Singular perturbation analysis of a two-time scale model of vector-borne disease: Zika virus model as a case study

Biological systems evolve across different spatial and temporal scales. For instance, multi-time scale epidemiological models on two-time scales are important in the study of infectious disease models. Particularly, vector-borne disease models are often described using ordinary differential equation...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chaos, solitons and fractals Ročník 194; s. 116209
Hlavní autoři: Tran, Joe, Woldegerima, Woldegebriel Aseefa
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.05.2025
Témata:
ISSN:0960-0779
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Biological systems evolve across different spatial and temporal scales. For instance, multi-time scale epidemiological models on two-time scales are important in the study of infectious disease models. Particularly, vector-borne disease models are often described using ordinary differential equations with multiple time scales, which can involve singular perturbations—situations where rapid transitions or significant changes in system behavior occur due to small parameter variations or the interaction between fast and slow dynamics. To analyze these multi-time scale problems, we employ tools such as Geometric Singular Perturbation Theory (GSPT), Tikhonov’s Theorem, and Fenichel’s Theory. These methods provide insights into complex phenomena, including the loss of normal hyperbolicity and other intricate behaviors. Particularly, applying singular perturbation theory to vector-borne diseases allows us to reduce the dynamics to a one-time scale and understand their dynamics. To illustrate this, we present a Zika virus model and apply Tikhonov’s theorem and GSPT to investigate the model’s asymptotic behavior. Additionally, we conduct a bifurcation analysis to explore how the system’s behavior changes with variations in the parameter ɛ. We illustrate the various qualitative scenarios of the reduced system under singular perturbation. We will show that the fast–slow models, even though in nonstandard form, can be studied by means of GSPT. •Studied singular perturbation analysis of two-time scale models•We considered an SIR-SI type mathematical model of Zika Virus with two-time scales•Geometric Singular Perturbation Theory (GSPT) and Tikhonov’s Theorem Applied•Fast–slow models, even though in nonstandard form, can be studied by means of GSPT•Illustrated qualitative behaviours of the reduced system under singular perturbation
AbstractList Biological systems evolve across different spatial and temporal scales. For instance, multi-time scale epidemiological models on two-time scales are important in the study of infectious disease models. Particularly, vector-borne disease models are often described using ordinary differential equations with multiple time scales, which can involve singular perturbations—situations where rapid transitions or significant changes in system behavior occur due to small parameter variations or the interaction between fast and slow dynamics. To analyze these multi-time scale problems, we employ tools such as Geometric Singular Perturbation Theory (GSPT), Tikhonov’s Theorem, and Fenichel’s Theory. These methods provide insights into complex phenomena, including the loss of normal hyperbolicity and other intricate behaviors. Particularly, applying singular perturbation theory to vector-borne diseases allows us to reduce the dynamics to a one-time scale and understand their dynamics. To illustrate this, we present a Zika virus model and apply Tikhonov’s theorem and GSPT to investigate the model’s asymptotic behavior. Additionally, we conduct a bifurcation analysis to explore how the system’s behavior changes with variations in the parameter ɛ. We illustrate the various qualitative scenarios of the reduced system under singular perturbation. We will show that the fast–slow models, even though in nonstandard form, can be studied by means of GSPT. •Studied singular perturbation analysis of two-time scale models•We considered an SIR-SI type mathematical model of Zika Virus with two-time scales•Geometric Singular Perturbation Theory (GSPT) and Tikhonov’s Theorem Applied•Fast–slow models, even though in nonstandard form, can be studied by means of GSPT•Illustrated qualitative behaviours of the reduced system under singular perturbation
