Water inrush risk assessment during karst tunnel construction based on knowledge decision and data-driven methods

•A set of water inrush risk evaluation indicators during karst tunnel construction were established.•A knowledge decision model of water inrush risk assessment were constructed based on VIKOR model and integrated weights.•A knowledge-data dual-driven DE-GWO-ELM model was proposed to realize interpre...

Full description

Saved in:
Bibliographic Details
Published in:Tunnelling and underground space technology Vol. 168; p. 107120
Main Authors: Li, Xuewei, Li, Shuchen, Wang, Bo, Qu, Jiaxin, Zhao, Jinlong, Zhao, Shisen
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.02.2026
Subjects:
ISSN:0886-7798
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A set of water inrush risk evaluation indicators during karst tunnel construction were established.•A knowledge decision model of water inrush risk assessment were constructed based on VIKOR model and integrated weights.•A knowledge-data dual-driven DE-GWO-ELM model was proposed to realize interpreteable of water inrush risk assessment. Karst tunnels are frequently subject to the combined effects of complex geological conditions, groundwater hydrological characteristics, and construction disturbances, leading to an increased risk of water inrush. To enhance the real-time performance and interpretability of water inrush risk assessment, this study proposes a method based on the integration of knowledge decision and data-driven models. First, a set of water inrush risk evaluation indicators and their benchmark set were established. Then, the analytic hierarchy process and entropy weight method were used to determine the subjective and objective weights, which were fused using game theory to improve the accuracy of the knowledge decision-making model based on the vlsekriterijumska optimizacija i kompromisno resenje (VIKOR) method. Thereafter, the VIKOR results were used as the base data to construct the training sample library for the data-driven model. The differential evolution–gray wolf optimization algorithm was employed to optimize the model hyperparameters, and ultimately, an extreme learning machine water inrush risk assessment model that combined knowledge decision and data-driven approaches was established. By comparing the risk assessment results of both models in typical monitoring sections, the proposed method was verified to effectively and accurately perform water inrush risk assessment with strong real-time performance and interpretability.
AbstractList •A set of water inrush risk evaluation indicators during karst tunnel construction were established.•A knowledge decision model of water inrush risk assessment were constructed based on VIKOR model and integrated weights.•A knowledge-data dual-driven DE-GWO-ELM model was proposed to realize interpreteable of water inrush risk assessment. Karst tunnels are frequently subject to the combined effects of complex geological conditions, groundwater hydrological characteristics, and construction disturbances, leading to an increased risk of water inrush. To enhance the real-time performance and interpretability of water inrush risk assessment, this study proposes a method based on the integration of knowledge decision and data-driven models. First, a set of water inrush risk evaluation indicators and their benchmark set were established. Then, the analytic hierarchy process and entropy weight method were used to determine the subjective and objective weights, which were fused using game theory to improve the accuracy of the knowledge decision-making model based on the vlsekriterijumska optimizacija i kompromisno resenje (VIKOR) method. Thereafter, the VIKOR results were used as the base data to construct the training sample library for the data-driven model. The differential evolution–gray wolf optimization algorithm was employed to optimize the model hyperparameters, and ultimately, an extreme learning machine water inrush risk assessment model that combined knowledge decision and data-driven approaches was established. By comparing the risk assessment results of both models in typical monitoring sections, the proposed method was verified to effectively and accurately perform water inrush risk assessment with strong real-time performance and interpretability.
ArticleNumber 107120
Author Li, Xuewei
Qu, Jiaxin
Wang, Bo
Li, Shuchen
Zhao, Jinlong
Zhao, Shisen
Author_xml – sequence: 1
  givenname: Xuewei
  surname: Li
  fullname: Li, Xuewei
  organization: School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 2
