A hyper-heuristic optimization multi-task allocation in mobile crowdsensing based on inherent attributes
Task allocation is a critical issue in mobile crowdsensing (MCS) that significantly impacts the overall sensing quality of the system. However, previous research has often focused on improving sensing quality through single indicators such as user coverage or user reliability, neglecting the inheren...
Saved in:
| Published in: | Ad hoc networks Vol. 168; p. 103717 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.03.2025
|
| Subjects: | |
| ISSN: | 1570-8705 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Task allocation is a critical issue in mobile crowdsensing (MCS) that significantly impacts the overall sensing quality of the system. However, previous research has often focused on improving sensing quality through single indicators such as user coverage or user reliability, neglecting the inherent attributes of users and tasks as well as the variability in user abilities. This oversight can lead to unreliable sensing abilities among recruited users, thereby affecting the system’s overall sensing quality. In this paper, we first analyze the intrinsic attributes of users and tasks and propose an aggregative indicator and user enhancement model for better assessment and description of user sensing abilities. To improve the system’s overall sensing quality, the task allocation problem is modeled as a multi-constraint single-objective optimization problem. To address this problem, a Simulated Annealing-based Random Selection Hyper-Heuristic Optimization Algorithm (SARSHHOA) has been developed. This algorithm begins by generating an initial allocation scheme using a greedy approach, then applies randomly selected search operators to various allocation schemes and utilizes simulated annealing to selectively accept solutions. Finally, the effectiveness of the proposed aggregative indicator and task allocation algorithm is validated through simulation experiments on real datasets. |
|---|---|
| AbstractList | Task allocation is a critical issue in mobile crowdsensing (MCS) that significantly impacts the overall sensing quality of the system. However, previous research has often focused on improving sensing quality through single indicators such as user coverage or user reliability, neglecting the inherent attributes of users and tasks as well as the variability in user abilities. This oversight can lead to unreliable sensing abilities among recruited users, thereby affecting the system’s overall sensing quality. In this paper, we first analyze the intrinsic attributes of users and tasks and propose an aggregative indicator and user enhancement model for better assessment and description of user sensing abilities. To improve the system’s overall sensing quality, the task allocation problem is modeled as a multi-constraint single-objective optimization problem. To address this problem, a Simulated Annealing-based Random Selection Hyper-Heuristic Optimization Algorithm (SARSHHOA) has been developed. This algorithm begins by generating an initial allocation scheme using a greedy approach, then applies randomly selected search operators to various allocation schemes and utilizes simulated annealing to selectively accept solutions. Finally, the effectiveness of the proposed aggregative indicator and task allocation algorithm is validated through simulation experiments on real datasets. |
| ArticleNumber | 103717 |
| Author | Yu, Yantao Liu, Guojin Cao, Heng Wu, Yucheng |
| Author_xml | – sequence: 1 givenname: Heng orcidid: 0009-0008-1364-547X surname: Cao fullname: Cao, Heng email: 20184035@cqu.edu.cn – sequence: 2 givenname: Yantao orcidid: 0000-0002-9495-1063 surname: Yu fullname: Yu, Yantao email: yantaoyu@cqu.edu.cn – sequence: 3 givenname: Guojin surname: Liu fullname: Liu, Guojin email: liuguojin@cqu.edu.cn – sequence: 4 givenname: Yucheng orcidid: 0000-0003-1116-7706 surname: Wu fullname: Wu, Yucheng email: wuyucheng@cqu.edu.cn |
| BookMark | eNp9kLlOAzEURV0EiSTwBTT-gQneZisooohNikQDteXlmXGYjCPbAYWvZ8hQUz3pXp2nq7NAsyEMgNANJStKaHW7WynbBbNihIkx4TWtZ2hOy5oUTU3KS7RIaUcIaxmhc9StcXc6QCw6OEafsjc4HLLf-2-VfRjw_thnX2SVPrDq-2Cm1I9F0L4HbGL4sgmG5Id3rFUCi899BxGGjFXO0etjhnSFLpzqE1z_3SV6e7h_3TwV25fH5816WxhW8ly4RmtTU6drRolylDtgDVENt6YlFFrlylaLyjrRCiXqimneAhdOGFFW1Gi-RHz6Oy5LKYKTh-j3Kp4kJfJXkNzJsyD5K0hOgkbqbqJgnPbpIcpkPAwGrI9gsrTB_8v_AO8bdow |
| Cites_doi | 10.1016/j.ins.2023.119286 10.1016/j.adhoc.2023.103175 10.1016/j.ecoinf.2024.102640 10.1109/TIFS.2019.2903659 10.1016/j.comnet.2023.109917 10.1016/j.adhoc.2021.102699 10.1109/JIOT.2021.3095160 10.1016/j.comcom.2022.04.028 10.1109/TNSE.2020.2970767 10.1016/j.adhoc.2023.103297 10.1109/TCYB.2021.3112675 10.1126/science.220.4598.671 10.1016/j.ins.2022.08.087 10.1109/TII.2021.3094527 10.1016/j.jnca.2019.01.008 10.1109/TMC.2018.2793908 10.1109/MCOM.2018.1701065 10.1109/TII.2021.3076811 10.1145/3397328 10.1109/JIOT.2020.2984826 10.1016/j.comcom.2023.04.028 10.1016/j.knosys.2024.111529 10.1016/j.jnca.2021.103225 10.3390/s19214666 10.1109/JIOT.2023.3236679 10.1109/TMC.2021.3062775 10.1109/TMC.2020.2990221 10.1016/j.comnet.2023.109903 10.1016/j.comcom.2022.03.014 10.1016/j.future.2022.09.022 10.1016/j.comnet.2024.110636 10.1016/j.swevo.2021.100872 10.1145/3185504 10.1145/2971648.2971709 10.1016/j.procs.2019.08.051 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.adhoc.2024.103717 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_adhoc_2024_103717 S1570870524003287 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO AAYFN ABBOA ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF IHE J1W JJJVA KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K ~G- 9DU AATTM AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG EJD HZ~ M41 UHS ~HD |
| ID | FETCH-LOGICAL-c253t-f8bbc71fb7210af13fe280a83dc901e9af59b46df494a4762b39e34f4c4561cb3 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001370654200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1570-8705 |
| IngestDate | Sat Nov 29 02:26:17 EST 2025 Sat Dec 21 16:00:29 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Mobile crowdsensing Sensing quality User enhancement model Hyper-heuristic optimization algorithm Task allocation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c253t-f8bbc71fb7210af13fe280a83dc901e9af59b46df494a4762b39e34f4c4561cb3 |
| ORCID | 0009-0008-1364-547X 0000-0003-1116-7706 0000-0002-9495-1063 |
| ParticipantIDs | crossref_primary_10_1016_j_adhoc_2024_103717 elsevier_sciencedirect_doi_10_1016_j_adhoc_2024_103717 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-01 2025-03-00 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Ad hoc networks |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Wang, Liu, Zhao (b28) 2023; 233 Huang, Chen, Ma, Lin, Ni, Yan, Wang (b15) 2021; 18 Liu, Cen, Hu, Yu, Huang (b11) 2021; 194 Yang, Zeng, Liu, Xiong, Wang, Zhang (b29) 2023; 644 Song, Liu, Li, Xing, Fang (b27) 2020; 7 Mo, Li, Zeng, Xiong, Zhang, Liu (b4) 2023; 139 Truong, Lee, Um, Mackay (b30) 2019; 14 Nasser, Aboulhosn, Mizouni, Singh, Otrok (b25) 2023; 145 Wu, Suo, Yu, Liu (b26) 2021; 18 Dai, Li, Su, Chen, Xu, Fu (b18) 2020; 7 Wang, Zhang, Zhao (b32) 2023; 206 Ji, Guo, Gong, Shen (b35) 2021; 63 Kirkpatrick, Gelatt Jr., Vecchi (b41) 1983; 220 Xu, Sun, Han (b24) 2024; 251 Zhao, Xiao, Wu, Xu, Huang, Zhang (b13) 2020; 20 Wang, Liu, Zhao (b19) 2022; 189 Abououf, Mizouni, Singh, Otrok, Ouali (b34) 2019; 130 Wang, Ning, Hu, Ngai, Wang, Hu, Kwok (b7) 2018; 56 Liu, Chen, Zhang, Liu, Yi, Zhao (b20) 2021 Vahdat-Nejad, Bahadori, Abiri (b12) 2021 Wang, Ren, Wang, Pang, Zhang, Shen (b14) 2021; 21 Y. Liu, B. Guo, Y. Wang, W. Wu, Z. Yu, D. Zhang, TaskMe: Multi-task allocation in mobile crowd sensing, in: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2016, pp. 403–414. Lu, Wang, Tong, Mu, Chen, Li (b36) 2021; 19 Wang, Wang, Zhang, Wang, Xiong, Chen, Lv, Qiu (b40) 2018; 17 Tian, Liu, Su, Ding (b2) 2022; 612 Li, Gao, Wang, Guo, Tan (b33) 2019; 155 Cho, Myers, Leskovec (b42) 2011 Beade, Rodríguez, Santos (b37) 2024; 289 Liu, Shen, Narman, Chung, Lin (b1) 2018; 2 Wu, Xiao, Liao, Luo, Wu, Zhang, Li, Guo (b9) 2020; 4 Zhu, Chen, Xu, Cao (b3) 2022; 191 Hu, Wu, Tantian, Sun (b8) 2024; 81 Ji, Guo, Gao, Gong, Wang (b16) 2021; 53 Fu, Huang, Liu, Chen, Lu (b39) 2023; 234 Sahraoui, Kerrache, Amadeo, Vegni, Korichi, Nebhen, Imran (b10) 2022; 124 Ma, Chen, Huang, Wei, Liu, Wang (b5) 2023; 10 Ali, Qureshi, Shiraz, Shamim (b6) 2021; 32 Chen, Zhao, Xu (b21) 2022 Li, Liu, Wang (b31) 2019; 19 Vahedi, Chabok, Veisi (b17) 2023; 20 Yin, Yu, Wang, Wang, Han, Guo (b22) 2021; 9 Li, Tan, Long, Li, Wang, Deng (b38) 2023; 151 Ji (10.1016/j.adhoc.2024.103717_b35) 2021; 63 Zhao (10.1016/j.adhoc.2024.103717_b13) 2020; 20 Dai (10.1016/j.adhoc.2024.103717_b18) 2020; 7 Huang (10.1016/j.adhoc.2024.103717_b15) 2021; 18 Yin (10.1016/j.adhoc.2024.103717_b22) 2021; 9 Wang (10.1016/j.adhoc.2024.103717_b19) 2022; 189 Li (10.1016/j.adhoc.2024.103717_b38) 2023; 151 Ma (10.1016/j.adhoc.2024.103717_b5) 2023; 10 10.1016/j.adhoc.2024.103717_b23 Li (10.1016/j.adhoc.2024.103717_b33) 2019; 155 Chen (10.1016/j.adhoc.2024.103717_b21) 2022 Wang (10.1016/j.adhoc.2024.103717_b28) 2023; 233 Liu (10.1016/j.adhoc.2024.103717_b1) 2018; 2 Yang (10.1016/j.adhoc.2024.103717_b29) 2023; 644 Hu (10.1016/j.adhoc.2024.103717_b8) 2024; 81 Vahdat-Nejad (10.1016/j.adhoc.2024.103717_b12) 2021 Vahedi (10.1016/j.adhoc.2024.103717_b17) 2023; 20 Beade (10.1016/j.adhoc.2024.103717_b37) 2024; 289 Wang (10.1016/j.adhoc.2024.103717_b32) 2023; 206 Ali (10.1016/j.adhoc.2024.103717_b6) 2021; 32 Liu (10.1016/j.adhoc.2024.103717_b11) 2021; 194 Wu (10.1016/j.adhoc.2024.103717_b9) 2020; 4 Xu (10.1016/j.adhoc.2024.103717_b24) 2024; 251 Zhu (10.1016/j.adhoc.2024.103717_b3) 2022; 191 Truong (10.1016/j.adhoc.2024.103717_b30) 2019; 14 Li (10.1016/j.adhoc.2024.103717_b31) 2019; 19 Lu (10.1016/j.adhoc.2024.103717_b36) 2021; 19 Wang (10.1016/j.adhoc.2024.103717_b7) 2018; 56 Wu (10.1016/j.adhoc.2024.103717_b26) 2021; 18 Ji (10.1016/j.adhoc.2024.103717_b16) 2021; 53 Song (10.1016/j.adhoc.2024.103717_b27) 2020; 7 Wang (10.1016/j.adhoc.2024.103717_b40) 2018; 17 Nasser (10.1016/j.adhoc.2024.103717_b25) 2023; 145 Kirkpatrick (10.1016/j.adhoc.2024.103717_b41) 1983; 220 Mo (10.1016/j.adhoc.2024.103717_b4) 2023; 139 Sahraoui (10.1016/j.adhoc.2024.103717_b10) 2022; 124 Wang (10.1016/j.adhoc.2024.103717_b14) 2021; 21 Fu (10.1016/j.adhoc.2024.103717_b39) 2023; 234 Tian (10.1016/j.adhoc.2024.103717_b2) 2022; 612 Liu (10.1016/j.adhoc.2024.103717_b20) 2021 Abououf (10.1016/j.adhoc.2024.103717_b34) 2019; 130 Cho (10.1016/j.adhoc.2024.103717_b42) 2011 |
| References_xml | – volume: 9 start-page: 3158 year: 2021 end-page: 3173 ident: b22 article-title: ISIATasker: Task allocation for instant-sensing-instant-actuation mobile crowdsensing publication-title: IEEE Internet Things J. – start-page: 1 year: 2021 end-page: 6 ident: b12 article-title: Information gathering of earthquake disasters by mobile crowd sourcing in smart cities publication-title: 2021 5th International Conference on Internet of Things and Applications (IoT) – volume: 17 start-page: 2101 year: 2018 end-page: 2113 ident: b40 article-title: Multi-task allocation in mobile crowd sensing with individual task quality assurance publication-title: IEEE Trans. Mob. Comput. – volume: 56 start-page: 19 year: 2018 end-page: 25 ident: b7 article-title: A city-wide real-time traffic management system: Enabling crowdsensing in social internet of vehicles publication-title: IEEE Commun. Mag. – volume: 14 start-page: 2705 year: 2019 end-page: 2719 ident: b30 article-title: Trust evaluation mechanism for user recruitment in mobile crowd-sensing in the Internet of Things publication-title: IEEE Trans. Inf. Forensics Secur. – volume: 81 year: 2024 ident: b8 article-title: Capturing urban green view with mobile crowd sensing publication-title: Ecol. Inform. – volume: 194 year: 2021 ident: b11 article-title: A radio map self-updating algorithm based on mobile crowd sensing publication-title: J. Netw. Comput. Appl. – volume: 155 start-page: 360 year: 2019 end-page: 368 ident: b33 article-title: Multi-objective optimization for multi-task allocation in mobile crowd sensing publication-title: Procedia Comput. Sci. – volume: 151 year: 2023 ident: b38 article-title: A novel coverage-aware task allocation scheme in cooperative mobile crowd sensing publication-title: Ad Hoc Netw. – volume: 2 start-page: 1 year: 2018 end-page: 26 ident: b1 article-title: A survey of mobile crowdsensing techniques: A critical component for the internet of things publication-title: ACM Trans. Cyber-Phys. Syst. – volume: 130 start-page: 52 year: 2019 end-page: 62 ident: b34 article-title: Multi-worker multi-task selection framework in mobile crowd sourcing publication-title: J. Netw. Comput. Appl. – volume: 289 year: 2024 ident: b37 article-title: Variable selection in the prediction of business failure using genetic programming publication-title: Knowl.-Based Syst. – volume: 4 start-page: 1 year: 2020 end-page: 26 ident: b9 article-title: When sharing economy meets iot: Towards fine-grained urban air quality monitoring through mobile crowdsensing on bike-share system publication-title: Proc. ACM Interact. Mob. Wearable Ubiquit. Technol. – start-page: 220 year: 2022 end-page: 225 ident: b21 article-title: A survey on task allocation in mobile crowd sensing: Current state and challenges publication-title: 2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference – start-page: 523 year: 2021 end-page: 528 ident: b20 article-title: Research on multi-task assignment model based on task similarity in crowdsensing publication-title: 2021 IEEE/CIC International Conference on Communications in China – volume: 63 year: 2021 ident: b35 article-title: Evolutionary multi-task allocation for mobile crowdsensing with limited resource publication-title: Swarm Evol. Comput. – volume: 53 start-page: 2211 year: 2021 end-page: 2224 ident: b16 article-title: Q-learning-based hyperheuristic evolutionary algorithm for dynamic task allocation of crowdsensing publication-title: IEEE Trans. Cybern. – volume: 19 start-page: 531 year: 2021 end-page: 540 ident: b36 article-title: Data-driven many-objective crowd worker selection for mobile crowdsourcing in industrial IoT publication-title: IEEE Trans. Ind. Inform. – volume: 18 start-page: 1210 year: 2021 end-page: 1219 ident: b26 article-title: A utility-based subcontract method for sensing task in mobile crowd sensing publication-title: IEEE Trans. Ind. Inform. – volume: 18 start-page: 2476 year: 2021 end-page: 2485 ident: b15 article-title: OPAT: Optimized allocation of time-dependent tasks for mobile crowdsensing publication-title: IEEE Trans. Ind. Inform. – volume: 644 year: 2023 ident: b29 article-title: A decentralized trust inference approach with intelligence to improve data collection quality for mobile crowd sensing publication-title: Inform. Sci. – volume: 191 start-page: 208 year: 2022 end-page: 216 ident: b3 article-title: Recognition of interactive human groups from mobile sensing data publication-title: Comput. Commun. – volume: 145 year: 2023 ident: b25 article-title: A machine learning-based framework for user recruitment in continuous mobile crowdsensing publication-title: Ad Hoc Netw. – volume: 220 start-page: 671 year: 1983 end-page: 680 ident: b41 article-title: Optimization by simulated annealing publication-title: science – volume: 233 year: 2023 ident: b28 article-title: Trusted user selection for fusion of multimodal cognition in self-organizing pattern of mobile crowdsensing publication-title: Comput. Netw. – volume: 19 start-page: 4666 year: 2019 ident: b31 article-title: Service benefit aware multi-task assignment strategy for mobile crowd sensing publication-title: Sensors – volume: 234 year: 2023 ident: b39 article-title: Privacy-preserving mobile crowd sensing task assignment with stackelberg game publication-title: Comput. Netw. – volume: 251 year: 2024 ident: b24 article-title: Boosting task completion rate for time-sensitive MCS system publication-title: Comput. Netw. – volume: 189 start-page: 110 year: 2022 end-page: 119 ident: b19 article-title: Dynamic link prediction method of task and user in Mobile Crowd Sensing publication-title: Comput. Commun. – volume: 32 year: 2021 ident: b6 article-title: Mobile crowd sensing based dynamic traffic efficiency framework for urban traffic congestion control publication-title: Sustain. Comput.: Inform. Syst. – volume: 206 start-page: 60 year: 2023 end-page: 72 ident: b32 article-title: Task recommendation method for fusion of multi-view social relationship learning and reasoning in the mobile crowd sensing system publication-title: Comput. Commun. – volume: 7 start-page: 2323 year: 2020 end-page: 2335 ident: b18 article-title: A privacy preservation based scheme for task assignment in Internet of Things publication-title: IEEE Trans. Netw. Sci. Eng. – volume: 139 start-page: 109 year: 2023 end-page: 125 ident: b4 article-title: SCTD: A spatiotemporal correlation truth discovery scheme for security management of data platform publication-title: Futur. Gener. Comput. Syst. – volume: 21 start-page: 3757 year: 2021 end-page: 3772 ident: b14 article-title: Privacy-preserving streaming truth discovery in crowdsourcing with differential privacy publication-title: IEEE Trans. Mob. Comput. – volume: 7 start-page: 7407 year: 2020 end-page: 7418 ident: b27 article-title: Coverage-oriented task assignment for mobile crowdsensing publication-title: IEEE Internet Things J. – volume: 10 start-page: 9796 year: 2023 end-page: 9808 ident: b5 article-title: Utility-based heterogeneous user recruitment of multitask in mobile crowdsensing publication-title: IEEE Internet Things J. – volume: 20 start-page: 2779 year: 2020 end-page: 2794 ident: b13 article-title: Differentially private unknown worker recruitment for mobile crowdsensing using multi-armed bandits publication-title: IEEE Trans. Mob. Comput. – volume: 612 start-page: 20 year: 2022 end-page: 36 ident: b2 article-title: Crowdsensing based missing data inference algorithm considering outlier data and GPS errors publication-title: Inform. Sci. – start-page: 1082 year: 2011 end-page: 1090 ident: b42 article-title: Friendship and mobility: user movement in location-based social networks publication-title: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 20 year: 2023 ident: b17 article-title: Improving the quality of service indices of task allocation in mobile crowd sensing with fuzzy-based inverse stackelberg game theory publication-title: Intell. Syst. Appl. – volume: 124 year: 2022 ident: b10 article-title: A cooperative crowdsensing system based on flying and ground vehicles to control respiratory viral disease outbreaks publication-title: Ad Hoc Netw. – reference: Y. Liu, B. Guo, Y. Wang, W. Wu, Z. Yu, D. Zhang, TaskMe: Multi-task allocation in mobile crowd sensing, in: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2016, pp. 403–414. – volume: 644 year: 2023 ident: 10.1016/j.adhoc.2024.103717_b29 article-title: A decentralized trust inference approach with intelligence to improve data collection quality for mobile crowd sensing publication-title: Inform. Sci. doi: 10.1016/j.ins.2023.119286 – volume: 145 year: 2023 ident: 10.1016/j.adhoc.2024.103717_b25 article-title: A machine learning-based framework for user recruitment in continuous mobile crowdsensing publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2023.103175 – start-page: 1082 year: 2011 ident: 10.1016/j.adhoc.2024.103717_b42 article-title: Friendship and mobility: user movement in location-based social networks – volume: 81 year: 2024 ident: 10.1016/j.adhoc.2024.103717_b8 article-title: Capturing urban green view with mobile crowd sensing publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2024.102640 – start-page: 220 year: 2022 ident: 10.1016/j.adhoc.2024.103717_b21 article-title: A survey on task allocation in mobile crowd sensing: Current state and challenges – volume: 14 start-page: 2705 issue: 10 year: 2019 ident: 10.1016/j.adhoc.2024.103717_b30 article-title: Trust evaluation mechanism for user recruitment in mobile crowd-sensing in the Internet of Things publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2019.2903659 – volume: 234 year: 2023 ident: 10.1016/j.adhoc.2024.103717_b39 article-title: Privacy-preserving mobile crowd sensing task assignment with stackelberg game publication-title: Comput. Netw. doi: 10.1016/j.comnet.2023.109917 – volume: 124 year: 2022 ident: 10.1016/j.adhoc.2024.103717_b10 article-title: A cooperative crowdsensing system based on flying and ground vehicles to control respiratory viral disease outbreaks publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2021.102699 – volume: 9 start-page: 3158 issue: 5 year: 2021 ident: 10.1016/j.adhoc.2024.103717_b22 article-title: ISIATasker: Task allocation for instant-sensing-instant-actuation mobile crowdsensing publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3095160 – volume: 191 start-page: 208 year: 2022 ident: 10.1016/j.adhoc.2024.103717_b3 article-title: Recognition of interactive human groups from mobile sensing data publication-title: Comput. Commun. doi: 10.1016/j.comcom.2022.04.028 – volume: 7 start-page: 2323 issue: 4 year: 2020 ident: 10.1016/j.adhoc.2024.103717_b18 article-title: A privacy preservation based scheme for task assignment in Internet of Things publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2020.2970767 – volume: 151 year: 2023 ident: 10.1016/j.adhoc.2024.103717_b38 article-title: A novel coverage-aware task allocation scheme in cooperative mobile crowd sensing publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2023.103297 – volume: 53 start-page: 2211 issue: 4 year: 2021 ident: 10.1016/j.adhoc.2024.103717_b16 article-title: Q-learning-based hyperheuristic evolutionary algorithm for dynamic task allocation of crowdsensing publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3112675 – volume: 32 year: 2021 ident: 10.1016/j.adhoc.2024.103717_b6 article-title: Mobile crowd sensing based dynamic traffic efficiency framework for urban traffic congestion control publication-title: Sustain. Comput.: Inform. Syst. – volume: 220 start-page: 671 issue: 4598 year: 1983 ident: 10.1016/j.adhoc.2024.103717_b41 article-title: Optimization by simulated annealing publication-title: science doi: 10.1126/science.220.4598.671 – volume: 612 start-page: 20 year: 2022 ident: 10.1016/j.adhoc.2024.103717_b2 article-title: Crowdsensing based missing data inference algorithm considering outlier data and GPS errors publication-title: Inform. Sci. doi: 10.1016/j.ins.2022.08.087 – volume: 18 start-page: 2476 issue: 4 year: 2021 ident: 10.1016/j.adhoc.2024.103717_b15 article-title: OPAT: Optimized allocation of time-dependent tasks for mobile crowdsensing publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2021.3094527 – volume: 130 start-page: 52 year: 2019 ident: 10.1016/j.adhoc.2024.103717_b34 article-title: Multi-worker multi-task selection framework in mobile crowd sourcing publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2019.01.008 – volume: 17 start-page: 2101 issue: 9 year: 2018 ident: 10.1016/j.adhoc.2024.103717_b40 article-title: Multi-task allocation in mobile crowd sensing with individual task quality assurance publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2018.2793908 – volume: 56 start-page: 19 issue: 9 year: 2018 ident: 10.1016/j.adhoc.2024.103717_b7 article-title: A city-wide real-time traffic management system: Enabling crowdsensing in social internet of vehicles publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2018.1701065 – volume: 19 start-page: 531 issue: 1 year: 2021 ident: 10.1016/j.adhoc.2024.103717_b36 article-title: Data-driven many-objective crowd worker selection for mobile crowdsourcing in industrial IoT publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2021.3076811 – volume: 4 start-page: 1 issue: 2 year: 2020 ident: 10.1016/j.adhoc.2024.103717_b9 article-title: When sharing economy meets iot: Towards fine-grained urban air quality monitoring through mobile crowdsensing on bike-share system publication-title: Proc. ACM Interact. Mob. Wearable Ubiquit. Technol. doi: 10.1145/3397328 – volume: 7 start-page: 7407 issue: 8 year: 2020 ident: 10.1016/j.adhoc.2024.103717_b27 article-title: Coverage-oriented task assignment for mobile crowdsensing publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2984826 – volume: 20 year: 2023 ident: 10.1016/j.adhoc.2024.103717_b17 article-title: Improving the quality of service indices of task allocation in mobile crowd sensing with fuzzy-based inverse stackelberg game theory publication-title: Intell. Syst. Appl. – volume: 206 start-page: 60 year: 2023 ident: 10.1016/j.adhoc.2024.103717_b32 article-title: Task recommendation method for fusion of multi-view social relationship learning and reasoning in the mobile crowd sensing system publication-title: Comput. Commun. doi: 10.1016/j.comcom.2023.04.028 – volume: 289 year: 2024 ident: 10.1016/j.adhoc.2024.103717_b37 article-title: Variable selection in the prediction of business failure using genetic programming publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2024.111529 – volume: 194 year: 2021 ident: 10.1016/j.adhoc.2024.103717_b11 article-title: A radio map self-updating algorithm based on mobile crowd sensing publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2021.103225 – start-page: 1 year: 2021 ident: 10.1016/j.adhoc.2024.103717_b12 article-title: Information gathering of earthquake disasters by mobile crowd sourcing in smart cities – volume: 19 start-page: 4666 issue: 21 year: 2019 ident: 10.1016/j.adhoc.2024.103717_b31 article-title: Service benefit aware multi-task assignment strategy for mobile crowd sensing publication-title: Sensors doi: 10.3390/s19214666 – volume: 10 start-page: 9796 issue: 11 year: 2023 ident: 10.1016/j.adhoc.2024.103717_b5 article-title: Utility-based heterogeneous user recruitment of multitask in mobile crowdsensing publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2023.3236679 – volume: 21 start-page: 3757 issue: 10 year: 2021 ident: 10.1016/j.adhoc.2024.103717_b14 article-title: Privacy-preserving streaming truth discovery in crowdsourcing with differential privacy publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2021.3062775 – volume: 20 start-page: 2779 issue: 9 year: 2020 ident: 10.1016/j.adhoc.2024.103717_b13 article-title: Differentially private unknown worker recruitment for mobile crowdsensing using multi-armed bandits publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2020.2990221 – volume: 233 year: 2023 ident: 10.1016/j.adhoc.2024.103717_b28 article-title: Trusted user selection for fusion of multimodal cognition in self-organizing pattern of mobile crowdsensing publication-title: Comput. Netw. doi: 10.1016/j.comnet.2023.109903 – volume: 189 start-page: 110 year: 2022 ident: 10.1016/j.adhoc.2024.103717_b19 article-title: Dynamic link prediction method of task and user in Mobile Crowd Sensing publication-title: Comput. Commun. doi: 