ArticleNumber 116209
Author Woldegerima, Woldegebriel Aseefa
Tran, Joe
Author_xml – sequence: 1
  givenname: Joe
  surname: Tran
  fullname: Tran, Joe
– sequence: 2
  givenname: Woldegebriel Aseefa
  orcidid: 0000-0002-0336-7831
  surname: Woldegerima
  fullname: Woldegerima, Woldegebriel Aseefa
  email: wassefaw@yorku.ca
BookMark eNp9kLtOAzEQRV0EiSTwBTT-gV3sfcZIFCjiJUWiABoaa9Yeg8NmHXl2g_L3bEhqqinunKuZM2OTLnTI2JUUqRSyul6n5gsCpZnIylTKKhNqwqZCVSIRda3O2YxoLYSQosqmLL767nNoIfItxn6IDfQ-dBw6aPfkiQfHgfc_Ien9BjkZaJFvgsX2kOzQ9CEmTYgdcusJgfCGf_hv4DsfBzptAo0dZsw49YPdX7AzBy3h5WnO2fvD_dvyKVm9PD4v71aJycq8TxyY3BpXONssQNWNq61QObhCGVRoQeS5xEWtxAJLU7giUyqT0llpm9IWtcznLD_2mhiIIjq9jX4Dca-l0AdVeq3_VOmDKn1UNVK3RwrH03YeoybjsTNofRzf1Tb4f_lfSc55dg
Cites_doi 10.1016/j.isci.2022.105421
10.1080/00207160.2013.783208
10.1371/journal.pcbi.1007734
10.1016/j.nonrwa.2020.103220
10.1016/j.jaut.2016.02.006
10.1016/0022-0396(79)90152-9
10.1093/humupd/dmx024
10.1097/IPC.0000000000000654
10.1159/000211976
10.1140/epjp/s13360-022-02368-5
10.1016/S0025-5564(02)00108-6
10.1007/s00285-009-0266-7
10.1007/978-3-319-05140-6
10.1016/j.pbiomolbio.2007.07.019
10.1080/17513758.2017.1367849
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.chaos.2025.116209
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
ExternalDocumentID 10_1016_j_chaos_2025_116209
S096007792500222X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABJNI
ABMAC
ABNEU
ABTAH
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLZ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG9
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSH
SSQ
SSZ
T5K
WUQ
XPP
ZY4
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c253t-fac3dcf4fdb8a97bf7d093af49ce9eda0331e87908e5c4f4299211fd1db5d4713
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001440272900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-0779
IngestDate Sat Nov 29 08:03:31 EST 2025
Sat Apr 05 15:39:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Tikhonov’s theorem
Critical manifold
Singular perturbation
Zika virus model
Fast-slow system
Geometric singular perturbation theory
Multi-time scale models
Language English
License This is an open access article under the CC BY-NC license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c253t-fac3dcf4fdb8a97bf7d093af49ce9eda0331e87908e5c4f4299211fd1db5d4713
ORCID 0000-0002-0336-7831
OpenAccessLink https://dx.doi.org/10.1016/j.chaos.2025.116209
ParticipantIDs crossref_primary_10_1016_j_chaos_2025_116209
elsevier_sciencedirect_doi_10_1016_j_chaos_2025_116209
PublicationCentury 2000
PublicationDate May 2025
2025-05-00
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May 2025
PublicationDecade 2020
PublicationTitle Chaos, solitons and fractals
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References World Health Organization (b7) 2018
Garira (b6) 2017; 11
Rezapour, Mohammadi, Jajarmi (b26) 2020; 2020
Hsieh, Sibuya (b28) 2012
State of California, Health and Human Services Agency (b31) 2016
Tikhonov, Vasil’eva, Sveshnikov (b19) 1985
Hek (b24) 2009; 60
Public Health Agency of Canada (b9) 2025
Epelboin, Dulioust, Epelboin, Benachi, Merlet, Patrat (b10) 2017; 23
Ali, Iqbal, Asamoah, Islam (b11) 2022; 137
Beattie, Parajuli, Sanger, Lee, Pleninger, Crowley (b13) 2016; 26
Bertram, Rubin (b4) 2016; 287
Brauer (b20) 2019; 4
World Health Organization (b30) 2024
Millar-Wilson, Ward, Duffy, Hardiman (b2) 2022; 25
Chang, Ortiz, Ansari, Gershwin (b12) 2016; 68
Katie Dangerfield. Life expectancy in Canada fell for the 3rd year in a row. What’s happening? - National — Globalnews.ca — globalnews.ca
Southern, Pitt-Francis, Whiteley, Stokeley, Kobashi, Nobes (b3) 2008; 96
Garira (b34) 2020; 16
Kaklamanos, Kuehn, Popović, Sensi (b25) 2023
Jardón-Kojakhmetov, Kuehn, Pugliese, Sensi (b5) 2021; 58
Gulber, Vasilakis, Musso (b8) 2017; 216
Birkhoff, Rota (b27) 1982
Statistics Canada (b16) 2024
Ma (b33) 2020; 5
.
