Water inrush risk assessment during karst tunnel construction based on knowledge decision and data-driven methods
•A set of water inrush risk evaluation indicators during karst tunnel construction were established.•A knowledge decision model of water inrush risk assessment were constructed based on VIKOR model and integrated weights.•A knowledge-data dual-driven DE-GWO-ELM model was proposed to realize interpre...
Saved in:
| Published in: | Tunnelling and underground space technology Vol. 168; p. 107120 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.02.2026
|
| Subjects: | |
| ISSN: | 0886-7798 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A set of water inrush risk evaluation indicators during karst tunnel construction were established.•A knowledge decision model of water inrush risk assessment were constructed based on VIKOR model and integrated weights.•A knowledge-data dual-driven DE-GWO-ELM model was proposed to realize interpreteable of water inrush risk assessment.
Karst tunnels are frequently subject to the combined effects of complex geological conditions, groundwater hydrological characteristics, and construction disturbances, leading to an increased risk of water inrush. To enhance the real-time performance and interpretability of water inrush risk assessment, this study proposes a method based on the integration of knowledge decision and data-driven models. First, a set of water inrush risk evaluation indicators and their benchmark set were established. Then, the analytic hierarchy process and entropy weight method were used to determine the subjective and objective weights, which were fused using game theory to improve the accuracy of the knowledge decision-making model based on the vlsekriterijumska optimizacija i kompromisno resenje (VIKOR) method. Thereafter, the VIKOR results were used as the base data to construct the training sample library for the data-driven model. The differential evolution–gray wolf optimization algorithm was employed to optimize the model hyperparameters, and ultimately, an extreme learning machine water inrush risk assessment model that combined knowledge decision and data-driven approaches was established. By comparing the risk assessment results of both models in typical monitoring sections, the proposed method was verified to effectively and accurately perform water inrush risk assessment with strong real-time performance and interpretability. |
|---|---|
| AbstractList | •A set of water inrush risk evaluation indicators during karst tunnel construction were established.•A knowledge decision model of water inrush risk assessment were constructed based on VIKOR model and integrated weights.•A knowledge-data dual-driven DE-GWO-ELM model was proposed to realize interpreteable of water inrush risk assessment.
Karst tunnels are frequently subject to the combined effects of complex geological conditions, groundwater hydrological characteristics, and construction disturbances, leading to an increased risk of water inrush. To enhance the real-time performance and interpretability of water inrush risk assessment, this study proposes a method based on the integration of knowledge decision and data-driven models. First, a set of water inrush risk evaluation indicators and their benchmark set were established. Then, the analytic hierarchy process and entropy weight method were used to determine the subjective and objective weights, which were fused using game theory to improve the accuracy of the knowledge decision-making model based on the vlsekriterijumska optimizacija i kompromisno resenje (VIKOR) method. Thereafter, the VIKOR results were used as the base data to construct the training sample library for the data-driven model. The differential evolution–gray wolf optimization algorithm was employed to optimize the model hyperparameters, and ultimately, an extreme learning machine water inrush risk assessment model that combined knowledge decision and data-driven approaches was established. By comparing the risk assessment results of both models in typical monitoring sections, the proposed method was verified to effectively and accurately perform water inrush risk assessment with strong real-time performance and interpretability. |
| ArticleNumber | 107120 |
| Author | Li, Xuewei Qu, Jiaxin Wang, Bo Li, Shuchen Zhao, Jinlong Zhao, Shisen |