  givenname: Shuchen
  surname: Li
  fullname: Li, Shuchen
  email: scli@cumt.edu.cn
  organization: School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 3
  givenname: Bo
  surname: Wang
  fullname: Wang, Bo
  organization: Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
– sequence: 4
  givenname: Jiaxin
  surname: Qu
  fullname: Qu, Jiaxin
  organization: School of Future Technology, Shandong University, Jinan 250002, China
– sequence: 5
  givenname: Jinlong
  surname: Zhao
  fullname: Zhao, Jinlong
  organization: Institute of National Defense Engineering, Military Academy of Sciences, Beijing 100000, China
– sequence: 6
  givenname: Shisen
  surname: Zhao
  fullname: Zhao, Shisen
  organization: State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China
BookMark eNp9kMtOwzAQRb0oEm3hB1j5B1JsB8eJxAZVPCpVYgNiaTn2pHUfNnicIv6eRGXNakYzOldXZ0YmIQYg5IazBWe8ut0tco95IZiQw0FxwSZkyuq6KpRq6ksyQ9wxxqQQzZR8fZgMifqQetzS5HFPDSIgHiFk6vrkw4buTcJMcx8CHKiNAXPqbfYx0NYgODos-xC_D-A2QB1Yj-PPBEedyaZwyZ8g0CPkbXR4RS46c0C4_ptz8v70-LZ8Kdavz6vlw7qwQpa5ANnKWrWdBGE63rYWGiPvOlE6zpq67KRUrGpcDVJI23DFleTCVGVbMaMqJ8s5EedcmyJigk5_Jn806UdzpkdReqdHUXoUpc-iBuj-DMHQ7OQhabQeggXnE9isXfT_4b8wkHh4
Cites_doi 10.3390/app14125163
10.1016/j.tust.2021.103884
10.1016/j.compgeo.2024.106244
10.1155/2020/5323820
10.1016/j.jhydrol.2022.128813
10.3390/su141811443
10.1016/j.neucom.2005.12.126
10.1016/j.tust.2021.104262
10.1038/s41598-022-05473-8
10.1016/j.procs.2015.07.081
10.1061/JPCFEV.CFENG-4349
10.1016/j.apor.2016.07.013
10.1016/j.tust.2024.105951
10.3390/w12041083
10.1080/19475705.2020.1785956
10.1007/s11069-014-1585-6
10.1016/j.ejor.2006.01.020
10.1016/j.tust.2022.104491
10.1016/j.patcog.2005.03.028
10.1016/j.engappai.2023.106386
10.1007/s12517-019-4907-x
10.1016/j.advwatres.2011.02.009
10.1016/j.eswa.2020.114186
10.1016/j.tust.2021.103948
10.1080/19475705.2025.2507184
10.1007/s12205-024-0193-6
10.1016/j.simpat.2020.102167
10.1016/j.jclepro.2024.141744
10.1016/j.eswa.2020.113389
10.1061/(ASCE)CF.1943-5509.0001251
10.1007/s11069-024-06583-4
10.1007/s10064-017-1114-4
10.1016/j.compgeo.2024.106584
10.1080/19475705.2020.1870170
10.1016/j.compgeo.2023.105336
10.1016/j.asoc.2010.04.024
10.1016/j.tust.2024.106154
10.1016/j.tust.2025.106575
10.18280/ts.390531
10.1109/ACCESS.2020.3047626
10.1109/TEM.2023.3325951
10.1016/j.tust.2021.104253
10.1016/j.engappai.2024.109127
10.1016/j.ress.2022.108985
10.1007/s11440-023-01874-9
10.1016/j.autcon.2024.105421
10.1016/j.autcon.2020.103155
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID AAYXX
CITATION
DOI 10.1016/j.tust.2025.107120
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_tust_2025_107120
S0886779825007588
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACLOT
ACLVX
ACNNM
ACRLP
ACRPL
ACSBN
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SEP
SES
SET
SEW
SPC
SPCBC
SSE
SST
SSZ
T5K
WUQ
ZMT
~02
~G-
~HD
9DU
AAYXX
CITATION
ID FETCH-LOGICAL-c253t-e5b587bf5e2af1bbce9a54f23d10983f557069d8e525c91717512a63b60a76d53
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001577894800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0886-7798
IngestDate Sat Nov 29 07:25:59 EST 2025
Sat Oct 25 17:45:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Tunnel construction
Data-driven
Water inrush
Knowledge decision
Risk assessment
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c253t-e5b587bf5e2af1bbce9a54f23d10983f557069d8e525c91717512a63b60a76d53
ParticipantIDs crossref_primary_10_1016_j_tust_2025_107120
elsevier_sciencedirect_doi_10_1016_j_tust_2025_107120
PublicationCentury 2000
PublicationDate February 2026
2026-02-00
PublicationDateYYYYMMDD 2026-02-01
PublicationDate_xml – month: 02
  year: 2026
  text: February 2026
PublicationDecade 2020
PublicationTitle Tunnelling and underground space technology
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Guo, Chai, Qin, Xu, Fan, Zhang (b0060) 2019; 33
Zhang, Zhou, Wei, Cheng (b0220) 2022; 14
Bu, Li, Shi, Li, Zhao, Zhou, Nie, Sun (b0005) 2019; 78
Ye, Liu, Ji, Wang, Zhou (b0195) 2023; 157
Liu, Liu, Li, Cheng (b0110) 2024; 137
Cui, Wu, Shen, Xu, Ye (b0025) 2015; 77
Zhang, Tang, Shi (b0225) 2022; 12
Zhao, Yang, Wang, Liang, Zeng (b0240) 2024; 169
Kong, Zhang (b0080) 2024; 449
Dong, Wang, Song, Chen, Liu (b0040) 2023; 37
Liu, Li, Fang, Love, Hartmann, Luo (b0125) 2023; 231
Lu, Sha, Gao, Jia, Wang (b0135) 2020; 2020
Dhargupta, Ghosh, Mirjalili, Sarkar (b0035) 2020; 151
Liu, Pei, Cao, Liu, Huang, Mei (b0120) 2022; 124
de FSM Russo, R., Camanho, R., 2015. Criteria in AHP: A systematic review of literature. Procedia computer science 55, 1123-1132.
