The dialects gap: A multi-task learning approach for enhancing hate speech detection in Arabic dialects

Hate speech is a complex and often debated concept within Arabic dialects. Handling and detecting hate speech in Arabic poses unique challenges due to the diverse dialects that exhibit several linguistic variations, whether in meaning or context. Previous studies have often used multiple Arabic dial...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 295; p. 128584
Main Authors: Abdelsamie, Mahmoud Mohamed, Azab, Shahira Shaaban, Hefny, Hesham A.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.01.2026
Subjects:
ISSN:0957-4174
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Hate speech is a complex and often debated concept within Arabic dialects. Handling and detecting hate speech in Arabic poses unique challenges due to the diverse dialects that exhibit several linguistic variations, whether in meaning or context. Previous studies have often used multiple Arabic dialects combined within a single corpus without specifying the dialects used, which is problematic because it can lead to misidentification of hateful and non-hateful contexts related to a particular dialect. This research therefore aims to address the challenge of dialectal variation ambiguity, which has led to polarity misidentification in previous studies that often fail to distinguish between contexts or terms that have the same form and carry different meanings across different Arabic dialects. In this paper, we propose a multi-task learning approach built upon transformer architecture to bridge this gap in hate speech detection across Arabic dialects. Using publicly available datasets from various dialects, the proposed model is designed to identify and distinguish subtle hate speech patterns and use shared representation knowledge across five Arabic dialects: Egyptian, Saudi, Levant, Gulf, and Algerian. To the best of our knowledge, it is the first model to simultaneously address multiple dialects and recognize hate speech by using the distinctive characteristics of each dialect. Our findings show that the proposed model makes a significant contribution to advancing hate speech detection in the Arabic language, surpassing single-task models. It achieved F1 scores of 0.98, 0.84, 0.85, 0.76, and 0.80 for the respective dialects of Egyptian, Levant, Saudi, Algerian, and Gulf, representing overall improvements of 14% compared to previous research. These results showcase the effectiveness of our approach, demonstrating not only high performance but also an accurate understanding of dialect-specific hate speech.
AbstractList Hate speech is a complex and often debated concept within Arabic dialects. Handling and detecting hate speech in Arabic poses unique challenges due to the diverse dialects that exhibit several linguistic variations, whether in meaning or context. Previous studies have often used multiple Arabic dialects combined within a single corpus without specifying the dialects used, which is problematic because it can lead to misidentification of hateful and non-hateful contexts related to a particular dialect. This research therefore aims to address the challenge of dialectal variation ambiguity, which has led to polarity misidentification in previous studies that often fail to distinguish between contexts or terms that have the same form and carry different meanings across different Arabic dialects. In this paper, we propose a multi-task learning approach built upon transformer architecture to bridge this gap in hate speech detection across Arabic dialects. Using publicly available datasets from various dialects, the proposed model is designed to identify and distinguish subtle hate speech patterns and use shared representation knowledge across five Arabic dialects: Egyptian, Saudi, Levant, Gulf, and Algerian. To the best of our knowledge, it is the first model to simultaneously address multiple dialects and recognize hate speech by using the distinctive characteristics of each dialect. Our findings show that the proposed model makes a significant contribution to advancing hate speech detection in the Arabic language, surpassing single-task models. It achieved F1 scores of 0.98, 0.84, 0.85, 0.76, and 0.80 for the respective dialects of Egyptian, Levant, Saudi, Algerian, and Gulf, representing overall improvements of 14% compared to previous research. These results showcase the effectiveness of our approach, demonstrating not only high performance but also an accurate understanding of dialect-specific hate speech.
ArticleNumber 128584
Author Abdelsamie, Mahmoud Mohamed
Azab, Shahira Shaaban
Hefny, Hesham A.