| Author_xml | – sequence: 1 givenname: Xuewei surname: Li fullname: Li, Xuewei organization: School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China – sequence: 2 givenname: Shuchen surname: Li fullname: Li, Shuchen email: scli@cumt.edu.cn organization: School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China – sequence: 3 givenname: Bo surname: Wang fullname: Wang, Bo organization: Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China – sequence: 4 givenname: Jiaxin surname: Qu fullname: Qu, Jiaxin organization: School of Future Technology, Shandong University, Jinan 250002, China – sequence: 5 givenname: Jinlong surname: Zhao fullname: Zhao, Jinlong organization: Institute of National Defense Engineering, Military Academy of Sciences, Beijing 100000, China – sequence: 6 givenname: Shisen surname: Zhao fullname: Zhao, Shisen organization: State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China |
| BookMark | eNp9kMtOwzAQRb0oEm3hB1j5B1JsB8eJxAZVPCpVYgNiaTn2pHUfNnicIv6eRGXNakYzOldXZ0YmIQYg5IazBWe8ut0tco95IZiQw0FxwSZkyuq6KpRq6ksyQ9wxxqQQzZR8fZgMifqQetzS5HFPDSIgHiFk6vrkw4buTcJMcx8CHKiNAXPqbfYx0NYgODos-xC_D-A2QB1Yj-PPBEedyaZwyZ8g0CPkbXR4RS46c0C4_ptz8v70-LZ8Kdavz6vlw7qwQpa5ANnKWrWdBGE63rYWGiPvOlE6zpq67KRUrGpcDVJI23DFleTCVGVbMaMqJ8s5EedcmyJigk5_Jn806UdzpkdReqdHUXoUpc-iBuj-DMHQ7OQhabQeggXnE9isXfT_4b8wkHh4 |
| Cites_doi | 10.3390/app14125163 10.1016/j.tust.2021.103884 10.1016/j.compgeo.2024.106244 10.1155/2020/5323820 10.1016/j.jhydrol.2022.128813 10.3390/su141811443 10.1016/j.neucom.2005.12.126 10.1016/j.tust.2021.104262 10.1038/s41598-022-05473-8 10.1016/j.procs.2015.07.081 10.1061/JPCFEV.CFENG-4349 10.1016/j.apor.2016.07.013 10.1016/j.tust.2024.105951 10.3390/w12041083 10.1080/19475705.2020.1785956 10.1007/s11069-014-1585-6 10.1016/j.ejor.2006.01.020 10.1016/j.tust.2022.104491 10.1016/j.patcog.2005.03.028 10.1016/j.engappai.2023.106386 10.1007/s12517-019-4907-x 10.1016/j.advwatres.2011.02.009 10.1016/j.eswa.2020.114186 10.1016/j.tust.2021.103948 10.1080/19475705.2025.2507184 10.1007/s12205-024-0193-6 10.1016/j.simpat.2020.102167 10.1016/j.jclepro.2024.141744 10.1016/j.eswa.2020.113389 10.1061/(ASCE)CF.1943-5509.0001251 10.1007/s11069-024-06583-4 10.1007/s10064-017-1114-4 10.1016/j.compgeo.2024.106584 10.1080/19475705.2020.1870170 10.1016/j.compgeo.2023.105336 10.1016/j.asoc.2010.04.024 10.1016/j.tust.2024.106154 10.1016/j.tust.2025.106575 10.18280/ts.390531 10.1109/ACCESS.2020.3047626 10.1109/TEM.2023.3325951 10.1016/j.tust.2021.104253 10.1016/j.engappai.2024.109127 10.1016/j.ress.2022.108985 10.1007/s11440-023-01874-9 10.1016/j.autcon.2024.105421 10.1016/j.autcon.2020.103155 |
| ContentType | Journal Article |
| Copyright | 2025 |
| Copyright_xml | – notice: 2025 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.tust.2025.107120 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_tust_2025_107120 S0886779825007588 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFS ACIWK ACLOT ACLVX ACNNM ACRLP ACRPL ACSBN ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG ATOGT AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W JJJVA KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SEP SES SET SEW SPC SPCBC SSE SST SSZ T5K WUQ ZMT ~02 ~G- ~HD 9DU AAYXX CITATION |
| ID | FETCH-LOGICAL-c253t-e5b587bf5e2af1bbce9a54f23d10983f557069d8e525c91717512a63b60a76d53 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001577894800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0886-7798 |
| IngestDate | Sat Nov 29 07:25:59 EST 2025 Sat Oct 25 17:45:17 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Tunnel construction Data-driven Water inrush Knowledge decision Risk assessment |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c253t-e5b587bf5e2af1bbce9a54f23d10983f557069d8e525c91717512a63b60a76d53 |
| ParticipantIDs | crossref_primary_10_1016_j_tust_2025_107120 elsevier_sciencedirect_doi_10_1016_j_tust_2025_107120 |
| PublicationCentury | 2000 |
| PublicationDate | February 2026 2026-02-00 |
| PublicationDateYYYYMMDD | 2026-02-01 |
| PublicationDate_xml | – month: 02 year: 2026 text: February 2026 |
| PublicationDecade | 2020 |
| PublicationTitle | Tunnelling and underground space technology |
| PublicationYear | 2026 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Guo, Chai, Qin, Xu, Fan, Zhang (b0060) 2019; 33 Zhang, Zhou, Wei, Cheng (b0220) 2022; 14 Bu, Li, Shi, Li, Zhao, Zhou, Nie, Sun (b0005) 2019; 78 Ye, Liu, Ji, Wang, Zhou (b0195) 2023; 157 Liu, Liu, Li, Cheng (b0110) 2024; 137 Cui, Wu, Shen, Xu, Ye (b0025) 2015; 77 Zhang, Tang, Shi (b0225) 2022; 12 Zhao, Yang, Wang, Liang, Zeng (b0240) 2024; 169 Kong, Zhang (b0080) 2024; 449 Dong, Wang, Song, Chen, Liu (b0040) 2023; 37 Liu, Li, Fang, Love, Hartmann, Luo (b0125) 2023; 231 Lu, Sha, Gao, Jia, Wang (b0135) 2020; 2020 Dhargupta, Ghosh, Mirjalili, Sarkar (b0035) 2020; 151 Liu, Pei, Cao, Liu, Huang, Mei (b0120) 2022; 124 de FSM Russo, R., Camanho, R., 2015. Criteria in AHP: A systematic review of literature. Procedia computer science 55, 1123-1132. Madani, Lund (b0140) 2011; 34 Wu, Feng, Yang, Qin, Chen, Liu (b0175) 2024; 163 Chen (b0020) 2021; 168 Yin, Wu, Yin, Dong, Dai, Soltanian (b0200) 2023; 616 Kim, Kim, Kim, Kim, Abbas, Lee (b0075) 2022; 120 Huang, Zhu, Siew (b0070) 2006; 70 