Enhancing poorly differentiated lung cancer classification with rotary position embedding and sparse attention in multiple instance learning
In clinical practice, diagnosing poorly differentiated non-small cell lung cancer (NSCLC) typically requires immunohistochemistry (IHC) to accurately distinguish between cancer subtypes. The high cost and time-consuming nature of this process significantly limit its clinical applicability. Furthermo...
Uloženo v:
| Vydáno v: | Biomedical signal processing and control Ročník 113; s. 108699 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.03.2026
|
| Témata: | |
| ISSN: | 1746-8094 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!