Author_xml – sequence: 1
  givenname: Mahmoud Mohamed
  surname: Abdelsamie
  fullname: Abdelsamie, Mahmoud Mohamed
  email: 12422021452995@pg.cu.edu.eg
– sequence: 2
  givenname: Shahira Shaaban
  orcidid: 0000-0001-6903-272X
  surname: Azab
  fullname: Azab, Shahira Shaaban
  email: Shahiraazazy@cu.edu.eg
– sequence: 3
  givenname: Hesham A.
  surname: Hefny
  fullname: Hefny, Hesham A.
  email: hehefny@cu.edu.eg
BookMark eNp9kMtOwzAQRb0oEm3hB1j5BxJsx4lTxKaqeEmV2JS1NXHGjUvqRHYA8fckCmLJaqQ7ukdXZ0UWvvNIyA1nKWe8uD2lGL8gFUzkKRdlXsoFWbJNrhLJlbwkqxhPjHHFmFqS46FBWjto0QyRHqG_o1t6_mgHlwwQ32mLELzzRwp9HzowDbVdoOgb8GaKGxiQxh5x_NQ4jBTXeeo83QaonPlDX5ELC23E69-7Jm-PD4fdc7J_fXrZbfeJEXk2JHaDmZUVE5LnslJFbVSmqhwrk6EtTVkUlTWSs0xwyQplN7WwaLAGxrkArLI1ETPXhC7GgFb3wZ0hfGvO9KRHn_SkR0969KxnLN3PJRyXfToMOhqHfuS6MI7Xdef-q_8AGZRzwA
Cites_doi 10.18653/v1/2021.acl-long.551
10.1007/s13278-024-01258-1
10.1007/978-3-030-32959-4_18
10.1016/j.eswa.2023.121031
10.12785/ijcds/130177
10.1007/s43926-023-00030-9
10.1109/ASONAM.2018.8508247
10.1016/j.osnem.2020.100096
10.1016/j.compeleceng.2024.109153
10.1017/S1351324923000402
10.1109/IALP57159.2022.9961263
10.11591/ijeecs.v25.i3.pp1712-1722
10.3390/informatics8040069
10.3390/app13105825
10.1016/j.eswa.2023.121115
10.18653/v1/W17-3008
10.1016/j.jksuci.2019.01.005
10.18653/v1/N18-2019
10.1016/j.heliyon.2023.e18647
10.1109/TKDE.2021.3070203
10.1109/ESOLEC54569.2022.10009167
10.18653/v1/W19-3512
10.1007/s13278-022-00950-4
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2025.128584
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2025_128584
S0957417425022031
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ABUFD
ACDAQ
ACGFS
ACHRH
ACLOT
ACNTT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
~HD
29G
9DU
AAAKG
AAQXK
AAYXX
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c253t-f9e3f4b024154b76dc737b5ebc3ef8c866bfc4103214067f9d2feceda0112aeb3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001529393500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Thu Nov 27 01:03:01 EST 2025
Sat Nov 29 17:07:55 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Multi-task learning (MTL)
Hate speech
AraBERT
Offensive language
Arabic dialects
MARBERTv2
MARBERT
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c253t-f9e3f4b024154b76dc737b5ebc3ef8c866bfc4103214067f9d2feceda0112aeb3
ORCID 0000-0001-6903-272X
ParticipantIDs crossref_primary_10_1016_j_eswa_2025_128584
elsevier_sciencedirect_doi_10_1016_j_eswa_2025_128584
PublicationCentury 2000
PublicationDate 2026-01-01
2026-01-00
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: 2026-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Albadi, N., Kurdi, M., Mishra, S., 2018. Are they Our Brothers? Analysis and Detection of Religious Hate Speech in the Arabic Twittersphere. https://doi.org/10.1109/asonam.2018.8508247.
Alkhamissi, B., Diab, M., 2022. Meta AI at Arabic Hate Speech 2022: MultiTask Learning with Self-Correction for Hate Speech Classification [WWW Document]. ACL Anthology. URL https://aclanthology.org/2022.osact-1.24.
Aldjanabi, Dahou, Al-Qaness, Elaziz, Helmi, Damaševičius (b0030) 2021; 8
HMubarak, H., Darwish, K., Magdy, W., 2017. Abusive Language Detection on Arabic Social Media. https://doi.org/10.18653/v1/w17-3008.
Qian, J., ElSherief, M., Belding, E., Wang, W.Y., 2018. Leveraging Intra-User and Inter-User Representation Learning for Automated Hate Speech Detection. https://doi.org/10.18653/v1/n18-2019.
Antoun, W., Baly, F., Hajj, H., 2020. AraBERT: Transformer-based Model for Arabic Language Understanding [WWW Document]. ACL Anthology. URL https://aclanthology.org/2020.osact-1.2.