10.1016/j.comcom.2022.03.014 – volume: 139 start-page: 109 year: 2023 ident: 10.1016/j.adhoc.2024.103717_b4 article-title: SCTD: A spatiotemporal correlation truth discovery scheme for security management of data platform publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2022.09.022 – start-page: 523 year: 2021 ident: 10.1016/j.adhoc.2024.103717_b20 article-title: Research on multi-task assignment model based on task similarity in crowdsensing – volume: 251 year: 2024 ident: 10.1016/j.adhoc.2024.103717_b24 article-title: Boosting task completion rate for time-sensitive MCS system publication-title: Comput. Netw. doi: 10.1016/j.comnet.2024.110636 – volume: 18 start-page: 1210 issue: 2 year: 2021 ident: 10.1016/j.adhoc.2024.103717_b26 article-title: A utility-based subcontract method for sensing task in mobile crowd sensing publication-title: IEEE Trans. Ind. Inform. – volume: 63 year: 2021 ident: 10.1016/j.adhoc.2024.103717_b35 article-title: Evolutionary multi-task allocation for mobile crowdsensing with limited resource publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2021.100872 – volume: 2 start-page: 1 issue: 3 year: 2018 ident: 10.1016/j.adhoc.2024.103717_b1 article-title: A survey of mobile crowdsensing techniques: A critical component for the internet of things publication-title: ACM Trans. Cyber-Phys. Syst. doi: 10.1145/3185504 – ident: 10.1016/j.adhoc.2024.103717_b23 doi: 10.1145/2971648.2971709 – volume: 155 start-page: 360 year: 2019 ident: 10.1016/j.adhoc.2024.103717_b33 article-title: Multi-objective optimization for multi-task allocation in mobile crowd sensing publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2019.08.051 |
| SSID | ssj0029201 |
| Score | 2.4215543 |
| Snippet | Task allocation is a critical issue in mobile crowdsensing (MCS) that significantly impacts the overall sensing quality of the system. However, previous... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 103717 |
| SubjectTerms | Hyper-heuristic optimization algorithm Mobile crowdsensing Sensing quality Task allocation User enhancement model |
| Title | A hyper-heuristic optimization multi-task allocation in mobile crowdsensing based on inherent attributes |
| URI | https://dx.doi.org/10.1016/j.adhoc.2024.103717 |
| Volume | 168 |
| WOSCitedRecordID | wos001370654200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1570-8705 databaseCode: AIEXJ dateStart: 20030701 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0029201 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZglwMcEE-xvOQDt2CUxs7Dx2q1vA4rJBbRW-QnadEmqzaF_fmMH0nKFiFA4hJVduw2M1_HM5N5IPQiM0bMssKQokwNYZxpUplKEdBMlbD-1Zj1zSbK09NqseAfYu7JxrcTKNu2urzkF_-V1TAGzHaps3_B7nFTGIDPwHS4Atvh-keMnycN2JZr0phtqMKcdCAWzmO-ZYggJL3YfE3cO_fgsXNej_NOgoRIQDB_1xsX1t5-SdwZpxM_3xhfx0n0oUVWDD0c6tfqpOlU0oaY8lFNPxZdONri8egbgHmhD_wU3RgMtPSDb7bdajli9XO4cQugiqujbyLLp-Cs4DDbS5oJMrZMQQin-U9CODTX2RPowbeweiU0PAaY8xnzZQJCvueVStkf3c5uYxcXS8EUvI4OszLnIOwO5-9OFu9HS5xnaSikG3_JUI7KB_7tfdWvVZYdNeTsDrod7Qc8D3y_i66Z9h66tVNV8j5q5vgKAvAuAvCEADwhAC9hwiMA7yIAewRgPx8QgCcEPECfXp-cHb8lsaEGUVlOe2IrKVU5sxLM_lTYGbUmq1JRUa1ALTRc2JxLVmgL_1nB4JiUlBvKLFNOzVaSPkQHbdeaRwhrqSsF2j3l1DKmmQQ7NuMzKgpVWkGrI_RyoFl9Eeqm1ENA4ar2JK4dietA4iNUDHSto-oXVLoagPC7hY__deETdHNC7FN00K-35hm6ob71y836eQTMDwvXgrk |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hyper-heuristic+optimization+multi-task+allocation+in+mobile+crowdsensing+based+on+inherent+attributes&rft.jtitle=Ad+hoc+networks&rft.au=Cao%2C+Heng&rft.au=Yu%2C+Yantao&rft.au=Liu%2C+Guojin&rft.au=Wu%2C+Yucheng&rft.date=2025-03-01&rft.pub=Elsevier+B.V&rft.issn=1570-8705&rft.volume=168&rft_id=info:doi/10.1016%2Fj.adhoc.2024.103717&rft.externalDocID=S1570870524003287 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-8705&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-8705&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-8705&client=summon |