Madani, Lund (b0140) 2011; 34
Wu, Feng, Yang, Qin, Chen, Liu (b0175) 2024; 163
Chen (b0020) 2021; 168
Yin, Wu, Yin, Dong, Dai, Soltanian (b0200) 2023; 616
Kim, Kim, Kim, Kim, Abbas, Lee (b0075) 2022; 120
Huang, Zhu, Siew (b0070) 2006; 70
Yao, Wang, Feng (b0190) 2022; 39(50
Zhu, Qin, Suganthan, Huang (b0250) 2005; 38
Li, Liu, Li, Zhang, Wang, Wang (b0095) 2016; 59
Li, Wang, Liu, Li (b0085) 2021; 12
Chang, Huang, Thewes, Zhang, Wu (b0010) 2024; 174
Xie, Yin, Yang, Yan, Li, Yan, Fu (b0180) 2025; 161
Liu, Zhou, Li, Deng, Niu, Yang, Zhang (b0115) 2025; 16
Yang, Yang, Fang, Shi, Wang, Bu, Li, Zhou (b0185) 2019; 12
Liu, Liao, Yang, Zhang (b0130) 2024; 152
Mallipeddi, Suganthan, Pan, Tasgetiren (b0145) 2011; 11
Zhang, Zheng, Elbaz, Xu (b0215) 2020; 12
Liu, Xu, Tang, Jian (b0105) 2021; 9
Wang, Li, Cheng, Yang, Jin, Gao, Wen (b0170) 2021; 112
Sihombing, Purba, Purba (b0160) 2021; 2021
Li, Wang, Olgun, Yang, Jiao, Wang (b0100) 2020; 11
Dong, Huang, Lehane, Ma (b0045) 2020; 114
Feng X, Lu Y, He J, LU, B., Wang K.P., 2024. Bayesian-network-based predictions of water inrush incidents in soft rock tunnels. KSCE Journal of Civil Engineering 28(12): 5934-5945.
Song, Zeng, Ma, Ma, Li, Xia (b0165) 2021; 2021
Li, Liu, Zhou, Li, Shi, Yuan (b0090) 2021; 113
Chen, Yang, Feng, Liu, Qin (b0015) 2023; 124
Zhang, Pan, Yang, Yang (b0235) 2023; 18
Zhan, Fang, Love, Luo (b0210) 2024; 71
Yuan, Yu, Zhang, Yang, Yu (b0205) 2024; 120
Guo, Meng, Wu, Yang, Chen (b0055) 2025; 155
Opricovic, Tzeng (b0150) 2007; 178
Zheng, Xu, Wang (b0245) 2024; 14
Shaghaghi, Ghadrdan, Tolooiyan (b0155) 2020; 105
Zhang, Wang, Yu, Guo, Wang, Li (b0230) 2022; 120
He, Yang, Cheng (b0065) 2018; 2018
Madani (10.1016/j.tust.2025.107120_b0140) 2011; 34
Dong (10.1016/j.tust.2025.107120_b0045) 2020; 114
Wang (10.1016/j.tust.2025.107120_b0170) 2021; 112
Huang (10.1016/j.tust.2025.107120_b0070) 2006; 70
Cui (10.1016/j.tust.2025.107120_b0025) 2015; 77
Yao (10.1016/j.tust.2025.107120_b0190) 2022; 39(50
Zhang (10.1016/j.tust.2025.107120_b0225) 2022; 12
Zhang (10.1016/j.tust.2025.107120_b0230) 2022; 120
Chen (10.1016/j.tust.2025.107120_b0015) 2023; 124
Liu (10.1016/j.tust.2025.107120_b0110) 2024; 137
Bu (10.1016/j.tust.2025.107120_b0005) 2019; 78
Liu (10.1016/j.tust.2025.107120_b0120) 2022; 124
Zhang (10.1016/j.tust.2025.107120_b0215) 2020; 12
Li (10.1016/j.tust.2025.107120_b0095) 2016; 59
Song (10.1016/j.tust.2025.107120_b0165) 2021; 2021
Mallipeddi (10.1016/j.tust.2025.107120_b0145) 2011; 11
Kim (10.1016/j.tust.2025.107120_b0075) 2022; 120
Kong (10.1016/j.tust.2025.107120_b0080) 2024; 449
Shaghaghi (10.1016/j.tust.2025.107120_b0155) 2020; 105
Li (10.1016/j.tust.2025.107120_b0090) 2021; 113
Guo (10.1016/j.tust.2025.107120_b0055) 2025; 155
10.1016/j.tust.2025.107120_b0050
Sihombing (10.1016/j.tust.2025.107120_b0160) 2021; 2021
Li (10.1016/j.tust.2025.107120_b0100) 2020; 11
Opricovic (10.1016/j.tust.2025.107120_b0150) 2007; 178
Zhang (10.1016/j.tust.2025.107120_b0235) 2023; 18
Zheng (10.1016/j.tust.2025.107120_b0245) 2024; 14
Xie (10.1016/j.tust.2025.107120_b0180) 2025; 161
Liu (10.1016/j.tust.2025.107120_b0125) 2023; 231
Wu (10.1016/j.tust.2025.107120_b0175) 2024; 163
Zhang (10.1016/j.tust.2025.107120_b0220) 2022; 14
Dhargupta (10.1016/j.tust.2025.107120_b0035) 2020; 151
Zhao (10.1016/j.tust.2025.107120_b0240) 2024; 169
Liu (10.1016/j.tust.2025.107120_b0130) 2024; 152
Lu (10.1016/j.tust.2025.107120_b0135) 2020; 2020
Ye (10.1016/j.tust.2025.107120_b0195) 2023; 157
Yang (10.1016/j.tust.2025.107120_b0185) 2019; 12
Liu (10.1016/j.tust.2025.107120_b0115) 2025; 16
Zhu (10.1016/j.tust.2025.107120_b0250) 2005; 38
Chen (10.1016/j.tust.2025.107120_b0020) 2021; 168
Liu (10.1016/j.tust.2025.107120_b0105) 2021; 9
Dong (10.1016/j.tust.2025.107120_b0040) 2023; 37
Chang (10.1016/j.tust.2025.107120_b0010) 2024; 174
Guo (10.1016/j.tust.2025.107120_b0060) 2019; 33
He (10.1016/j.tust.2025.107120_b0065) 2018; 2018
Li (10.1016/j.tust.2025.107120_b0085) 2021; 12
Yin (10.1016/j.tust.2025.107120_b0200) 2023; 616
Yuan (10.1016/j.tust.2025.107120_b0205) 2024; 120
10.1016/j.tust.2025.107120_b0030
Zhan (10.1016/j.tust.2025.107120_b0210) 2024; 71
References_xml – volume: 34
  start-page: 607
  year: 2011
  end-page: 616
  ident: b0140
  article-title: A Monte-Carlo game theoretic approach for multi-criteria decision making under uncertainty
  publication-title: Adv. Water Resour.