Elzayady, Mohamed, Badran, Salama (b0070) 2022; 25
Farha, I.A., Magdy, W., 2020. Multitask Learning for Arabic Offensive Language and Hate-Speech Detection [WWW Document]. ACL Anthology. URL https://aclanthology.org/2020.osact-1.14.
Husain, F., Uzuner, O., 2022. Transfer Learning Across Arabic Dialects for Offensive Language Detection. https://doi.org/10.1109/ialp57159.2022.9961263.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I., 2017. Attention Is All You Need. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1706.03762.
Khezzar, Moursi, Aghbari (b0100) 2023; 3
Mazari, Kheddar (b0120) 2023; 13
Alsafari, Sadaoui, Mouhoub (b0045) 2020; 19
Ibrohim, Budi (b0095) 2023; 9
Haddad, Mulki, Oueslati (b0085) 2019
AbdelHamid, Jafar, Rahal (b0005) 2022; 12
Abdul-Mageed, M., Elmadany, A., Nagoudi, E.M.B., 2021. ARBERT & MARBERT: Deep Bidirectional Transformers for Arabic. https://doi.org/10.18653/v1/2021.acl-long.551.
Mubarak, H., Hassan, S., Chowdhury, S.A., 2022. Emojis as Anchors to Detect Arabic Offensive Language and Hate Speech. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2201.06723.
Mulki, H., Haddad, H., Ali, C.B., Alshabani, H., 2019. L-HSAB: A Levantine Twitter Dataset for Hate Speech and Abusive Language. https://doi.org/10.18653/v1/w19-3512.
Mahdaouy, A.E., Mekki, A.E., Essefar, K., Mamoun, N.E., Berrada, I., Khoumsi, A., 2021. Deep Multi-Task Model for Sarcasm Detection and Sentiment Analysis in Arabic Language [WWW Document]. ACL Anthology. URL https://aclanthology.org/2021.wanlp-1.42.
Nockleby, J. T. (2000). Hate speech. In L. W. Levy, & K. L. Karst (Eds.), Encyclopedia of the American Constitution (vol. 3, 2nd ed., pp. 1277–1279). Macmillan Reference USA.
Ahmed, I., Abbas, M., Hatem, R., Ihab, A., Fahkr, M.W., 2022. Fine-tuning arabic pre-trained transformer models for egyptian-arabic dialect offensive language and hate speech detection and classification. https://doi.org/10.1109/esolec54569.2022.10009167.
Mulki, H., Ghanem, B., 2021. Let-Mi: An Arabic Levantine Twitter Dataset for Misogynistic Language [WWW Document]. ACL Anthology. URL https://aclanthology.org/2021.wanlp-1.16.
Elghannam (b0065) 2021; 33
Kibriya, Siddiqa, Khan, Khan (b0105) 2024; 116
Alshaalan, R., Al-Khalifa, H., 2020. Hate Speech Detection in Saudi Twittersphere: A Deep Learning Approach [WWW Document]. ACL Anthology. URL https://aclanthology.org/2020.wanlp-1.2.
Abdelsamie, Azab, Hefny (b0010) 2024; 14
Firmino, de Souza Baptista, de Paiva (b0080) 2024; 235
Alrashidi, Jamal, Alkhathlan (b0040) 2023; 13
Djandji, M., Baly, F., Antoun, W., Hajj, H., 2020. Multi-Task Learning using AraBert for Offensive Language Detection [WWW Document]. ACL Anthology. URL https://aclanthology.org/2020.osact-1.16.
