A new general algebraic method with symbolic computation to construct new exact analytical solution for a (2 + 1)-dimensional cubic nonlinear Schrödinger equation

Based on a new general ansätz, a new general algebraic method named improved Riccati equation rational expansion method is devised for constructing multiple nontravelling wave solutions for nonlinear partial differential equations. Compared with most existing tanh methods and other sophisticated met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos, solitons and fractals Jg. 32; H. 3; S. 1101 - 1107
Hauptverfasser: Zheng, Ying, Zhang, Yuanyuan, Zhang, Hongqing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.05.2007
ISSN:0960-0779, 1873-2887
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on a new general ansätz, a new general algebraic method named improved Riccati equation rational expansion method is devised for constructing multiple nontravelling wave solutions for nonlinear partial differential equations. Compared with most existing tanh methods and other sophisticated methods, the proposed method not only recover some known solutions, but also find some new and general solutions. With the aid of symbolic computation, we choose the (2 + 1)-dimensional cubic nonlinear Schrödinger equation to illustrate the method. As a result, six families of new exact analytical solutions for this equation are found, which include some new and more general exact rational form soliton-like solutions and triangular periodic-like solutions.
ISSN:0960-0779
1873-2887
DOI:10.1016/j.chaos.2005.11.034