– volume: 163
  year: 2024
  ident: b0175
  article-title: Safety risk perception and control of water inrush during tunnel excavation in karst areas: an improved uncertain information fusion method
  publication-title: Autom. Constr.
– volume: 59
  start-page: 510
  year: 2016
  end-page: 520
  ident: b0095
  article-title: Large scale three-dimensional seepage analysis model test and numerical simulation research on undersea tunnel
  publication-title: Appl. Ocean Res.
– volume: 120
  year: 2022
  ident: b0075
  article-title: Probabilistic tunnel collapse risk evaluation model using analytical hierarchy process (AHP) and Delphi survey technique
  publication-title: Tunn. Undergr. Space Technol.
– reference: de FSM Russo, R., Camanho, R., 2015. Criteria in AHP: A systematic review of literature. Procedia computer science 55, 1123-1132.
– volume: 12
  start-page: 1083
  year: 2020
  ident: b0215
  article-title: Water Inrush hazards in the chaoyang tunnel, guizhou, china: a preliminary investigation
  publication-title: Water
– volume: 78
  start-page: 357
  year: 2019
  end-page: 373
  ident: b0005
  article-title: Application of the comprehensive forecast system for water-bearing structures in a karst tunnel: a case study
  publication-title: Bull. Eng. Geol. Environ.
– volume: 39(50
  start-page: 1729
  year: 2022
  end-page: 1736
  ident: b0190
  article-title: Application of signal imaging analysis technology in prediction and treatment of water inrush in diversion tunnel
  publication-title: Traitement Du Signal
– volume: 9
  start-page: 6368
  year: 2021
  end-page: 6378
  ident: b0105
  article-title: Prediction of water inrush in long-lasting shutdown karst tunnels based on the HGWO-SVR model
  publication-title: IEEE Access
– volume: 16
  year: 2025
  ident: b0115
  article-title: Creep behaviour of sandstone under different water conditions and its response to varying impact energy
  publication-title: Geomatics Natural Hazards & Risk
– volume: 124
  year: 2022
  ident: b0120
  article-title: Geological investigation and treatment measures against water inrush hazard in karst tunnels: a case study in Guiyang, southwest China
  publication-title: Tunn. Undergr. Space Technol.
– volume: 178
  start-page: 514
  year: 2007
  end-page: 529
  ident: b0150
  article-title: Extended VIKOR method in comparison with outranking methods
  publication-title: Eur. J. Oper. Res.
– volume: 155
  year: 2025
  ident: b0055
  article-title: Risk assessment of shield construction adjacent to the existing shield tunnel based on improved nonlinear FAHP
  publication-title: Tunn. Undergr. Space Technol.
– volume: 157
  year: 2023
  ident: b0195
  article-title: A new approach to evaluate the interactions between the surrounding rock microstructure and water inrush for tunnel excavation
  publication-title: Comput. Geotech.
– volume: 120
  start-page: 9713
  year: 2024
  end-page: 9734
  ident: b0205
  article-title: Investigating the dynamics of water–sand mixing inrush in viscous sand layers: insights from laboratory experiments
  publication-title: Nat. Hazards
– volume: 2020
  year: 2020
  ident: b0135
  article-title: An improved predictive model for determining the permeability coefficient of artificial clayey soil based on double
  publication-title: Adv. Mater. Sci. Eng.
– volume: 12
  start-page: 749
  year: 2019
  ident: b0185
  article-title: Model test for water inrush caused by karst caves filled with confined water in tunnels
  publication-title: Arab. J. Geosci.
– volume: 112
  year: 2021
  ident: b0170
  article-title: Study on an improved real-time monitoring and fusion prewarning method for water inrush in tunnels
  publication-title: Tunn. Undergr. Space Technol.
– volume: 18
  start-page: 4957
  year: 2023
  end-page: 4972
  ident: b0235
  article-title: Physics-informed deep learning method for predicting tunnelling-induced ground deformations
  publication-title: Acta Geotech.
– volume: 14
  start-page: 11443
  year: 2022
  ident: b0220
  article-title: Risk assessment of water inrush in tunnels: a case study of a tunnel in Guangdong province
  publication-title: China. Sustainability
– volume: 151
  year: 2020
  ident: b0035
  article-title: Selective opposition based grey wolf optimization
  publication-title: Expert Syst. Appl.