Milaine Sergine Seuneu Tchamga (b21) 2017
Banasiak, Lachowicz (b1) 2014
Kristiansen (b23) 2024
Public Health Agency of Canada (b29) 2024
Banasiak, Falkiewicz, Tchamga (b17) 2018
Fenichel (b22) 1979; 31
Briegel, Kaiser (b14) 1973; 19
Rocha, Aguiar, Souza, Stollenwerk (b18) 2013; 90
Van Den Driessche, Watmough (b32) 2002; 180
Banasiak (10.1016/j.chaos.2025.116209_b1) 2014
Millar-Wilson (10.1016/j.chaos.2025.116209_b2) 2022; 25
Tikhonov (10.1016/j.chaos.2025.116209_b19) 1985
Van Den Driessche (10.1016/j.chaos.2025.116209_b32) 2002; 180
Statistics Canada (10.1016/j.chaos.2025.116209_b16) 2024
Briegel (10.1016/j.chaos.2025.116209_b14) 1973; 19
State of California, Health and Human Services Agency (10.1016/j.chaos.2025.116209_b31) 2016
Milaine Sergine Seuneu Tchamga (10.1016/j.chaos.2025.116209_b21) 2017
Brauer (10.1016/j.chaos.2025.116209_b20) 2019; 4
Jardón-Kojakhmetov (10.1016/j.chaos.2025.116209_b5) 2021; 58
Rocha (10.1016/j.chaos.2025.116209_b18) 2013; 90
Kaklamanos (10.1016/j.chaos.2025.116209_b25) 2023
Garira (10.1016/j.chaos.2025.116209_b6) 2017; 11
Birkhoff (10.1016/j.chaos.2025.116209_b27) 1982
Ma (10.1016/j.chaos.2025.116209_b33) 2020; 5
Public Health Agency of Canada (10.1016/j.chaos.2025.116209_b29) 2024
Epelboin (10.1016/j.chaos.2025.116209_b10) 2017; 23
Beattie (10.1016/j.chaos.2025.116209_b13) 2016; 26
Fenichel (10.1016/j.chaos.2025.116209_b22) 1979; 31
Public Health Agency of Canada (10.1016/j.chaos.2025.116209_b9) 2025
Garira (10.1016/j.chaos.2025.116209_b34) 2020; 16
Chang (10.1016/j.chaos.2025.116209_b12) 2016; 68
Hek (10.1016/j.chaos.2025.116209_b24) 2009; 60
World Health Organization (10.1016/j.chaos.2025.116209_b7) 2018
Southern (10.1016/j.chaos.2025.116209_b3) 2008; 96
World Health Organization (10.1016/j.chaos.2025.116209_b30) 2024
Hsieh (10.1016/j.chaos.2025.116209_b28) 2012
Ali (10.1016/j.chaos.2025.116209_b11) 2022; 137
10.1016/j.chaos.2025.116209_b15
Kristiansen (10.1016/j.chaos.2025.116209_b23) 2024
Rezapour (10.1016/j.chaos.2025.116209_b26) 2020; 2020
Banasiak (10.1016/j.chaos.2025.116209_b17) 2018
Bertram (10.1016/j.chaos.2025.116209_b4) 2016; 287
Gulber (10.1016/j.chaos.2025.116209_b8) 2017; 216
References_xml – year: 2018
  ident: b7
  article-title: Zika virus
– volume: 4
  year: 2019
  ident: b20
  article-title: A singular perturbation approach to epidemics of vector-transmitted diseases
  publication-title: Infect Dis Model
– year: 2024
  ident: b30
  article-title: Zika
– volume: 60
  start-page: 347
  year: 2009
  end-page: 386
  ident: b24
  article-title: Geometric singular perturbation theory in biological practice
  publication-title: J Math Biol
– volume: 16
  year: 2020
  ident: b34
  article-title: The research and development process for multiscale models of infectious disease systems
  publication-title: PLoS Comput Biol
– volume: 11
  start-page: 378
  year: 2017
  end-page: 435
  ident: b6
  article-title: A complete categorization of multiscale models of infectious disease systems
  publication-title: J Biol Dyn
– year: 2017
  ident: b21
  article-title: Study of singularly perturbed models and its applications in ecology and epidemiology
– year: 2024
  ident: b29
  article-title: Zika virus: For health professionals - Canada.ca — canada.ca
– year: 2016
  ident: b31
  article-title: Aedes aegypti (yellow fever mosquito) fact sheet
– volume: 5
  start-page: 129
  year: 2020
  end-page: 141
  ident: b33
  article-title: Estimating epidemic exponential growth rate and basic reproduction number
  publication-title: Infect Dis Model
– volume: 216
  start-page: S860
  year: 2017
  end-page: S867
  ident: b8
  article-title: History and emergence of Zika virus
  publication-title: J Infect Dis
– year: 2012
  ident: b28
  article-title: Basic theory of ordinary differential equations