Yao, Wang, Feng (b0190) 2022; 39(50 Zhu, Qin, Suganthan, Huang (b0250) 2005; 38 Li, Liu, Li, Zhang, Wang, Wang (b0095) 2016; 59 Li, Wang, Liu, Li (b0085) 2021; 12 Chang, Huang, Thewes, Zhang, Wu (b0010) 2024; 174 Xie, Yin, Yang, Yan, Li, Yan, Fu (b0180) 2025; 161 Liu, Zhou, Li, Deng, Niu, Yang, Zhang (b0115) 2025; 16 Yang, Yang, Fang, Shi, Wang, Bu, Li, Zhou (b0185) 2019; 12 Liu, Liao, Yang, Zhang (b0130) 2024; 152 Mallipeddi, Suganthan, Pan, Tasgetiren (b0145) 2011; 11 Zhang, Zheng, Elbaz, Xu (b0215) 2020; 12 Liu, Xu, Tang, Jian (b0105) 2021; 9 Wang, Li, Cheng, Yang, Jin, Gao, Wen (b0170) 2021; 112 Sihombing, Purba, Purba (b0160) 2021; 2021 Li, Wang, Olgun, Yang, Jiao, Wang (b0100) 2020; 11 Dong, Huang, Lehane, Ma (b0045) 2020; 114 Feng X, Lu Y, He J, LU, B., Wang K.P., 2024. Bayesian-network-based predictions of water inrush incidents in soft rock tunnels. KSCE Journal of Civil Engineering 28(12): 5934-5945. Song, Zeng, Ma, Ma, Li, Xia (b0165) 2021; 2021 Li, Liu, Zhou, Li, Shi, Yuan (b0090) 2021; 113 Chen, Yang, Feng, Liu, Qin (b0015) 2023; 124 Zhang, Pan, Yang, Yang (b0235) 2023; 18 Zhan, Fang, Love, Luo (b0210) 2024; 71 Yuan, Yu, Zhang, Yang, Yu (b0205) 2024; 120 Guo, Meng, Wu, Yang, Chen (b0055) 2025; 155 Opricovic, Tzeng (b0150) 2007; 178 Zheng, Xu, Wang (b0245) 2024; 14 Shaghaghi, Ghadrdan, Tolooiyan (b0155) 2020; 105 Zhang, Wang, Yu, Guo, Wang, Li (b0230) 2022; 120 He, Yang, Cheng (b0065) 2018; 2018 Madani (10.1016/j.tust.2025.107120_b0140) 2011; 34 Dong (10.1016/j.tust.2025.107120_b0045) 2020; 114 Wang (10.1016/j.tust.2025.107120_b0170) 2021; 112 Huang (10.1016/j.tust.2025.107120_b0070) 2006; 70 Cui (10.1016/j.tust.2025.107120_b0025) 2015; 77 Yao (10.1016/j.tust.2025.107120_b0190) 2022; 39(50 Zhang (10.1016/j.tust.2025.107120_b0225) 2022; 12 Zhang (10.1016/j.tust.2025.107120_b0230) 2022; 120 Chen (10.1016/j.tust.2025.107120_b0015) 2023; 124 Liu (10.1016/j.tust.2025.107120_b0110) 2024; 137 Bu (10.1016/j.tust.2025.107120_b0005) 2019; 78 Liu (10.1016/j.tust.2025.107120_b0120) 2022; 124 Zhang (10.1016/j.tust.2025.107120_b0215) 2020; 12 Li (10.1016/j.tust.2025.107120_b0095) 2016; 59 Song (10.1016/j.tust.2025.107120_b0165) 2021; 2021 Mallipeddi (10.1016/j.tust.2025.107120_b0145) 2011; 11 Kim (10.1016/j.tust.2025.107120_b0075) 2022; 120 Kong (10.1016/j.tust.2025.107120_b0080) 2024; 449 Shaghaghi (10.1016/j.tust.2025.107120_b0155) 2020; 105 Li (10.1016/j.tust.2025.107120_b0090) 2021; 113 Guo (10.1016/j.tust.2025.107120_b0055) 2025; 155 10.1016/j.tust.2025.107120_b0050 Sihombing (10.1016/j.tust.2025.107120_b0160) 2021; 2021 Li (10.1016/j.tust.2025.107120_b0100) 2020; 11 Opricovic (10.1016/j.tust.2025.107120_b0150) 2007; 178 Zhang (10.1016/j.tust.2025.107120_b0235) 2023; 18 Zheng (10.1016/j.tust.2025.107120_b0245) 2024; 14 Xie (10.1016/j.tust.2025.107120_b0180) 2025; 161 Liu (10.1016/j.tust.2025.107120_b0125) 2023; 231 Wu (10.1016/j.tust.2025.107120_b0175) 2024; 163 Zhang (10.1016/j.tust.2025.107120_b0220) 2022; 14 Dhargupta (10.1016/j.tust.2025.107120_b0035) 2020; 151 Zhao (10.1016/j.tust.2025.107120_b0240) 2024; 169 Liu (10.1016/j.tust.2025.107120_b0130) 2024; 152 Lu (10.1016/j.tust.2025.107120_b0135) 2020; 2020 Ye (10.1016/j.tust.2025.107120_b0195) 2023; 157 Yang (10.1016/j.tust.2025.107120_b0185) 2019; 12 Liu (10.1016/j.tust.2025.107120_b0115) 2025; 16 Zhu (10.1016/j.tust.2025.107120_b0250) 2005; 38 Chen (10.1016/j.tust.2025.107120_b0020) 2021; 168 Liu (10.1016/j.tust.2025.107120_b0105) 2021; 9 Dong (10.1016/j.tust.2025.107120_b0040) 2023; 37 Chang (10.1016/j.tust.2025.107120_b0010) 2024; 174 Guo (10.1016/j.tust.2025.107120_b0060) 2019; 33 He (10.1016/j.tust.2025.107120_b0065) 2018; 2018 Li (10.1016/j.tust.2025.107120_b0085) 2021; 12 Yin (10.1016/j.tust.2025.107120_b0200) 2023; 616 Yuan (10.1016/j.tust.2025.107120_b0205) 2024; 120 10.1016/j.tust.2025.107120_b0030 Zhan (10.1016/j.tust.2025.107120_b0210) 2024; 71 |
| References_xml | – volume: 34 start-page: 607 year: 2011 end-page: 616 ident: b0140 article-title: A Monte-Carlo game theoretic approach for multi-criteria decision making under uncertainty publication-title: Adv. Water Resour. – volume: 163 year: 2024 ident: b0175 article-title: Safety risk perception and control of water inrush during tunnel excavation in karst areas: an improved uncertain information fusion method publication-title: Autom. Constr. – volume: 59 start-page: 510 year: 2016 end-page: 520 ident: b0095 article-title: Large scale three-dimensional seepage analysis model test and numerical simulation research on undersea tunnel publication-title: Appl. Ocean Res. – volume: 120 year: 2022 ident: b0075 article-title: Probabilistic tunnel collapse risk evaluation model using analytical hierarchy process (AHP) and Delphi survey technique publication-title: Tunn. Undergr. Space Technol. – reference: de FSM