– volume: 12
  start-page: 222
  year: 2021
  end-page: 243
  ident: b0085
  article-title: Study on multi-field catastrophe evolution laws of water inrush from concealed karst cave in roadway excavation: a case of Jiyuan coal mine
  publication-title: Geomatics Natural Hazards & Risk
– volume: 137
  year: 2024
  ident: b0110
  article-title: Geotechnical risk modeling using an explainable transfer learning model incorporating physical guidance
  publication-title: Eng. Appl. Artif. Intel.
– volume: 71
  start-page: 10667
  year: 2024
  end-page: 10685
  ident: b0210
  article-title: Explainable artificial intelligence: Counterfactual explanations for risk-based decision-making in construction
  publication-title: IEEE Trans. Eng. Manag.
– volume: 152
  year: 2024
  ident: b0130
  article-title: Data-driven and physics-informed neural network for predicting tunnelling-induced ground deformation with sparse data of field measurement
  publication-title: Tunn. Undergr. Space Technol.
– volume: 124
  year: 2023
  ident: b0015
  article-title: Safety evaluation of buildings adjacent to shield construction in karst areas: an improved extension cloud approach
  publication-title: Eng. Appl. Artif. Intel.
– volume: 168
  year: 2021
  ident: b0020
  article-title: Effects of the entropy weight on TOPSIS
  publication-title: Expert Syst. Appl.
– volume: 37
  year: 2023
  ident: b0040
  article-title: Analysis of the catastrophe mechanism and treatment countermeasures of a sudden water inrush disaster in a long and deeply buried tunnel in the karst area
  publication-title: J. Perform. Constr. Facil
– volume: 2021
  year: 2021
  ident: b0165
  article-title: Water inrush risk assessment based on AHP and advance forecast approach: a case study in the micangshan tunnel
  publication-title: Adv. Civ. Eng.
– reference: Feng X, Lu Y, He J, LU, B., Wang K.P., 2024. Bayesian-network-based predictions of water inrush incidents in soft rock tunnels. KSCE Journal of Civil Engineering 28(12): 5934-5945.
– volume: 11
  start-page: 1212
  year: 2020
  end-page: 1232
  ident: b0100
  article-title: Risk assessment of water inrush caused by karst cave in tunnels based on reliability and GA-BP neural network
  publication-title: Geomat. Nat. Haz. Risk
– volume: 616
  year: 2023
  ident: b0200
  article-title: Predicting mine water inrush accidents based on water level anomalies of borehole groups using long short-term memory and isolation forest
  publication-title: J. Hydrol.
– volume: 33
  year: 2019
  ident: b0060
  article-title: Mechanism and treatment technology of three water inrush events in the jiaoxi river tunnel in shaanxi, china
  publication-title: J. Perform. Constr. Facil
– volume: 77
  start-page: 129
  year: 2015
  end-page: 152
  ident: b0025
  article-title: Chinese karst geology and measures to prevent geohazards during shield tunnelling in karst region with caves
  publication-title: Nat. Hazards
– volume: 449
  year: 2024
  ident: b0080
  article-title: Risk assessment of water inrush accident during tunnel construction based on FAHP-I-TOPSIS
  publication-title: J. Clean. Prod.
– volume: 161
  year: 2025
  ident: b0180
  article-title: Study on the damage mechanism of water and mud inrush in a tunnel with water-rich fault zones based on experiment and numerical modeling
  publication-title: Tunn. Undergr. Space Technol.
– volume: 2021
  start-page: 261
  year: 2021
  end-page: 286
  ident: b0160
  article-title: Risk identification in tunnel construction project: a literature review
  publication-title: Facta Universitatis, Series: Architecture and Civil Engineering
– volume: 169
  year: 2024
  ident: b0240
  article-title: Long-term safety evaluation of soft rock tunnel structure based on knowledge decision-making and data-driven models
  publication-title: Comput. Geotech.
– volume: 113
  year: 2021
  ident: b0090
  article-title: Multi-sources information fusion analysis of water inrush disaster in tunnels based on improved theory of evidence
  publication-title: Tunn. Undergr. Space Technol.
– volume: 12
  start-page: 1370
  year: 2022
  ident: b0225
  article-title: Risk assessment of coal mine water inrush based on PCA-DBN
  publication-title: Sci. Rep.
– volume: 231
  year: 2023
  ident: b0125
  article-title: A hybrid data-driven model for geotechnical reliability analysis
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 120
  year: 2022
  ident: b0230
  article-title: Experimental and numerical research on the influence of steel arch frame corrosion on security of supporting system in subsea tunnel
  publication-title: Tunn. Undergr. Space Technol.
– volume: 174
  year: 2024
  ident: b0010
  article-title: Data-based postural prediction of shield tunneling via machine learning with physical information
  publication-title: Comput. Geotech.
– volume: 11
  start-page: 1679
  year: 2011
  end-page: 1696
  ident: b0145
  article-title: Differential evolution algorithm with ensemble of parameters and mutation strategies
  publication-title: Appl. Soft Comput.
– volume: 14
  start-page: 5163
  year: 2024
  ident: b0245
  article-title: Fuzzy comprehensive evaluation of collapse risk in mountain tunnels based on game theory
  publication-title: Appl. Sci.-Basel
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: b0070
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
– volume: 2018
  year: 2018
  ident: b0065
  article-title: Surface Morphology of Structural Plane and Effects of the Shear Strength Parameters
  publication-title: Adv. Civ. Eng.