– volume: 19
  start-page: 240
  year: 1973
  end-page: 249
  ident: b14
  article-title: Life-span of mosquitoes (Culicidae, Diptera) under laboratory conditions
  publication-title: Gerontology
– volume: 137
  year: 2022
  ident: b11
  article-title: Mathematical modeling for the transmission potential of Zika virus with optimal control strategies
  publication-title: Eur Phys J Plus
– volume: 68
  start-page: 1
  year: 2016
  end-page: 13
  ident: b12
  article-title: The Zika outbreak of the 21st century
  publication-title: J Autoimmun
– volume: 31
  start-page: 53
  year: 1979
  end-page: 98
  ident: b22
  article-title: Geometric singular perturbation theory for ordinary differential equations
  publication-title: J Differential Equations
– volume: 287
  year: 2016
  ident: b4
  article-title: Multi-timescale systems and fast-slow analysis
  publication-title: Math Biosci
– volume: 2020
  start-page: 1687
  year: 2020
  end-page: 1847
  ident: b26
  article-title: A new mathematical model for Zika virus transmission
  publication-title: Adv Difference Equ
– volume: 23
  start-page: 629
  year: 2017
  end-page: 645
  ident: b10
  article-title: Zika virus and reproduction: facts, questions and current management
  publication-title: Hum Reprod Update
– volume: 25
  year: 2022
  ident: b2
  article-title: Multiscale modeling in the framework of biological systems and its potential for spaceflight biology studies
  publication-title: Iscience
– year: 2023
  ident: b25
  article-title: Entry-exit functions in fast-slow systems with intersecting eigenvalues
  publication-title: J Dynam Differential Equations
– year: 2025
  ident: b9
  article-title: Zika virus: Pregnant or planning a pregnancy - Canada.ca — canada.ca
– year: 2018
  ident: b17
  article-title: Aggregation methods in analysis of complex multiple scale systems
  publication-title: In systems analysis approach for complex global challenges
– volume: 26
  start-page: e80
  year: 2016
  end-page: e84
  ident: b13
  article-title: Zika virus–associated Guillain-Barré syndrome in a returning US traveler
  publication-title: Infect Dis Clin Pr ( Balt Md)
– year: 2024
  ident: b16
  article-title: Life expectancy and other elements of the complete life table, three-year estimates, Canada, all provinces except Prince Edward Island — www150.statcan.gc.ca
– volume: 180
  start-page: 29
  year: 2002
  end-page: 48
  ident: b32
  article-title: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission
  publication-title: Math Biosci
– volume: 58
  start-page: 103
  year: 2021
  end-page: 220
  ident: b5
  article-title: A geometric analysis of the SIR, SIRS and SIRWS epidemiological models
  publication-title: Nonlinear Anal Real World Appl
– reference: Katie Dangerfield. Life expectancy in Canada fell for the 3rd year in a row. What’s happening? - National — Globalnews.ca — globalnews.ca,
– reference: .
– year: 2014
  ident: b1
  article-title: Methods of small parameter in mathematical biology
– year: 1985
  ident: b19
  article-title: Differential equations
– start-page: 309
  year: 2024
  end-page: 363
  ident: b23
  article-title: A review of multiple-time-scale dynamics: Fundamental phenomena and mathematical methods
– volume: 96
  start-page: 60
  year: 2008
  end-page: 89
  ident: b3
  article-title: Multi-scale computational modelling in biology and physiology
  publication-title: Prog Biophys Mol Biol
– volume: 90
  start-page: 2105
  year: 2013
  end-page: 2125
  ident: b18
  article-title: Time-scale separation and centre manifold analysis describing vector-borne disease dynamics
  publication-title: Int J Comput Math
– year: 1982
  ident: b27
  article-title: Ordinary differential equations
– volume: 25
  issue: 11
  year: 2022
  ident: 10.1016/j.chaos.2025.116209_b2