Russo, R., Camanho, R., 2015. Criteria in AHP: A systematic review of literature. Procedia computer science 55, 1123-1132. – volume: 12 start-page: 1083 year: 2020 ident: b0215 article-title: Water Inrush hazards in the chaoyang tunnel, guizhou, china: a preliminary investigation publication-title: Water – volume: 78 start-page: 357 year: 2019 end-page: 373 ident: b0005 article-title: Application of the comprehensive forecast system for water-bearing structures in a karst tunnel: a case study publication-title: Bull. Eng. Geol. Environ. – volume: 39(50 start-page: 1729 year: 2022 end-page: 1736 ident: b0190 article-title: Application of signal imaging analysis technology in prediction and treatment of water inrush in diversion tunnel publication-title: Traitement Du Signal – volume: 9 start-page: 6368 year: 2021 end-page: 6378 ident: b0105 article-title: Prediction of water inrush in long-lasting shutdown karst tunnels based on the HGWO-SVR model publication-title: IEEE Access – volume: 16 year: 2025 ident: b0115 article-title: Creep behaviour of sandstone under different water conditions and its response to varying impact energy publication-title: Geomatics Natural Hazards & Risk – volume: 124 year: 2022 ident: b0120 article-title: Geological investigation and treatment measures against water inrush hazard in karst tunnels: a case study in Guiyang, southwest China publication-title: Tunn. Undergr. Space Technol. – volume: 178 start-page: 514 year: 2007 end-page: 529 ident: b0150 article-title: Extended VIKOR method in comparison with outranking methods publication-title: Eur. J. Oper. Res. – volume: 155 year: 2025 ident: b0055 article-title: Risk assessment of shield construction adjacent to the existing shield tunnel based on improved nonlinear FAHP publication-title: Tunn. Undergr. Space Technol. – volume: 157 year: 2023 ident: b0195 article-title: A new approach to evaluate the interactions between the surrounding rock microstructure and water inrush for tunnel excavation publication-title: Comput. Geotech. – volume: 120 start-page: 9713 year: 2024 end-page: 9734 ident: b0205 article-title: Investigating the dynamics of water–sand mixing inrush in viscous sand layers: insights from laboratory experiments publication-title: Nat. Hazards – volume: 2020 year: 2020 ident: b0135 article-title: An improved predictive model for determining the permeability coefficient of artificial clayey soil based on double publication-title: Adv. Mater. Sci. Eng. – volume: 12 start-page: 749 year: 2019 ident: b0185 article-title: Model test for water inrush caused by karst caves filled with confined water in tunnels publication-title: Arab. J. Geosci. – volume: 112 year: 2021 ident: b0170 article-title: Study on an improved real-time monitoring and fusion prewarning method for water inrush in tunnels publication-title: Tunn. Undergr. Space Technol. – volume: 18 start-page: 4957 year: 2023 end-page: 4972 ident: b0235 article-title: Physics-informed deep learning method for predicting tunnelling-induced ground deformations publication-title: Acta Geotech. – volume: 14 start-page: 11443 year: 2022 ident: b0220 article-title: Risk assessment of water inrush in tunnels: a case study of a tunnel in Guangdong province publication-title: China. Sustainability – volume: 151 year: 2020 ident: b0035 article-title: Selective opposition based grey wolf optimization publication-title: Expert Syst. Appl. – volume: 12 start-page: 222 year: 2021 end-page: 243 ident: b0085 article-title: Study on multi-field catastrophe evolution laws of water inrush from concealed karst cave in roadway excavation: a case of Jiyuan coal mine publication-title: Geomatics Natural Hazards & Risk – volume: 137 year: 2024 ident: b0110 article-title: Geotechnical risk modeling using an explainable transfer learning model incorporating physical guidance publication-title: Eng. Appl. Artif. Intel. – volume: 71 start-page: 10667 year: 2024 end-page: 10685 ident: b0210 article-title: Explainable artificial intelligence: Counterfactual explanations for risk-based decision-making in construction publication-title: IEEE Trans. Eng. Manag. – volume: 152 year: 2024 ident: b0130 article-title: Data-driven and physics-informed neural network for predicting tunnelling-induced ground deformation with sparse data of field measurement publication-title: Tunn. Undergr. Space Technol. – volume: 124 year: 2023 ident: b0015 article-title: Safety evaluation of buildings adjacent to shield construction in karst areas: an improved extension cloud approach publication-title: Eng. Appl. Artif. Intel. – volume: 168 year: 2021 ident: b0020 article-title: Effects of the entropy weight on TOPSIS publication-title: Expert Syst. Appl. – volume: 37 year: 2023 ident: b0040 article-title: Analysis of the catastrophe mechanism and treatment countermeasures of a sudden water inrush disaster in a long and deeply buried tunnel in the karst area publication-title: J. Perform. Constr. Facil – volume: 2021 year: 2021 ident: b0165 article-title: Water inrush risk assessment based on AHP and advance forecast approach: a case study in the micangshan tunnel publication-title: Adv. Civ. Eng. – reference: Feng X, Lu Y, He J, LU, B., Wang K.P., 2024. Bayesian-network-based predictions of water inrush incidents in soft rock tunnels. KSCE Journal of Civil Engineering 28(12): 5934-5945. – volume: 11 start-page: 1212 year: 2020 end-page: 1232 ident: b0100 article-title: Risk assessment of water inrush caused by karst cave in tunnels based on reliability and GA-BP neural network publication-title: Geomat. Nat. Haz. Risk – volume: 616 year: 2023 ident: b0200 article-title: Predicting mine water inrush accidents based on water level anomalies of borehole groups using long short-term memory and isolation forest publication-title: J. Hydrol. – volume: 33 year: 2019 ident: b0060 article-title: Mechanism and treatment technology of three water inrush events in the jiaoxi river tunnel in shaanxi, china publication-title: J. Perform. Constr. Facil – volume: 77 start-page: 129 year: 2015 end-page: 152 ident: b0025 article-title: Chinese karst geology and measures to prevent geohazards during shield tunnelling in karst region with caves publication-title: Nat. Hazards – volume: 449 year: 2024 ident: b0080 article-title: Risk assessment of water inrush accident during tunnel construction based on FAHP-I-TOPSIS publication-title: J. Clean. Prod. – volume: 161 year: 2025 ident: b0180 article-title: Study on the damage mechanism of water and mud inrush in a tunnel with water-rich fault zones based on experiment and numerical modeling publication-title: Tunn. Undergr. Space Technol. – volume: 2021 start-page: 261 year: 2021 end-page: 286 ident: b0160 article-title: Risk identification in tunnel construction project: a literature review publication-title: Facta Universitatis, Series: Architecture and Civil Engineering – volume: 169 year: 2024 ident: b0240 article-title: Long-term safety evaluation of soft rock tunnel structure based on knowledge decision-making and data-driven models publication-title: Comput. Geotech. – volume: 113 year: 2021 ident: b0090 article-title: Multi-sources information fusion analysis of water inrush disaster in tunnels based on improved theory of evidence publication-title: Tunn. Undergr. Space Technol. – volume: 12 start-page: 1370 year: 2022 ident: b0225 article-title: Risk assessment of coal mine water inrush based on PCA-DBN publication-title: Sci. Rep. – volume: 231 year: 2023 ident: b0125 article-title: A hybrid data-driven model for geotechnical reliability analysis publication-title: Reliab. Eng. Syst. Saf. – volume: 120 year: 2022 ident: b0230 article-title: Experimental and numerical research on the influence of steel arch frame corrosion on security of supporting system in subsea tunnel publication-title: Tunn. Undergr. Space Technol. – volume: 174 year: 2024 ident: b0010 article-title: Data-based postural prediction of shield tunneling via machine learning with physical information publication-title: Comput. Geotech. – volume: 11 start-page: 1679 year: 2011 end-page: 1696 ident: b0145 article-title: Differential evolution algorithm with ensemble of parameters and mutation strategies publication-title: Appl. Soft Comput. – volume: 14 start-page: 5163 year: 2024 ident: b0245 article-title: Fuzzy comprehensive evaluation of collapse risk in mountain tunnels based on game theory publication-title: Appl. Sci.-Basel – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: b0070 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing – volume: 2018 year: 2018 ident: b0065 article-title: Surface Morphology of Structural Plane and Effects of the Shear Strength Parameters publication-title: Adv. Civ. Eng. – volume: 114 year: 2020 ident: b0045 article-title: XGBoost algorithm-based prediction of concrete electrical resistivity for structural health monitoring publication-title: Autom. Constr. – volume: 38 start-page: 1759 year: 2005 end-page: 1763 ident: b0250 article-title: Evolutionary extreme learning machine publication-title: Pattern Recogn. – volume: 105 year: 2020 ident: b0155 article-title: Effect of rock mass permeability and rock fracture leak-off coefficient on the pore water pressure distribution in a fractured slope publication-title: Simul. Model. Pract. Theory – volume: 14 start-page: 5163 issue: 12 year: 2024 ident: 10.1016/j.tust.2025.107120_b0245 article-title: Fuzzy comprehensive evaluation of collapse risk in mountain tunnels based on game theory publication-title: Appl. Sci.-Basel doi: 10.3390/app14125163 – volume: 112 year: 2021 ident: 10.1016/j.tust.2025.107120_b0170 article-title: Study on an improved real-time monitoring and fusion prewarning method for water inrush in tunnels publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2021.103884 – volume: 169 year: 2024 ident: 10.1016/j.tust.2025.107120_b0240 article-title: Long-term safety evaluation of soft rock tunnel structure based on knowledge decision-making and data-driven models publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2024.106244 – volume: 2020 year: 2020 ident: 10.1016/j.tust.2025.107120_b0135 article-title: An improved predictive model for determining the permeability coefficient of artificial clayey soil based on double T2 cut-offs publication-title: Adv. Mater. Sci. Eng. doi: 10.1155/2020/5323820 – volume: 616 year: 2023 ident: 10.1016/j.tust.2025.107120_b0200 article-title: Predicting mine water inrush accidents based on water level anomalies of borehole groups using long short-term memory and isolation forest publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.128813 – volume: 14 start-page: 11443 issue: 18 year: 2022 ident: 10.1016/j.tust.2025.107120_b0220 article-title: Risk assessment of water inrush in tunnels: a case study of a tunnel in Guangdong province publication-title: China. Sustainability doi: 10.3390/su141811443 – volume: 70 start-page: 489 issue: 1–3 year: 2006 ident: 10.1016/j.tust.2025.107120_b0070 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 120 year: 2022 ident: 10.1016/j.tust.2025.107120_b0075 article-title: Probabilistic tunnel collapse risk evaluation model using analytical hierarchy process (AHP) and Delphi survey technique publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2021.104262 – volume: 12 start-page: 1370 issue: 1 year: 2022 ident: 10.1016/j.tust.2025.107120_b0225 article-title: Risk assessment of coal mine water inrush based on PCA-DBN publication-title: Sci. Rep. doi: 10.1038/s41598-022-05473-8 – ident: 10.1016/j.tust.2025.107120_b0030 doi: 10.1016/j.procs.2015.07.081 – volume: 37 issue: 6 year: 2023 ident: 10.1016/j.tust.2025.107120_b0040 article-title: Analysis of the catastrophe mechanism and treatment countermeasures of a sudden water inrush disaster in a long and deeply buried tunnel in the karst area publication-title: J. Perform. Constr. Facil doi: 10.1061/JPCFEV.CFENG-4349 – volume: 2018 year: 2018 ident: 10.1016/j.tust.2025.107120_b0065 article-title: Surface Morphology of Structural Plane and Effects of the Shear Strength Parameters publication-title: Adv. Civ. Eng. – volume: 59 start-page: 510 year: 2016 ident: 10.1016/j.tust.2025.107120_b0095 article-title: Large scale three-dimensional seepage analysis model test and numerical simulation research on undersea tunnel publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2016.07.013 – volume: 152 year: 2024 ident: 10.1016/j.tust.2025.107120_b0130 article-title: Data-driven and physics-informed neural network for predicting tunnelling-induced ground deformation with sparse data of field measurement publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2024.105951 – volume: 12 start-page: 1083 issue: 4 year: 2020 ident: 10.1016/j.tust.2025.107120_b0215 article-title: Water Inrush hazards in the chaoyang tunnel, guizhou, china: a preliminary investigation publication-title: Water doi: 10.3390/w12041083 – volume: 11 start-page: 1212 issue: 1 year: 2020 ident: 10.1016/j.tust.2025.107120_b0100 article-title: Risk assessment of water inrush caused by karst cave in tunnels based on reliability and GA-BP neural network publication-title: Geomat. Nat. Haz. Risk doi: 10.1080/19475705.2020.1785956 – volume: 77 start-page: 129 issue: 1 year: 2015 ident: 10.1016/j.tust.2025.107120_b0025 article-title: Chinese karst geology and measures to prevent geohazards during shield tunnelling in karst region with caves publication-title: Nat. Hazards doi: 10.1007/s11069-014-1585-6 – volume: 2021 year: 2021 ident: 10.1016/j.tust.2025.107120_b0165 article-title: Water inrush risk assessment based on AHP and advance forecast approach: a case study in the micangshan tunnel publication-title: Adv. Civ. Eng. – volume: 178 start-page: 514 issue: 2 year: 2007 ident: 10.1016/j.tust.2025.107120_b0150 article-title: Extended VIKOR method in comparison with outranking methods publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2006.01.020 – volume: 124 year: 2022 ident: 10.1016/j.tust.2025.107120_b0120 article-title: Geological investigation and treatment measures against water inrush hazard in karst tunnels: a case study in Guiyang, southwest China publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2022.104491 – volume: 38 start-page: 1759 issue: 10 year: 2005 ident: 10.1016/j.tust.2025.107120_b0250 article-title: Evolutionary extreme learning machine publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2005.03.028 – volume: 124 year: 2023 ident: 10.1016/j.tust.2025.107120_b0015 article-title: Safety evaluation of buildings adjacent to shield construction in karst areas: an improved extension cloud approach publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2023.106386 – volume: 12 start-page: 749 issue: 24 year: 2019 ident: 10.1016/j.tust.2025.107120_b0185 article-title: Model test for water inrush caused by karst caves filled with confined water in tunnels publication-title: Arab. J. Geosci. doi: 10.1007/s12517-019-4907-x – volume: 34 start-page: 607 issue: 5 year: 2011 ident: 10.1016/j.tust.2025.107120_b0140 article-title: A Monte-Carlo game theoretic approach for multi-criteria decision making under uncertainty publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2011.02.009 – volume: 168 year: 2021 ident: 10.1016/j.tust.2025.107120_b0020 article-title: Effects of the entropy weight on TOPSIS publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114186 – volume: 113 year: 2021 ident: 10.1016/j.tust.2025.107120_b0090 article-title: Multi-sources information fusion analysis of water inrush disaster in tunnels based on improved theory of evidence publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2021.103948 – volume: 16 issue: 1 year: 2025 ident: 10.1016/j.tust.2025.107120_b0115 article-title: Creep behaviour of sandstone under different water conditions and its response to varying impact energy publication-title: Geomatics Natural Hazards & Risk doi: 10.1080/19475705.2025.2507184 – ident: 10.1016/j.tust.2025.107120_b0050 doi: 10.1007/s12205-024-0193-6 – volume: 105 year: 2020 ident: 10.1016/j.tust.2025.107120_b0155 article-title: Effect of rock mass permeability and rock fracture leak-off coefficient on the pore water pressure distribution in a fractured slope publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2020.102167 – volume: 449 year: 2024 ident: 10.1016/j.tust.2025.107120_b0080 article-title: Risk assessment of water inrush accident during tunnel construction based on FAHP-I-TOPSIS publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2024.141744 – volume: 151 year: 2020 ident: 10.1016/j.tust.2025.107120_b0035 article-title: Selective opposition based grey wolf optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113389 – volume: 33 issue: 1 year: 2019 ident: 10.1016/j.tust.2025.107120_b0060 article-title: Mechanism and treatment technology of three water inrush events in the jiaoxi river tunnel in shaanxi, china publication-title: J. Perform. Constr. Facil doi: 10.1061/(ASCE)CF.1943-5509.0001251 – volume: 120 start-page: 9713 issue: 11 year: 2024 ident: 10.1016/j.tust.2025.107120_b0205 article-title: Investigating the dynamics of water–sand mixing inrush in viscous sand layers: insights from laboratory experiments publication-title: Nat. Hazards doi: 10.1007/s11069-024-06583-4 – volume: 2021 start-page: 261 year: 2021 ident: 10.1016/j.tust.2025.107120_b0160 article-title: Risk identification in tunnel construction project: a literature review publication-title: Facta Universitatis, Series: Architecture and Civil Engineering – volume: 78 start-page: 357 issue: 1 year: 2019 ident: 10.1016/j.tust.2025.107120_b0005 article-title: Application of the comprehensive forecast system for water-bearing structures in a karst tunnel: a case study publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-017-1114-4 – volume: 174 year: 2024 ident: 10.1016/j.tust.2025.107120_b0010 article-title: Data-based postural prediction of shield tunneling via machine learning with physical information publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2024.106584 – volume: 12 start-page: 222 issue: 1 year: 2021 ident: 10.1016/j.tust.2025.107120_b0085 article-title: Study on multi-field catastrophe evolution laws of water inrush from concealed karst cave in roadway excavation: a case of Jiyuan coal mine publication-title: Geomatics Natural Hazards & Risk doi: 10.1080/19475705.2020.1870170 – volume: 157 year: 2023 ident: 10.1016/j.tust.2025.107120_b0195 article-title: A new approach to evaluate the interactions between the surrounding rock microstructure and water inrush for tunnel excavation publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2023.105336 – volume: 11 start-page: 1679 issue: 2 year: 2011 ident: 10.1016/j.tust.2025.107120_b0145 article-title: Differential evolution algorithm with ensemble of parameters and mutation strategies publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.04.024 – volume: 155 year: 2025 ident: 10.1016/j.tust.2025.107120_b0055 article-title: Risk assessment of shield construction adjacent to the existing shield tunnel based on improved nonlinear FAHP publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2024.106154 – volume: 161 year: 2025 ident: 10.1016/j.tust.2025.107120_b0180 article-title: Study on the damage mechanism of water and mud inrush in a tunnel with water-rich fault zones based on experiment and numerical modeling publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2025.106575 – volume: 39(50 start-page: 1729 year: 2022 ident: 10.1016/j.tust.2025.107120_b0190 article-title: Application of signal imaging analysis technology in prediction and treatment of water inrush in diversion tunnel publication-title: Traitement Du Signal doi: 10.18280/ts.390531 – volume: 9 start-page: 6368 year: 2021 ident: 10.1016/j.tust.2025.107120_b0105 article-title: Prediction of water inrush in long-lasting shutdown karst tunnels based on the HGWO-SVR model publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3047626 – volume: 71 start-page: 10667 year: 2024 ident: 10.1016/j.tust.2025.107120_b0210 article-title: Explainable artificial intelligence: Counterfactual explanations for risk-based decision-making in construction publication-title: IEEE Trans. Eng. Manag. doi: 10.1109/TEM.2023.3325951 – volume: 120 year: 2022 ident: 10.1016/j.tust.2025.107120_b0230 article-title: Experimental and numerical research on the influence of steel arch frame corrosion on security of supporting system in subsea tunnel publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2021.104253 – volume: 137 year: 2024 ident: 10.1016/j.tust.2025.107120_b0110 article-title: Geotechnical risk modeling using an explainable transfer learning model incorporating physical guidance publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2024.109127 – volume: 231 year: 2023 ident: 10.1016/j.tust.2025.107120_b0125 article-title: A hybrid data-driven model for geotechnical reliability analysis publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2022.108985 – volume: 18 start-page: 4957 issue: 9 year: 2023 ident: 10.1016/j.tust.2025.107120_b0235 article-title: Physics-informed deep learning method for predicting tunnelling-induced ground deformations publication-title: Acta Geotech. doi: 10.1007/s11440-023-01874-9 – volume: 163 year: 2024 ident: 10.1016/j.tust.2025.107120_b0175 article-title: Safety risk perception and control of water inrush during tunnel excavation in karst areas: an improved uncertain information fusion method publication-title: Autom. Constr. doi: 10.1016/j.autcon.2024.105421 – volume: 114 year: 2020 ident: 10.1016/j.tust.2025.107120_b0045 article-title: XGBoost algorithm-based prediction of concrete electrical resistivity for structural health monitoring publication-title: Autom. Constr. doi: 10.1016/j.autcon.2020.103155 |
| SSID | ssj0005229 |
| Score | 2.4322681 |
| Snippet | •A set of water inrush risk evaluation indicators during karst tunnel construction were established.•A knowledge decision model of water inrush risk assessment... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 107120 |
| SubjectTerms | Data-driven Knowledge decision Risk assessment Tunnel construction Water inrush |
| Title | Water inrush risk assessment during karst tunnel construction based on knowledge decision and data-driven methods |
| URI | https://dx.doi.org/10.1016/j.tust.2025.107120 |
| Volume | 168 |
| WOSCitedRecordID | wos001577894800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0886-7798 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005229 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbTQ_toTR90PSFDrkZF68c2fIxLSltCSGQLdmbkS2ZbBKcdNeb7M_vjF52klLaQC7GCCybmc-j0eibGUK2VcUbBjYvxlpRMawQO7FUXMRZoXjBK87zojHNJvKDAzGbFYej0bXPhbk6z9tWrNfF5YOqGsZA2Zg6-x_qDpPCANyD0uEKaofrPyn-WGLdw3m7WC1PLHNchuqbPivxDLazXdStkOSCxPNQRTbCVU3hCUIItkXKteEx5wzIKI3VAm2k6z69HPq3UzPluc98xAy1BSaOYHQeduc66u6E8vcNn2C20td6fnPs6GQFkAroPXah7c8XfbTWgHAu165-uAtfsMB49jE1n1fTk5is6cvA77f9qYOdtv137th8G344_dRhjgq8gsNQPmFJv8IF3uERTozzguMHvpIQj8gGy3khxmRj9_ve7MeAHWQa3IUPcflWlhp4-01_9mkGfsr0OXnmNhh01wJjk4x0-4I8HZSdfEl-GYhQCxGKEKE9RKiFCDUQoRYidAgRaiBC4SZAhHqIUFA6HUCEOoi8Ij-_7k2_fItd6424ZjztYg2_qcirhmsmm0lV1bqQfKdhqZokhUgbLNwGv7PQnPEadvzghE6YzNIqS2SeKZ6-JuP2otVvCK2SVCYYRag57EZ1JbKUca2yRsiGZVptkcgLr7y0FVZKTz08LVHUJYq6tKLeItzLt3Q-ovX9SoDDX557e8_n3pEnPWrfkzHIWn8gj-urbr5cfHSo-Q0tQZIB |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water+inrush+risk+assessment+during+karst+tunnel+construction+based+on+knowledge+decision+and+data-driven+methods&rft.jtitle=Tunnelling+and+underground+space+technology&rft.au=Li%2C+Xuewei&rft.au=Li%2C+Shuchen&rft.au=Wang%2C+Bo&rft.au=Qu%2C+Jiaxin&rft.date=2026-02-01&rft.pub=Elsevier+Ltd&rft.issn=0886-7798&rft.volume=168&rft_id=info:doi/10.1016%2Fj.tust.2025.107120&rft.externalDocID=S0886779825007588 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-7798&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-7798&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-7798&client=summon |