– volume: 114
  year: 2020
  ident: b0045
  article-title: XGBoost algorithm-based prediction of concrete electrical resistivity for structural health monitoring
  publication-title: Autom. Constr.
– volume: 38
  start-page: 1759
  year: 2005
  end-page: 1763
  ident: b0250
  article-title: Evolutionary extreme learning machine
  publication-title: Pattern Recogn.
– volume: 105
  year: 2020
  ident: b0155
  article-title: Effect of rock mass permeability and rock fracture leak-off coefficient on the pore water pressure distribution in a fractured slope
  publication-title: Simul. Model. Pract. Theory
– volume: 14
  start-page: 5163
  issue: 12
  year: 2024
  ident: 10.1016/j.tust.2025.107120_b0245
  article-title: Fuzzy comprehensive evaluation of collapse risk in mountain tunnels based on game theory
  publication-title: Appl. Sci.-Basel
  doi: 10.3390/app14125163
– volume: 112
  year: 2021
  ident: 10.1016/j.tust.2025.107120_b0170
  article-title: Study on an improved real-time monitoring and fusion prewarning method for water inrush in tunnels
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2021.103884
– volume: 169
  year: 2024
  ident: 10.1016/j.tust.2025.107120_b0240
  article-title: Long-term safety evaluation of soft rock tunnel structure based on knowledge decision-making and data-driven models
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2024.106244
– volume: 2020
  year: 2020
  ident: 10.1016/j.tust.2025.107120_b0135
  article-title: An improved predictive model for determining the permeability coefficient of artificial clayey soil based on double T2 cut-offs
  publication-title: Adv. Mater. Sci. Eng.
  doi: 10.1155/2020/5323820
– volume: 616
  year: 2023
  ident: 10.1016/j.tust.2025.107120_b0200
  article-title: Predicting mine water inrush accidents based on water level anomalies of borehole groups using long short-term memory and isolation forest
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.128813
– volume: 14
  start-page: 11443
  issue: 18
  year: 2022
  ident: 10.1016/j.tust.2025.107120_b0220
  article-title: Risk assessment of water inrush in tunnels: a case study of a tunnel in Guangdong province
  publication-title: China. Sustainability
  doi: 10.3390/su141811443
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  ident: 10.1016/j.tust.2025.107120_b0070
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 120
  year: 2022
  ident: 10.1016/j.tust.2025.107120_b0075
  article-title: Probabilistic tunnel collapse risk evaluation model using analytical hierarchy process (AHP) and Delphi survey technique
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2021.104262
– volume: 12
  start-page: 1370
  issue: 1
  year: 2022
  ident: 10.1016/j.tust.2025.107120_b0225
  article-title: Risk assessment of coal mine water inrush based on PCA-DBN
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-05473-8
– ident: 10.1016/j.tust.2025.107120_b0030
  doi: 10.1016/j.procs.2015.07.081
– volume: 37
  issue: 6
  year: 2023
  ident: 10.1016/j.tust.2025.107120_b0040
  article-title: Analysis of the catastrophe mechanism and treatment countermeasures of a sudden water inrush disaster in a long and deeply buried tunnel in the karst area
  publication-title: J. Perform. Constr. Facil
  doi: 10.1061/JPCFEV.CFENG-4349
– volume: 2018
  year: 2018
  ident: 10.1016/j.tust.2025.107120_b0065
  article-title: Surface Morphology of Structural Plane and Effects of the Shear Strength Parameters
  publication-title: Adv. Civ. Eng.
– volume: 59
  start-page: 510
  year: 2016
  ident: 10.1016/j.tust.2025.107120_b0095
  article-title: Large scale three-dimensional seepage analysis model test and numerical simulation research on undersea tunnel
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2016.07.013
– volume: 152
  year: 2024
  ident: 10.1016/j.tust.2025.107120_b0130
  article-title: Data-driven and physics-informed neural network for predicting tunnelling-induced ground deformation with sparse data of field measurement
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2024.105951
– volume: 12
  start-page: 1083
  issue: 4
  year: 2020
  ident: 10.1016/j.tust.2025.107120_b0215
  article-title: Water Inrush hazards in the chaoyang tunnel, guizhou, china: a preliminary investigation
  publication-title: Water
  doi: 10.3390/w12041083
– volume: 11
  start-page: 1212
  issue: 1
  year: 2020
  ident: 10.1016/j.tust.2025.107120_b0100
  article-title: Risk assessment of water inrush caused by karst cave in tunnels based on reliability and GA-BP neural network
  publication-title: Geomat. Nat. Haz. Risk
  doi: 10.1080/19475705.2020.1785956
– volume: 77
  start-page: 129
  issue: 1
  year: 2015
  ident: 10.1016/j.tust.2025.107120_b0025
  article-title: Chinese karst geology and measures to prevent geohazards during shield tunnelling in karst region with caves
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-014-1585-6
– volume: 2021
  year: 2021
  ident: 10.1016/j.tust.2025.107120_b0165
  article-title: Water inrush risk assessment based on AHP and advance forecast approach: a case study in the micangshan tunnel
  publication-title: Adv. Civ. Eng.
– volume: 178
  start-page: 514
  issue: 2
  year: 2007
  ident: 10.1016/j.tust.2025.107120_b0150
  article-title: Extended VIKOR method in comparison with outranking methods
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2006.01.020
– volume: 124
  year: 2022
  ident: 10.1016/j.tust.2025.107120_b0120
  article-title: Geological investigation and treatment measures against water inrush hazard in karst tunnels: a case study in Guiyang, southwest China
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2022.104491
– volume: 38
  start-page: 1759
  issue: 10
  year: 2005
  ident: 10.1016/j.tust.2025.107120_b0250
  article-title: Evolutionary extreme learning machine
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2005.03.028
– volume: 124
  year: 2023
  ident: 10.1016/j.tust.2025.107120_b0015
  article-title: Safety evaluation of buildings adjacent to shield construction in karst areas: an improved extension cloud approach
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2023.106386
– volume: 12
  start-page: 749
  issue: 24
  year: 2019
  ident: 10.1016/j.tust.2025.107120_b0185
  article-title: Model test for water inrush caused by karst caves filled with confined water in tunnels
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-019-4907-x
– volume: 34
  start-page: 607
  issue: 5
  year: 2011
  ident: 10.1016/j.tust.2025.107120_b0140
  article-title: A Monte-Carlo game theoretic approach for multi-criteria decision making under uncertainty
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2011.02.009
– volume: 168
  year: 2021
  ident: 10.1016/j.tust.2025.107120_b0020
  article-title: Effects of the entropy weight on TOPSIS
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114186
– volume: 113
  year: 2021
  ident: 10.1016/j.tust.2025.107120_b0090
  article-title: Multi-sources information fusion analysis of water inrush disaster in tunnels based on improved theory of evidence
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2021.103948
– volume: 16
  issue: 1
  year: 2025
  ident: 10.1016/j.tust.2025.107120_b0115
  article-title: Creep behaviour of sandstone under different water conditions and its response to varying impact energy
  publication-title: Geomatics Natural Hazards & Risk
  doi: 10.1080/19475705.2025.2507184
– ident: 10.1016/j.tust.2025.107120_b0050
  doi: 10.1007/s12205-024-0193-6
– volume: 105
  year: 2020
  ident: 10.1016/j.tust.2025.107120_b0155
  article-title: Effect of rock mass permeability and rock fracture leak-off coefficient on the pore water pressure distribution in a fractured slope
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2020.102167
– volume: 449
  year: 2024
  ident: 10.1016/j.tust.2025.107120_b0080
  article-title: Risk assessment of water inrush accident during tunnel construction based on FAHP-I-TOPSIS
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2024.141744
– volume: 151
  year: 2020
  ident: 10.1016/j.tust.2025.107120_b0035
  article-title: Selective opposition based grey wolf optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113389
– volume: 33
  issue: 1
  year: 2019
  ident: 10.1016/j.tust.2025.107120_b0060
  article-title: Mechanism and treatment technology of three water inrush events in the jiaoxi river tunnel in shaanxi, china
  publication-title: J. Perform. Constr. Facil
  doi: 10.1061/(ASCE)CF.1943-5509.0001251
– volume: 120
  start-page: 9713
  issue: 11
  year: 2024
  ident: 10.1016/j.tust.2025.107120_b0205
  article-title: Investigating the dynamics of water–sand mixing inrush in viscous sand layers: insights from laboratory experiments
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-024-06583-4
– volume: 2021
  start-page: 261
  year: 2021
  ident: 10.1016/j.tust.2025.107120_b0160
  article-title: Risk identification in tunnel construction project: a literature review
  publication-title: Facta Universitatis, Series: Architecture and Civil Engineering
– volume: 78
  start-page: 357
  issue: 1
  year: 2019
  ident: 10.1016/j.tust.2025.107120_b0005
  article-title: Application of the comprehensive forecast system for water-bearing structures in a karst tunnel: a case study
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-017-1114-4
– volume: 174
  year: 2024
  ident: 10.1016/j.tust.2025.107120_b0010
  article-title: Data-based postural prediction of shield tunneling via machine learning with physical information
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2024.106584
– volume: 12
  start-page: 222
  issue: 1
  year: 2021
  ident: 10.1016/j.tust.2025.107120_b0085
  article-title: Study on multi-field catastrophe evolution laws of water inrush from concealed karst cave in roadway excavation: a case of Jiyuan coal mine
  publication-title: Geomatics Natural Hazards & Risk
  doi: 10.1080/19475705.2020.1870170
– volume: 157
  year: 2023
  ident: 10.1016/j.tust.2025.107120_b0195
  article-title: A new approach to evaluate the interactions between the surrounding rock microstructure and water inrush for tunnel excavation
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2023.105336
– volume: 11
  start-page: 1679
  issue: 2
  year: 2011
  ident: 10.1016/j.tust.2025.107120_b0145
  article-title: Differential evolution algorithm with ensemble of parameters and mutation strategies
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.04.024
– volume: 155
  year: 2025
  ident: 10.1016/j.tust.2025.107120_b0055
  article-title: Risk assessment of shield construction adjacent to the existing shield tunnel based on improved nonlinear FAHP
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2024.106154
– volume: 161
  year: 2025
  ident: 10.1016/j.tust.2025.107120_b0180
  article-title: Study on the damage mechanism of water and mud inrush in a tunnel with water-rich fault zones based on experiment and numerical modeling
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2025.106575
– volume: 39(50
  start-page: 1729
  year: 2022
  ident: 10.1016/j.tust.2025.107120_b0190
  article-title: Application of signal imaging analysis technology in prediction and treatment of water inrush in diversion tunnel
  publication-title: Traitement Du Signal
  doi: 10.18280/ts.390531
– volume: 9
  start-page: 6368
  year: 2021
  ident: 10.1016/j.tust.2025.107120_b0105
  article-title: Prediction of water inrush in long-lasting shutdown karst tunnels based on the HGWO-SVR model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3047626
– volume: 71
  start-page: 10667
  year: 2024
  ident: 10.1016/j.tust.2025.107120_b0210
  article-title: Explainable artificial intelligence: Counterfactual explanations for risk-based decision-making in construction
  publication-title: IEEE Trans. Eng. Manag.
  doi: 10.1109/TEM.2023.3325951
– volume: 120
  year: 2022
  ident: 10.1016/j.tust.2025.107120_b0230
  article-title: Experimental and numerical research on the influence of steel arch frame corrosion on security of supporting system in subsea tunnel
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2021.104253
– volume: 137
  year: 2024
  ident: 10.1016/j.tust.2025.107120_b0110
  article-title: Geotechnical risk modeling using an explainable transfer learning model incorporating physical guidance
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2024.109127
– volume: 231
  year: 2023
  ident: 10.1016/j.tust.2025.107120_b0125
  article-title: A hybrid data-driven model for geotechnical reliability analysis
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2022.108985
– volume: 18
  start-page: 4957
  issue: 9
  year: 2023
  ident: 10.1016/j.tust.2025.107120_b0235
  article-title: Physics-informed deep learning method for predicting tunnelling-induced ground deformations
  publication-title: Acta Geotech.
  doi: 10.1007/s11440-023-01874-9
– volume: 163
  year: 2024
  ident: 10.1016/j.tust.2025.107120_b0175
  article-title: Safety risk perception and control of water inrush during tunnel excavation in karst areas: an improved uncertain information fusion method
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2024.105421
– volume: 114
  year: 2020
  ident: 10.1016/j.tust.2025.107120_b0045
  article-title: XGBoost algorithm-based prediction of concrete electrical resistivity for structural health monitoring
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103155
SSID ssj0005229
Score 2.4322681
Snippet •A set of water inrush risk evaluation indicators during karst tunnel construction were established.•A knowledge decision model of water inrush risk assessment...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 107120
SubjectTerms Data-driven
Knowledge decision
Risk assessment
Tunnel construction
Water inrush
Title Water inrush risk assessment during karst tunnel construction based on knowledge decision and data-driven methods
URI https://dx.doi.org/10.1016/j.tust.2025.107120
Volume 168
WOSCitedRecordID wos001577894800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0886-7798
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005229
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbTQ_toTR90PSFDrkZF68c2fIxLSltCSGQLdmbkS2ZbBKcdNeb7M_vjF52klLaQC7GCCybmc-j0eibGUK2VcUbBjYvxlpRMawQO7FUXMRZoXjBK87zojHNJvKDAzGbFYej0bXPhbk6z9tWrNfF5YOqGsZA2Zg6-x_qDpPCANyD0uEKaofrPyn-WGLdw3m7WC1PLHNchuqbPivxDLazXdStkOSCxPNQRTbCVU3hCUIItkXKteEx5wzIKI3VAm2k6z69HPq3UzPluc98xAy1BSaOYHQeduc66u6E8vcNn2C20td6fnPs6GQFkAroPXah7c8XfbTWgHAu165-uAtfsMB49jE1n1fTk5is6cvA77f9qYOdtv137th8G344_dRhjgq8gsNQPmFJv8IF3uERTozzguMHvpIQj8gGy3khxmRj9_ve7MeAHWQa3IUPcflWlhp4-01_9mkGfsr0OXnmNhh01wJjk4x0-4I8HZSdfEl-GYhQCxGKEKE9RKiFCDUQoRYidAgRaiBC4SZAhHqIUFA6HUCEOoi8Ij-_7k2_fItd6424ZjztYg2_qcirhmsmm0lV1bqQfKdhqZokhUgbLNwGv7PQnPEadvzghE6YzNIqS2SeKZ6-JuP2otVvCK2SVCYYRag57EZ1JbKUca2yRsiGZVptkcgLr7y0FVZKTz08LVHUJYq6tKLeItzLt3Q-ovX9SoDDX557e8_n3pEnPWrfkzHIWn8gj-urbr5cfHSo-Q0tQZIB
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water+inrush+risk+assessment+during+karst+tunnel+construction+based+on+knowledge+decision+and+data-driven+methods&rft.jtitle=Tunnelling+and+underground+space+technology&rft.au=Li%2C+Xuewei&rft.au=Li%2C+Shuchen&rft.au=Wang%2C+Bo&rft.au=Qu%2C+Jiaxin&rft.date=2026-02-01&rft.pub=Elsevier+Ltd&rft.issn=0886-7798&rft.volume=168&rft_id=info:doi/10.1016%2Fj.tust.2025.107120&rft.externalDocID=S0886779825007588
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-7798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-7798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-7798&client=summon