  article-title: Multiscale modeling in the framework of biological systems and its potential for spaceflight biology studies
  publication-title: Iscience
  doi: 10.1016/j.isci.2022.105421
– volume: 90
  start-page: 2105
  year: 2013
  ident: 10.1016/j.chaos.2025.116209_b18
  article-title: Time-scale separation and centre manifold analysis describing vector-borne disease dynamics
  publication-title: Int J Comput Math
  doi: 10.1080/00207160.2013.783208
– volume: 5
  start-page: 129
  year: 2020
  ident: 10.1016/j.chaos.2025.116209_b33
  article-title: Estimating epidemic exponential growth rate and basic reproduction number
  publication-title: Infect Dis Model
– year: 2024
  ident: 10.1016/j.chaos.2025.116209_b29
– year: 2025
  ident: 10.1016/j.chaos.2025.116209_b9
– volume: 16
  issue: 4
  year: 2020
  ident: 10.1016/j.chaos.2025.116209_b34
  article-title: The research and development process for multiscale models of infectious disease systems
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1007734
– volume: 58
  start-page: 103
  year: 2021
  ident: 10.1016/j.chaos.2025.116209_b5
  article-title: A geometric analysis of the SIR, SIRS and SIRWS epidemiological models
  publication-title: Nonlinear Anal Real World Appl
  doi: 10.1016/j.nonrwa.2020.103220
– volume: 2020
  start-page: 1687
  issue: 589
  year: 2020
  ident: 10.1016/j.chaos.2025.116209_b26
  article-title: A new mathematical model for Zika virus transmission
  publication-title: Adv Difference Equ
– volume: 68
  start-page: 1
  year: 2016
  ident: 10.1016/j.chaos.2025.116209_b12
  article-title: The Zika outbreak of the 21st century
  publication-title: J Autoimmun
  doi: 10.1016/j.jaut.2016.02.006
– year: 2012
  ident: 10.1016/j.chaos.2025.116209_b28
– start-page: 309
  year: 2024
  ident: 10.1016/j.chaos.2025.116209_b23
– volume: 31
  start-page: 53
  issue: 1
  year: 1979
  ident: 10.1016/j.chaos.2025.116209_b22
  article-title: Geometric singular perturbation theory for ordinary differential equations
  publication-title: J Differential Equations
  doi: 10.1016/0022-0396(79)90152-9
– year: 2024
  ident: 10.1016/j.chaos.2025.116209_b16
– year: 2018
  ident: 10.1016/j.chaos.2025.116209_b17
  article-title: Aggregation methods in analysis of complex multiple scale systems
– year: 2023
  ident: 10.1016/j.chaos.2025.116209_b25
  article-title: Entry-exit functions in fast-slow systems with intersecting eigenvalues
  publication-title: J Dynam Differential Equations
– year: 2018
  ident: 10.1016/j.chaos.2025.116209_b7
– volume: 23
  start-page: 629
  issue: 6
  year: 2017
  ident: 10.1016/j.chaos.2025.116209_b10
  article-title: Zika virus and reproduction: facts, questions and current management
  publication-title: Hum Reprod Update
  doi: 10.1093/humupd/dmx024
– volume: 26
  start-page: e80
  issue: 6
  year: 2016
  ident: 10.1016/j.chaos.2025.116209_b13
  article-title: Zika virus–associated Guillain-Barré syndrome in a returning US traveler
  publication-title: Infect Dis Clin Pr ( Balt Md)
  doi: 10.1097/IPC.0000000000000654
– ident: 10.1016/j.chaos.2025.116209_b15
– volume: 287
  year: 2016
  ident: 10.1016/j.chaos.2025.116209_b4
  article-title: Multi-timescale systems and fast-slow analysis
  publication-title: Math Biosci
– volume: 19
  start-page: 240
  issue: 4
  year: 1973
  ident: 10.1016/j.chaos.2025.116209_b14
  article-title: Life-span of mosquitoes (Culicidae, Diptera) under laboratory conditions
  publication-title: Gerontology
  doi: 10.1159/000211976
– year: 1985
  ident: 10.1016/j.chaos.2025.116209_b19
– volume: 216
  start-page: S860
  issue: Suppl 10
  year: 2017
  ident: 10.1016/j.chaos.2025.116209_b8
  article-title: History and emergence of Zika virus
  publication-title: J Infect Dis
– volume: 137
  year: 2022