Zhang, Yang (b0160) 2022; 34
Liu, Xu, Zhao, Zeng, Hu, Zhang, Luo, Cao (b0110) 2023; 234
Abdelsamie (10.1016/j.eswa.2025.128584_b0010) 2024; 14
Zhang (10.1016/j.eswa.2025.128584_b0160) 2022; 34
10.1016/j.eswa.2025.128584_b0090
Alrashidi (10.1016/j.eswa.2025.128584_b0040) 2023; 13
10.1016/j.eswa.2025.128584_b0050
Elzayady (10.1016/j.eswa.2025.128584_b0070) 2022; 25
10.1016/j.eswa.2025.128584_b0075
Ibrohim (10.1016/j.eswa.2025.128584_b0095) 2023; 9
10.1016/j.eswa.2025.128584_b0130
10.1016/j.eswa.2025.128584_b0150
10.1016/j.eswa.2025.128584_b0135
10.1016/j.eswa.2025.128584_b0035
10.1016/j.eswa.2025.128584_b0155
Aldjanabi (10.1016/j.eswa.2025.128584_b0030) 2021; 8
10.1016/j.eswa.2025.128584_b0055
10.1016/j.eswa.2025.128584_b0115
10.1016/j.eswa.2025.128584_b0015
Firmino (10.1016/j.eswa.2025.128584_b0080) 2024; 235
Mazari (10.1016/j.eswa.2025.128584_b0120) 2023; 13
Kibriya (10.1016/j.eswa.2025.128584_b0105) 2024; 116
Alsafari (10.1016/j.eswa.2025.128584_b0045) 2020; 19
10.1016/j.eswa.2025.128584_b0060
10.1016/j.eswa.2025.128584_b0020
Liu (10.1016/j.eswa.2025.128584_b0110) 2023; 234
10.1016/j.eswa.2025.128584_b0140
AbdelHamid (10.1016/j.eswa.2025.128584_b0005) 2022; 12
10.1016/j.eswa.2025.128584_b0025
10.1016/j.eswa.2025.128584_b0145
Haddad (10.1016/j.eswa.2025.128584_b0085) 2019
Khezzar (10.1016/j.eswa.2025.128584_b0100) 2023; 3
Elghannam (10.1016/j.eswa.2025.128584_b0065) 2021; 33
10.1016/j.eswa.2025.128584_b0125
References_xml – reference: Alshaalan, R., Al-Khalifa, H., 2020. Hate Speech Detection in Saudi Twittersphere: A Deep Learning Approach [WWW Document]. ACL Anthology. URL https://aclanthology.org/2020.wanlp-1.2.
– volume: 13
  start-page: 965
  year: 2023
  end-page: 972
  ident: b0120
  article-title: Deep learning-based analysis of algerian dialect dataset targeted hate speech, offensive language and cyberbullying
  publication-title: International Journal of Computing and Digital System/International Journal of Computing and Digital Systems
– volume: 13
  start-page: 5825
  year: 2023
  ident: b0040
  article-title: Abusive content detection in arabic tweets using multi-task learning and transformer-based models
  publication-title: Applied Sciences
– volume: 19
  year: 2020
  ident: b0045
  article-title: Hate and offensive speech detection on Arabic social media
  publication-title: Online Social Networks and Media
– reference: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I., 2017. Attention Is All You Need. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1706.03762.
– reference: Ahmed, I., Abbas, M., Hatem, R., Ihab, A., Fahkr, M.W., 2022. Fine-tuning arabic pre-trained transformer models for egyptian-arabic dialect offensive language and hate speech detection and classification. https://doi.org/10.1109/esolec54569.2022.10009167.
– volume: 8
  start-page: 69
  year: 2021
  ident: b0030
  article-title: Arabic offensive and hate speech detection using a cross-corpora multi-task learning model
  publication-title: Informatics
– volume: 33
  start-page: 235
  year: 2021
  end-page: 242
  ident: b0065
  article-title: Text representation and classification based on bi-gram alphabet
  publication-title: Journal of King Saud University Computer and Information Sciences
– volume: 34
  start-page: 5586
  year: 2022
  end-page: 5609
  ident: b0160
  article-title: A survey on multi-task learning
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: Djandji, M., Baly, F., Antoun, W., Hajj, H., 2020. Multi-Task Learning using AraBert for Offensive Language Detection [WWW Document]. ACL Anthology. URL https://aclanthology.org/2020.osact-1.16.
– volume: 3
  year: 2023
  ident: b0100
  article-title: arHateDetector: Detection of hate speech from standard and dialectal Arabic Tweets
  publication-title: Discover Internet of Things
– volume: 25
  start-page: 1712
  year: 2022
  ident: b0070
  article-title: Detecting Arabic textual threats in social media using artificial intelligence: An overview
  publication-title: Indonesian Journal of Electrical Engineering and Computer Science
– reference: Mubarak, H., Hassan, S., Chowdhury, S.A., 2022. Emojis as Anchors to Detect Arabic Offensive Language and Hate Speech. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2201.06723.
