A new general algebraic method with symbolic computation to construct new exact analytical solution for a (2 + 1)-dimensional cubic nonlinear Schrödinger equation

Based on a new general ansätz, a new general algebraic method named improved Riccati equation rational expansion method is devised for constructing multiple nontravelling wave solutions for nonlinear partial differential equations. Compared with most existing tanh methods and other sophisticated met...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Chaos, solitons and fractals Ročník 32; číslo 3; s. 1101 - 1107
Hlavní autori: Zheng, Ying, Zhang, Yuanyuan, Zhang, Hongqing
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.05.2007
ISSN:0960-0779, 1873-2887
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Based on a new general ansätz, a new general algebraic method named improved Riccati equation rational expansion method is devised for constructing multiple nontravelling wave solutions for nonlinear partial differential equations. Compared with most existing tanh methods and other sophisticated methods, the proposed method not only recover some known solutions, but also find some new and general solutions. With the aid of symbolic computation, we choose the (2 + 1)-dimensional cubic nonlinear Schrödinger equation to illustrate the method. As a result, six families of new exact analytical solutions for this equation are found, which include some new and more general exact rational form soliton-like solutions and triangular periodic-like solutions.
ISSN:0960-0779
1873-2887
DOI:10.1016/j.chaos.2005.11.034