  ident: 10.1016/j.chaos.2025.116209_b11
  article-title: Mathematical modeling for the transmission potential of Zika virus with optimal control strategies
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/s13360-022-02368-5
– year: 2016
  ident: 10.1016/j.chaos.2025.116209_b31
– volume: 180
  start-page: 29
  issue: 1–2
  year: 2002
  ident: 10.1016/j.chaos.2025.116209_b32
  article-title: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission
  publication-title: Math Biosci
  doi: 10.1016/S0025-5564(02)00108-6
– volume: 4
  year: 2019
  ident: 10.1016/j.chaos.2025.116209_b20
  article-title: A singular perturbation approach to epidemics of vector-transmitted diseases
  publication-title: Infect Dis Model
– year: 2017
  ident: 10.1016/j.chaos.2025.116209_b21
– volume: 60
  start-page: 347
  year: 2009
  ident: 10.1016/j.chaos.2025.116209_b24
  article-title: Geometric singular perturbation theory in biological practice
  publication-title: J Math Biol
  doi: 10.1007/s00285-009-0266-7
– year: 2014
  ident: 10.1016/j.chaos.2025.116209_b1
  doi: 10.1007/978-3-319-05140-6
– year: 1982
  ident: 10.1016/j.chaos.2025.116209_b27
– volume: 96
  start-page: 60
  issue: 1–3
  year: 2008
  ident: 10.1016/j.chaos.2025.116209_b3
  article-title: Multi-scale computational modelling in biology and physiology
  publication-title: Prog Biophys Mol Biol
  doi: 10.1016/j.pbiomolbio.2007.07.019
– volume: 11
  start-page: 378
  issue: 1
  year: 2017
  ident: 10.1016/j.chaos.2025.116209_b6
  article-title: A complete categorization of multiscale models of infectious disease systems
  publication-title: J Biol Dyn
  doi: 10.1080/17513758.2017.1367849
– year: 2024
  ident: 10.1016/j.chaos.2025.116209_b30
SSID ssj0001062
Score 2.4559474
Snippet Biological systems evolve across different spatial and temporal scales. For instance, multi-time scale epidemiological models on two-time scales are important...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 116209
SubjectTerms Critical manifold
Fast-slow system
Geometric singular perturbation theory
Multi-time scale models
Singular perturbation
Tikhonov’s theorem
Zika virus model
Title Singular perturbation analysis of a two-time scale model of vector-borne disease: Zika virus model as a case study
URI https://dx.doi.org/10.1016/j.chaos.2025.116209
Volume 194
WOSCitedRecordID wos001440272900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0960-0779
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001062
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZg4wAHxAaIjR_ygQOoeEriOIm5TWgIkJiQNqSKS2Q79uiY0qrpuv35vGc7aaQhBEhcojZunDTfp-fn58_vEfLSZUoaVVSs0YVkeeEKpmAcZWAYrRZcl6pxvthEeXxcTafyS9Tpdr6cQNm21fW1XPxXqOEcgI1bZ_8C7qFTOAGfAXQ4Auxw_CPgT2Aw8trShV3CeKIDwmqUfERNVldzhlXlJx1AZEM5HGxZ-xg-A16A7xnXbjBm8G32Q03Ws-VlLJ2D1WnUxEDrKD9tn-_guwrSvQ6ldajEwdi8w91Y6mLw4HGMDNH7zeLQ_KKxZz79hVf-ha8a5vLIImudGocoEGkxDlEMe2c2QiUfgCwSlpShlMxgi0PF4xt2PYQYzg8M_oUDvAfY-iJL5GYYG8SFJ9gzdgzeHU5np7fJdlYKCTZv-_Dj0fTTMFLDdNivMvVP0mel8vq_G7f6tecy8kZOH5D7cRpBDwP8O-SWbXfJvc9DDt5ul-xEs93RVzG3-OuHZNmzg47ZQXt20LmjivbsoJ4d1COOLWN20MiOtxS5QT034i9VB30gN6jnxiPy9f3R6bsPLJbdYCYTfMWcMrwxLneNrpQstSubRHLlcmmstI1KOE9tVcqkssLkDh2aLE1dkzZaNODr8Mdkq5239gmhKBZIBJgD8BtzYbisCs7LVFSFElJrvkfe9K-0XoTsKnUvOzyvPQI1IlAHBPZI0b_2OjqIwfGrgSe_u3D_Xy98Su5uCP2MbK2Wl_Y5uWPWq1m3fBH59BMVbY6K
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Singular+perturbation+analysis+of+a+two-time+scale+model+of+vector-borne+disease%3A+Zika+virus+model+as+a+case+study&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Tran%2C+Joe&rft.au=Woldegerima%2C+Woldegebriel+Aseefa&rft.date=2025-05-01&rft.pub=Elsevier+Ltd&rft.issn=0960-0779&rft.volume=194&rft_id=info:doi/10.1016%2Fj.chaos.2025.116209&rft.externalDocID=S096007792500222X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon