‐DA–A MATLAB GUI Tool for Hard and Soft Approaches to Partial Least Squares Discriminant Analysis
  publication-title: Chemometrics and Intelligent Laboratory Systems
– start-page: 93
  year: 2000
  end-page: 104
– volume: 114
  start-page: 424
  year: 2021
  end-page: 442
  article-title: Food Frauds: Global Incidents and Misleading Situations
  publication-title: Trends in Food Science and Technology
– volume: 652
  year: 2024
  article-title: Parametrized Linear Regression for Boxplot‐Multivalued Data Applied to the Brazilian Electric Sector
  publication-title: Information Sciences
– volume: 167
  start-page: 23
  year: 2017
  end-page: 28
  article-title: DD‐SIMCA–A MATLAB GUI Tool for Data Driven SIMCA Approach
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 37
  issue: 3
  year: 2023
  article-title: Automatic Food and Beverage Authentication and Adulteration Detection by Classification Hybrid Fusion
  publication-title: Journal of Chemometrics
– volume: 10
  start-page: 344
  issue: 2
  year: 2021
  article-title: Health Promoting Properties of Cereal Vinegars
  publication-title: Food
– volume: 5
  start-page: 3790
  issue: 16
  year: 2013
  end-page: 3798
  article-title: Classification Tools in Chemistry. Part 1: Linear Models. PLS‐DA
  publication-title: Analytical Methods
– volume: 406
  year: 2023
  article-title: Establishment and Evaluation of Multiple Adulteration Detection of Camellia oil by Mixture Design
  publication-title: Food Chemistry
– volume: 982
  start-page: 9
  year: 2017
  end-page: 19
  article-title: Class‐Modelling in Food Analytical Chemistry: Development, Sampling, Optimisation and Validation Issues – A Tutorial
  publication-title: Analytica Chimica Acta
– volume: 33
  start-page: 1065
  issue: 3
  year: 1962
  end-page: 1076
  article-title: On Estimation of a Probability Density Function and Mode
  publication-title: Annals of Mathematical Statistics
– volume: 218
  start-page: 119
  year: 2018
  end-page: 131
  article-title: Invasive Tree Species Detection in the Eastern Arc Mountains Biodiversity Hotspot Using One Class Classification
  publication-title: Remote Sensing of Environment
– ident: e_1_2_7_33_1
  doi: 10.1088/1742-6596/1237/5/052007
– ident: e_1_2_7_17_1
  doi: 10.1111/j.1750-3841.2011.02417.x
– ident: e_1_2_7_29_1
  doi: 10.1145/342009.335388
– ident: e_1_2_7_24_1
  doi: 10.1016/j.fbio.2022.101855
– ident: e_1_2_7_28_1
  doi: 10.1016/j.ins.2023.119758
– ident: e_1_2_7_13_1
  doi: 10.1016/j.rse.2018.09.018
– ident: e_1_2_7_9_1
  doi: 10.1016/0893-6080(95)00120-4
– ident: e_1_2_7_14_1
  doi: 10.1109/ACCESS.2022.3187961
– ident: e_1_2_7_25_1
  doi: 10.1016/j.foodchem.2022.135050
– ident: e_1_2_7_36_1
  doi: 10.1039/c3ay40582f
– ident: e_1_2_7_19_1
  doi: 10.1016/j.tifs.2019.01.017
– ident: e_1_2_7_15_1
  doi: 10.1109/FG.2019.8756525
– ident: e_1_2_7_4_1
  doi: 10.1186/s40537-021-00514-x
– ident: e_1_2_7_21_1
  doi: 10.1002/cem.3371
– volume-title: Exploratory Data Analysis
  year: 1977
  ident: e_1_2_7_27_1
– ident: e_1_2_7_2_1
  doi: 10.1109/TSMC.2017.2771341
– ident: e_1_2_7_18_1
  doi: 10.1016/j.tifs.2021.06.010
– ident: e_1_2_7_34_1
  doi: 10.1080/09537287.2023.2175736
– ident: e_1_2_7_22_1
  doi: 10.3390/foods10020344
– ident: e_1_2_7_31_1
  doi: 10.1016/j.chemolab.2016.10.002
– ident: e_1_2_7_6_1
  doi: 10.1017/S026988891300043X
– ident: e_1_2_7_23_1
  doi: 10.1016/j.foodchem.2023.136406
– ident: e_1_2_7_10_1
  doi: 10.1109/ACCESS.2020.2988796
– ident: e_1_2_7_3_1
  doi: 10.1016/j.aca.2017.05.013
– ident: e_1_2_7_5_1
  doi: 10.1016/j.patrec.2020.03.016
– ident: e_1_2_7_26_1
  doi: 10.1016/j.foodchem.2019.04.109
– ident: e_1_2_7_8_1
  doi: 10.1214/aoms/1177704472
– ident: e_1_2_7_12_1
  doi: 10.1002/cem.3173
– ident: e_1_2_7_35_1
  doi: 10.1016/j.chemolab.2020.104064
– ident: e_1_2_7_20_1
  doi: 10.1002/jsfa.8364
– ident: e_1_2_7_7_1
  doi: 10.1080/00401706.1999.10485670
– ident: e_1_2_7_16_1
  doi: 10.3390/sym13091705
– ident: e_1_2_7_32_1
  doi: 10.1016/j.chemolab.2017.05.010
– ident: e_1_2_7_30_1
  doi: 10.1007/978-3-642-21735-7_7
– ident: e_1_2_7_11_1
  doi: 10.1002/cem.3252
SSID ssj0009934
Score 2.423162
Snippet ABSTRACT In this work, a novel one‐class classification algorithm one‐class convolutional autoencoder (OC‐CAE) was proposed for the detection of abnormal...
In this work, a novel one‐class classification algorithm one‐class convolutional autoencoder (OC‐CAE) was proposed for the detection of abnormal samples in the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms abnormal sample detection
Algorithms
Authenticity
autoencoder
convolutional
Emission spectra
Emissions
Excitation spectra
excitation–emission matrix fluorescence
Fluorescence
Food
food fraud
Food quality
one‐class classification
Pattern analysis
Pattern recognition
Quality control
Spectrum analysis
Title A Novel One‐Class Convolutional Autoencoder Combined With Excitation–Emission Matrix Fluorescence Spectroscopy for Authenticity Identification of Food
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcem.3592
https://www.proquest.com/docview/3125816527
Volume 38
WOSCitedRecordID wos001283263500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-128X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009934
  issn: 0886-9383
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6yCnrxLa4vIoi3apN0t81R1i0edBVR9FbaZIoL2shud9GbP0Hw5s_zlzjpw9WDIHjqoZ1QMo98M0m-IWRP8BQjI5OOj9breFoxJ-GaOSnXSdCKRUunBWX-qd_rBbe38qI6VWnvwpT8EF8FN-sZRby2Dh4nw8MJaaiChwPRkhh-pzmardcg08eX4fXphHJXFnvK6EZtR2IiVlPPuvywlv25GE0Q5necWiw04cJ_fnGRzFfwkh6V9rBEpiBbJrOduqvbCnk_oj0zhnt6nsHHy2vRE5N2TDauTNAKj3Jj6S01DPDNA6bOoOlNP7-j3SdVUXp_vLx1cUhbaqNnluX_iYb3IzMoyKEUUNvWPrdEmebxmSIutoPe2YNJOMAzLW8Hp1W5kJqUhsboVXIddq86J07Vn8FRmFZyhyOUcdsBYLiUgRczpUFomQTK5QlLPQHgcyW19GKOmbCvEG1okHHCYgsbfRBrpJGZDNYJFZC6KmhLlWrhKYwiMbMbfAwYgPKl2yS7taKix5KGIyoJl3mEsxzZWW6SrVqDUeWIw0gggAtYu8X9JtkvdPWrfNTpntnnxl8_3CRzHCFOeTNxizTywQi2yYwa5_3hYKcyx0_Pwuf6
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB6hpRK9lNIfdVtaXKnqLRDbySZWT2i7EVV3t1UFgluU2BOBBDFasiu48QhIvfXxeJKO88PCAalSTzkkM4rsmfE3Y_sbgE9SFBQZufIisl4vMJp7uTDcK4TJ4zCToSlqyvxxNJ3GR0fq5wp86e7CNPwQdwU35xl1vHYO7grSO0vWUI1n2zJUFH9XA7KisAerX38lB-Ml566qN5XJjwaeokys4571xU4n-3A1WkLM-0C1XmmS9f_6x-fwrAWYbLexiA1YwfIFrA27vm4v4c8um9oFnrIfJd5e39RdMdnQlovWCJ3wvLKO4NLgjN6cUfKMhh2eVMdsdKlbUu_b698jUumKbWzieP4vWXI6t7OaHkojc43tK0eVac-vGCFjp_TYHU0iBVesuR9ctAVDZguWWGtewUEy2h_ueW2HBk9TYik8QWDGH8RIAVPFQca1QWlUHmtf5LwIJGIktDIqyATlwpEmvGFQZTnPHHCMUL6GXmlLfANMYuHreKB0YWSgKY5k3G3xceSIOlJ-Hz52M5WeN0QcaUO5LFIa5dSNch82uylMW1e8SCVBuJgPQhH14XM9WY_Kp8PRxD3f_uuHW7C2tz8Zp-Nv0-_v4KkgwNPcU9yEXjWb43t4ohfVycXsQ2ubfwGnSevq
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VLQIuvBELBYyEuIXGdl4Wp2q7EYjtUiEqeosSe6xWauPVNrtqb_0JSNz4ef0ljPNg4YCExCmHZKzI8_A3Y_sbgNdSWIqMXAUpWW8QGc2DShgeWGGqLC5lbGxLmT9NZ7Ps6EgdbMC74S5Mxw_xq-DmPaON197BcW7szpo1VOPZWxkrir9bUawS8sqtvc_54XTNuavaTWXyoyRQlIkN3LOh2Blk_1yN1hDzd6DarjT53f_6x3twpweYbLeziPuwgfUDuDUe-ro9hB-7bOZWeMo-1Xh99a3tisnGrl71RuiFl43zBJcGF_TmjJJnNOzrSXPMJhe6J_W-vvo-oSF9sY3te57_C5afLt2ipYfSyHxj-8ZTZbr5JSNk7Ac99keTaIBL1t0Ptn3BkDnLcufMIzjMJ1_G74O-Q0OgKbEUgSAwEyYZUsBUWVRybVAaVWU6FBW3kURMhVZGRaWgXDjVhDcMqrLipQeOKcrHsFm7Gp8Ak2hDnSVKWyMjTXGk5H6LjyNH1KkKR_Bq0FQx74g4io5yWRQ0y4Wf5RFsDyoselc8LyRBuIwnsUhH8KZV1l_li_Fk3z-f_uuHL-HmwV5eTD_MPj6D24LwTndNcRs2m8USn8MNvWpOzhcvetP8CVIr62U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+One%E2%80%90Class+Convolutional+Autoencoder+Combined+With+Excitation%E2%80%93Emission+Matrix+Fluorescence+Spectroscopy+for+Authenticity+Identification+of+Food&rft.jtitle=Journal+of+chemometrics&rft.au=Yan%2C+Xiaoqin&rft.au=Jia%2C+Baoshuo&rft.au=Long%2C+Wanjun&rft.au=Huang%2C+Kun&rft.date=2024-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0886-9383&rft.eissn=1099-128X&rft.volume=38&rft.issue=11&rft_id=info:doi/10.1002%2Fcem.3592&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-9383&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-9383&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-9383&client=summon