– volume: 12
  year: 2022
  ident: b0005
  article-title: Levantine hate speech detection in twitter
  publication-title: Social Network Analysis and Mining
– volume: 9
  year: 2023
  ident: b0095
  article-title: Hate speech and abusive language detection in Indonesian social media: Progress and challenges
  publication-title: Heliyon
– reference: Antoun, W., Baly, F., Hajj, H., 2020. AraBERT: Transformer-based Model for Arabic Language Understanding [WWW Document]. ACL Anthology. URL https://aclanthology.org/2020.osact-1.2.
– reference: Mulki, H., Ghanem, B., 2021. Let-Mi: An Arabic Levantine Twitter Dataset for Misogynistic Language [WWW Document]. ACL Anthology. URL https://aclanthology.org/2021.wanlp-1.16.
– reference: HMubarak, H., Darwish, K., Magdy, W., 2017. Abusive Language Detection on Arabic Social Media. https://doi.org/10.18653/v1/w17-3008.
– reference: Mulki, H., Haddad, H., Ali, C.B., Alshabani, H., 2019. L-HSAB: A Levantine Twitter Dataset for Hate Speech and Abusive Language. https://doi.org/10.18653/v1/w19-3512.
– volume: 235
  year: 2024
  ident: b0080
  article-title: Improving hate speech detection using cross-lingual learning
  publication-title: Expert Systems with Applications
– reference: Farha, I.A., Magdy, W., 2020. Multitask Learning for Arabic Offensive Language and Hate-Speech Detection [WWW Document]. ACL Anthology. URL https://aclanthology.org/2020.osact-1.14.
– reference: Qian, J., ElSherief, M., Belding, E., Wang, W.Y., 2018. Leveraging Intra-User and Inter-User Representation Learning for Automated Hate Speech Detection. https://doi.org/10.18653/v1/n18-2019.
– reference: Nockleby, J. T. (2000). Hate speech. In L. W. Levy, & K. L. Karst (Eds.), Encyclopedia of the American Constitution (vol. 3, 2nd ed., pp. 1277–1279). Macmillan Reference USA.
– reference: Mahdaouy, A.E., Mekki, A.E., Essefar, K., Mamoun, N.E., Berrada, I., Khoumsi, A., 2021. Deep Multi-Task Model for Sarcasm Detection and Sentiment Analysis in Arabic Language [WWW Document]. ACL Anthology. URL https://aclanthology.org/2021.wanlp-1.42.
– reference: Abdul-Mageed, M., Elmadany, A., Nagoudi, E.M.B., 2021. ARBERT & MARBERT: Deep Bidirectional Transformers for Arabic. https://doi.org/10.18653/v1/2021.acl-long.551.
– start-page: 251
  year: 2019
  end-page: 263
  ident: b0085
  article-title: T-HSAB: A tunisian hate speech and abusive dataset
  publication-title: Communications in Computer and Information Science
– reference: Husain, F., Uzuner, O., 2022. Transfer Learning Across Arabic Dialects for Offensive Language Detection. https://doi.org/10.1109/ialp57159.2022.9961263.
– volume: 116
  year: 2024
  ident: b0105
  article-title: Towards safer online communities: Deep learning and explainable AI for hate speech detection and classification
  publication-title: Computers & Electrical Engineering
– reference: Albadi, N., Kurdi, M., Mishra, S., 2018. Are they Our Brothers? Analysis and Detection of Religious Hate Speech in the Arabic Twittersphere. https://doi.org/10.1109/asonam.2018.8508247.
– reference: Alkhamissi, B., Diab, M., 2022. Meta AI at Arabic Hate Speech 2022: MultiTask Learning with Self-Correction for Hate Speech Classification [WWW Document]. ACL Anthology. URL https://aclanthology.org/2022.osact-1.24.
– volume: 234
  year: 2023
  ident: b0110
  article-title: A cross-lingual transfer learning method for online COVID-19-related hate speech detection
  publication-title: Expert Systems with Applications
– volume: 14
  year: 2024
  ident: b0010
  article-title: A comprehensive review on Arabic offensive language and hate speech detection on social media: Methods, challenges and solutions
  publication-title: Social Network Analysis and Mining
– ident: 10.1016/j.eswa.2025.128584_b0015
  doi: 10.18653/v1/2021.acl-long.551
– ident: 10.1016/j.eswa.2025.128584_b0155
– ident: 10.1016/j.eswa.2025.128584_b0145
– volume: 14
  year: 2024
  ident: 10.1016/j.eswa.2025.128584_b0010
  article-title: A comprehensive review on Arabic offensive language and hate speech detection on social media: Methods, challenges and solutions
  publication-title: Social Network Analysis and Mining
  doi: 10.1007/s13278-024-01258-1
– start-page: 251
  year: 2019
  ident: 10.1016/j.eswa.2025.128584_b0085
  article-title: T-HSAB: A tunisian hate speech and abusive dataset
  publication-title: Communications in Computer and Information Science
  doi: 10.1007/978-3-030-32959-4_18
– volume: 234
  year: 2023
  ident: 10.1016/j.eswa.2025.128584_b0110
  article-title: A cross-lingual transfer learning method for online COVID-19-related hate speech detection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.121031
– ident: 10.1016/j.eswa.2025.128584_b0055
– volume: 13
  start-page: 965
  year: 2023
  ident: 10.1016/j.eswa.2025.128584_b0120
  article-title: Deep learning-based analysis of algerian dialect dataset targeted hate speech, offensive language and cyberbullying
  publication-title: International Journal of Computing and Digital System/International Journal of Computing and Digital Systems
  doi: 10.12785/ijcds/130177
– volume: 3
  year: 2023
  ident: 10.1016/j.eswa.2025.128584_b0100
  article-title: arHateDetector: Detection of hate speech from standard and dialectal Arabic Tweets
  publication-title: Discover Internet of Things
  doi: 10.1007/s43926-023-00030-9
– ident: 10.1016/j.eswa.2025.128584_b0025
  doi: 10.1109/ASONAM.2018.8508247
– ident: 10.1016/j.eswa.2025.128584_b0135
– volume: 19
  year: 2020
  ident: 10.1016/j.eswa.2025.128584_b0045
  article-title: Hate and offensive speech detection on Arabic social media
  publication-title: Online Social Networks and Media
  doi: 10.1016/j.osnem.2020.100096
– volume: 116
  year: 2024
  ident: 10.1016/j.eswa.2025.128584_b0105
  article-title: Towards safer online communities: Deep learning and explainable AI for hate speech detection and classification
  publication-title: Computers & Electrical Engineering
  doi: 10.1016/j.compeleceng.2024.109153
– ident: 10.1016/j.eswa.2025.128584_b0130
  doi: 10.1017/S1351324923000402
– ident: 10.1016/j.eswa.2025.128584_b0090
  doi: 10.1109/IALP57159.2022.9961263
– volume: 25
  start-page: 1712
  year: 2022
  ident: 10.1016/j.eswa.2025.128584_b0070
  article-title: Detecting Arabic textual threats in social media using artificial intelligence: An overview
  publication-title: Indonesian Journal of Electrical Engineering and Computer Science
  doi: 10.11591/ijeecs.v25.i3.pp1712-1722
– ident: 10.1016/j.eswa.2025.128584_b0060
– volume: 8
  start-page: 69
  year: 2021
  ident: 10.1016/j.eswa.2025.128584_b0030
  article-title: Arabic offensive and hate speech detection using a cross-corpora multi-task learning model
  publication-title: Informatics
  doi: 10.3390/informatics8040069
– volume: 13
  start-page: 5825
  year: 2023
  ident: 10.1016/j.eswa.2025.128584_b0040
  article-title: Abusive content detection in arabic tweets using multi-task learning and transformer-based models
  publication-title: Applied Sciences
  doi: 10.3390/app13105825
– volume: 235
  year: 2024
  ident: 10.1016/j.eswa.2025.128584_b0080
  article-title: Improving hate speech detection using cross-lingual learning
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.121115
– ident: 10.1016/j.eswa.2025.128584_b0115
– ident: 10.1016/j.eswa.2025.128584_b0125
  doi: 10.18653/v1/W17-3008
– volume: 33
  start-page: 235
  year: 2021
  ident: 10.1016/j.eswa.2025.128584_b0065
  article-title: Text representation and classification based on bi-gram alphabet
  publication-title: Journal of King Saud University Computer and Information Sciences
  doi: 10.1016/j.jksuci.2019.01.005
– ident: 10.1016/j.eswa.2025.128584_b0150
  doi: 10.18653/v1/N18-2019
– ident: 10.1016/j.eswa.2025.128584_b0050
– volume: 9
  year: 2023
  ident: 10.1016/j.eswa.2025.128584_b0095
  article-title: Hate speech and abusive language detection in Indonesian social media: Progress and challenges
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e18647
– ident: 10.1016/j.eswa.2025.128584_b0035
– volume: 34
  start-page: 5586
  year: 2022
  ident: 10.1016/j.eswa.2025.128584_b0160
  article-title: A survey on multi-task learning
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2021.3070203
– ident: 10.1016/j.eswa.2025.128584_b0020
  doi: 10.1109/ESOLEC54569.2022.10009167
– ident: 10.1016/j.eswa.2025.128584_b0075
– ident: 10.1016/j.eswa.2025.128584_b0140
  doi: 10.18653/v1/W19-3512
– volume: 12
  year: 2022
  ident: 10.1016/j.eswa.2025.128584_b0005
  article-title: Levantine hate speech detection in twitter
  publication-title: Social Network Analysis and Mining
  doi: 10.1007/s13278-022-00950-4
SSID ssj0017007
Score 2.4810994
Snippet Hate speech is a complex and often debated concept within Arabic dialects. Handling and detecting hate speech in Arabic poses unique challenges due to the...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 128584
SubjectTerms AraBERT
Arabic dialects
Hate speech
MARBERT
MARBERTv2
Multi-task learning (MTL)
Offensive language
Title The dialects gap: A multi-task learning approach for enhancing hate speech detection in Arabic dialects
URI https://dx.doi.org/10.1016/j.eswa.2025.128584
Volume 295
WOSCitedRecordID wos001529393500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017007
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9tAFB6lwKGXLkAF3TSH3qKJwoztsXuzKipaqQipVMrNmjUOEBMlhqL-if7lvsl4bANtVQ69ONHEfrb8vrxl3obQO3B7ZCqNJFZISyJGGRGgVwnTNtORTqzVYj1sgh8fp5NJdjIY_Ay1MNcXvKrSm5ts8V9ZDWvAbFc6-wB2t0RhAb4D0-EIbIfjPzPeVYOs0zSmYuFrz9eJg6QWq_MwKGLa9hP3bb-r0rXegOUSzM_hamEM_KJNbVTIh8yXQs5US_zWpr7rmFw3faFDxVwvNt5FmTQoYzH3UZEvopxfXmkQLKWYN1VW7qQfYh0l-lqKcrYU7lPIDsVHxla-rsKFq-bDfNTfuqD9rYuwB8lJdODH9ARxTLO4J1BBfcZ-htw9We-3Hc5GZvXdNZCi8ag7-XZj7TsKr01DDBluZ4WjUTgahafxCG1SHmcgJjfzT4eTz21gio99BX548qYOy6cM3n2S39s6Pfvl9Bl60jgeOPeAeY4GptpGT8NQD9zI-B00BfzgwGIM-HmPc9yhBwf04IAeDOjBLXqwQw_26MEtevCswh49Leld9O3j4emHI9JM4yCKxqwmNjPMRnLsTL5I8kQrzriMjVTM2FSlSSKtilx_RvDZEw5_dWqNMlqABqHCSPYCbVSXldlDmCZ8HAk1hsvBoNXgVUdK6AOmWJaAx2z20TC8t2Lhm64Uf-bVPorDqy0as9GbgwUg5S_XvXzQXV6hxx2EX6ONenll3qAtdV3PVsu3DUx-AWH_kXI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+dialects+gap%3A+A+multi-task+learning+approach+for+enhancing+hate+speech+detection+in+Arabic+dialects&rft.jtitle=Expert+systems+with+applications&rft.au=Abdelsamie%2C+Mahmoud+Mohamed&rft.au=Azab%2C+Shahira+Shaaban&rft.au=Hefny%2C+Hesham+A.&rft.date=2026-01-01&rft.issn=0957-4174&rft.volume=295&rft.spage=128584&rft_id=info:doi/10.1016%2Fj.eswa.2025.128584&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2025_128584
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon