An anomaly detection method for gas turbines in power plants using conditional variational autoencoder optimized with self-attention

An innovative anomaly detection (AD) framework designed for gas turbines (GTs) in power plants working under variable operating conditions (OCs) was proposed based on conditional variational autoencoder (CVAE) optimized with self-attention (SA) in this paper. Three key factors contribute to the mode...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Reliability engineering & system safety Ročník 267; s. 111894
Hlavní autori: Chen, Dongchao, Li, Xiuxia, Xu, Jingquan, Wang, Zhong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.03.2026
Predmet:
ISSN:0951-8320
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract An innovative anomaly detection (AD) framework designed for gas turbines (GTs) in power plants working under variable operating conditions (OCs) was proposed based on conditional variational autoencoder (CVAE) optimized with self-attention (SA) in this paper. Three key factors contribute to the model's superior performance in AD. First, the marginal distributions (MDs) of parameters were transformed into conditional probability distributions (CPDs) by incorporating OC variables as conditional inputs in the variational autoencoder (VAE) model, and decoupled modeling of equipment states and external OCs is achieved. Second, by embedding SA modules, the method dynamically adjusts weight allocation of the parameters to capture complex dependencies among them, which can enhance the capability of the model to represent intricate coupling relationships in multi-dimensional parameters. Third, the logarithmic reconstruction probability (LRP), derived from the probabilistic output of SA-CVAE, serves as a unified health indicator (HI) to evaluate the health condition of the GT. The indicator not only accounts for the discrepancy between the reconstructed and original inputs but also incorporates the influence of latent variable (LV) variance on the reconstruction results. Experiments were carried out on one synthetic, one public, and two real-world datasets, with SA-CVAE compared against six leading AD methods. The results demonstrate that under varying OCs, SA-CVAE exhibits superior performance in AD tasks, achieving leading or competitive results across key evaluation metrics.
AbstractList An innovative anomaly detection (AD) framework designed for gas turbines (GTs) in power plants working under variable operating conditions (OCs) was proposed based on conditional variational autoencoder (CVAE) optimized with self-attention (SA) in this paper. Three key factors contribute to the model's superior performance in AD. First, the marginal distributions (MDs) of parameters were transformed into conditional probability distributions (CPDs) by incorporating OC variables as conditional inputs in the variational autoencoder (VAE) model, and decoupled modeling of equipment states and external OCs is achieved. Second, by embedding SA modules, the method dynamically adjusts weight allocation of the parameters to capture complex dependencies among them, which can enhance the capability of the model to represent intricate coupling relationships in multi-dimensional parameters. Third, the logarithmic reconstruction probability (LRP), derived from the probabilistic output of SA-CVAE, serves as a unified health indicator (HI) to evaluate the health condition of the GT. The indicator not only accounts for the discrepancy between the reconstructed and original inputs but also incorporates the influence of latent variable (LV) variance on the reconstruction results. Experiments were carried out on one synthetic, one public, and two real-world datasets, with SA-CVAE compared against six leading AD methods. The results demonstrate that under varying OCs, SA-CVAE exhibits superior performance in AD tasks, achieving leading or competitive results across key evaluation metrics.
ArticleNumber 111894
Author Chen, Dongchao
Xu, Jingquan
Wang, Zhong
Li, Xiuxia
Author_xml – sequence: 1
  givenname: Dongchao
  surname: Chen
  fullname: Chen, Dongchao
  email: cdc@neepu.edu.cn
  organization: School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China
– sequence: 2
  givenname: Xiuxia
  surname: Li
  fullname: Li, Xiuxia
  organization: School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China
– sequence: 3
  givenname: Jingquan
  surname: Xu
  fullname: Xu, Jingquan
  organization: School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China
– sequence: 4
  givenname: Zhong
  surname: Wang
  fullname: Wang, Zhong
  organization: China Industrial Control Systems Cyber Emergency Response Team, Beijing 100040, China
BookMark eNp9kL1uwyAURhlSqUnaF-jECzgFbGMjdYmi_kmRurQzwnCdENlgAUmUzn3w2krnTvcO91x931mgmfMOEHqgZEUJ5Y-HVYAYV4ywckUprUUxQ3MiSprVOSO3aBHjgRBSiLKao5-1w8r5XnUXbCCBTtY73EPae4NbH_BORZyOobEOIrYOD_4MAQ-dciniY7Ruh7V3xk6c6vBJBav-dnVMHpz2ZgT8kGxvv8Hgs017HKFrM5USuOn2Dt20qotw_zeX6Ovl-XPzlm0_Xt83622mWZmnTAtW6JIyXXIiKPCGsdqo3JiiYkQLTZq2FJQKYFxz0QKHJi9qwitDlK44yZeIXf_q4GMM0Moh2F6Fi6RETu7kQU7u5OROXt2N0NMVgjHZyUKQUduxFhgbRl3SePsf_gugyH_A
Cites_doi 10.1016/j.engfailanal.2022.106094
10.1016/j.cie.2024.110094
10.1016/j.aei.2025.103571
10.1016/j.ymssp.2025.113204
10.1016/j.eswa.2025.128978
10.1016/j.eswa.2024.124077
10.1016/j.cja.2022.07.021
10.1016/j.asr.2025.06.068
10.1016/j.ymssp.2024.112209
10.1016/j.chemolab.2022.104711
10.1016/j.aei.2025.103455
10.1016/j.ins.2023.119914
10.1016/j.anucene.2024.110973
10.1016/j.nucengdes.2023.112466
10.1016/j.aei.2023.102139
10.1109/TCST.2015.2480003
10.1016/j.engappai.2021.104199
10.3390/data6010005
10.1016/j.oceaneng.2025.122365
10.1016/j.ress.2025.110926
10.1016/j.ymssp.2025.112403
10.1016/j.ress.2025.111558
10.1016/j.energy.2025.134819
10.1016/j.eswa.2024.125521
10.3390/app14114551
10.1016/j.csite.2022.102036
10.1016/j.ress.2025.111060
10.1016/j.ress.2024.110653
10.1109/TMECH.2021.3138834
10.1016/j.procir.2021.03.041
10.1016/j.eswa.2023.123083
10.1016/j.measurement.2025.118236
10.1016/j.ymssp.2025.113122
10.1016/j.engappai.2023.107126
10.1016/j.compind.2023.104007
10.1016/j.ress.2024.110663
10.1016/j.ast.2016.08.008
10.1016/j.eswa.2021.115736
10.1016/j.eswa.2024.125497
10.1016/j.egyr.2023.09.159
10.1016/j.energy.2025.136334
10.1016/j.ymssp.2024.111397
10.1016/j.eswa.2022.119377
10.1109/TKDE.2021.3128667
10.1016/j.applthermaleng.2019.114664
10.1016/j.engappai.2024.108846
10.1016/j.ress.2022.108482
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ress.2025.111894
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_ress_2025_111894
S0951832025010944
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9DU
9JN
9JO
AABNK
AAEDT
AAEDW
AAFJI
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFRAH
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOMHK
APXCP
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c253t-c924c512c56091e6b228da3dd4720c9c0bf59119e26c69fe6eb348067d0ac7603
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001613977100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-8320
IngestDate Thu Nov 27 01:05:13 EST 2025
Sat Nov 29 17:13:50 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords COAT
HI
RCAT
GTP
TET
RDCT
CIAT
Self-attention
LS
DL
LV
LRP
FNR
AMFormer
KDE
OCSVM
EGDP
HI-FM PCC
DS
Variable operating conditions
MD
LSD
ML
Pr
FWT
AD
EH
AE
DCD
IS
EP
LOP
Anomaly detection
LPT_flow_mod
PCA
ET
RA
LOT
MAE
AS
LPT_eff_mod
FGMMP
FGTFCVP
FGHOT
ANI
SIS
HPT_eff_mod
IGVCSO
CBVP
BPT
FM
CVAE
AUROC
FPR
SA
SVR
Conditional variational autoencoder
R
Re
OC
PHM
MFPLCSO
SA-CVAE
GD
SP
MSE
Acc
CC
CSP
OS
COP
GL
RUL
CPFM
CP
GT
LFCPF
TE
EGT
CPD
CPF
IGV
IGVP
Gas turbine
GCV
VAE
TEP
TIT
HRSG
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c253t-c924c512c56091e6b228da3dd4720c9c0bf59119e26c69fe6eb348067d0ac7603
ParticipantIDs crossref_primary_10_1016_j_ress_2025_111894
elsevier_sciencedirect_doi_10_1016_j_ress_2025_111894
PublicationCentury 2000
PublicationDate March 2026
2026-03-00
PublicationDateYYYYMMDD 2026-03-01
PublicationDate_xml – month: 03
  year: 2026
  text: March 2026
PublicationDecade 2020
PublicationTitle Reliability engineering & system safety
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hu, He, Lin, Lu, Jiang, Ma (bib0011) 2023; 36
Chao, Kulkarni, Goebel, Fink (bib0048) 2021; 6
Song, Sun, Gao, You, Xu (bib0043) 2025; 256
Abdelhak, Tott-Buswell, Prendergast, Ghiasi, Malekjafarian (bib0019) 2025; 340
Pourbabaee, Meskin, Khorasani (bib0012) 2016; 24
Qian, Song, Yao, Zhu, Zhang (bib0026) 2022; 231
Gao, Shao, Yan, Wang, Liu (bib0029) 2026; 265
Fu, Zhong, Lin, Zhao (bib0014) 2021; 101
González-Muñiz, Díaz, Cuadrado, García-Pérez (bib0037) 2022; 224
Cannarile, Compare, Baraldi, Yang, Zio (bib0047) 2020
Amiri, Hashjin, Najafabadib, Beheshtic, Khodadadi (bib0018) 2025; 263
Yao, Bing, Zhu, Xiang, Hu (bib0039) 2024; 214
Antwarg, Miller, Shapira, Rokach (bib0051) 2021; 186
Amjad, Rashid (bib0021) 2024; 182
Yue, Wang, Zhang, Gu (bib0005) 2025; 224
Gallon, Schiemenz, Menicucci, Gill (bib0022) 2025; 76
Li, Li, Li, Sun, Wang, Su, Shi, Zhou (bib0035) 2025; 318
Fahmi, Kashyzadeh, Ghorbani (bib0034) 2024; 14
Brahimi, Hadroug, Iratni, Hafaifa, Colak (bib0013) 2024; 191
Jin, Na, Oh, Kim, Youn (bib0030) 2022; 189
Ramírez, Silva, Tamssaouet, Rojas, Orchard (bib0049) 2025; 228
Chae, Bae (bib0031) 2025; 259
Kumar, Raouf, Kim (bib0008) 2023; 126
Wang, Li, Zhang, Yu, Li, Sun, Shi (bib0015) 2023; 412
Bourdalos, Sakellariou (bib0041) 2025; 238
Sun, Song, Song, Zhao, Yang (bib0016) 2025; 211
Hu, Li, Wang, Chu (bib0040) 2025; 237
Zulfauzi, Dahlan, Sintuya, Setthapun (bib0024) 2023; 9
Fahmi, Kashyzadeh, Ghorbani (bib0020) 2024; 37
Danti, Innocenti (bib0036) 2023; 58
Seo, Noh, Kang, Lim, Ahn, Song, Kim (bib0023) 2024; 135
Abed, Ping (bib0004) 2024; 252
Hu, Zhang, Yang, Fang (bib0028) 2025; 261
Ignacio, Pablo, Antonio (bib0046) 2023; 134
Watban Khalid Fahmia, Reza Kashyzadeh, Ghorbani (bib0002) 2022; 134
Saeed, Jan, Ahmad, Shah, Alshehri, Ghadi, Pitropakis, Buchanan (bib0027) 2026; 296
Zhong, Liu, Jiang, Wang, Chen (bib0050) 2024; 656
Strem, Dhamia, Schmidt, Klöpperc, Kersting (bib0025) 2025; 261
Naeim, Hegazi, Awad, El-Emam (bib0006) 2022; 34
Robles, Martín, Díaz (bib0053) 2023; 152
Wilhelm, Reimann, Gauchel, Mitschang (bib0009) 2021; 99
Zhou, Wang, Zio, Lei, Wen, Chen (bib0042) 2025; 256
Surase, K.Ramakrishna (bib0001) 2025; 327
Chen, Wang, Chai, Chen, Qin (bib0044) 2025; 66
Mousavi, Chaibakhsh, Jamali, Kordestani, Saif (bib0003) 2022; 27
Kim, Ko, Na, Lee, Kim, Son, Yoon, Youn (bib0032) 2023; 215
Bai, Liu, Chai, Zhao, Yu (bib0017) 2020; 166
Liu, Chang, Wang, Yu (bib0045) 2025; 67
Du, Sun, Ye, Cheng, Wang, Sun (bib0038) 2023; 35
Guo, Li, Shen (bib0052) 2024; 245
Fahmi, Kashyzadeh, Ghorbani (bib0033) 2024; 160
Lu, Ju, Huang (bib0010) 2016; 58
Cheng, Ahmad, Gao, Xing, Nie, Chen, Xu, Zhang (bib0007) 2025; 255
Hu (10.1016/j.ress.2025.111894_bib0040) 2025; 237
Ramírez (10.1016/j.ress.2025.111894_bib0049) 2025; 228
Pourbabaee (10.1016/j.ress.2025.111894_bib0012) 2016; 24
Seo (10.1016/j.ress.2025.111894_bib0023) 2024; 135
Robles (10.1016/j.ress.2025.111894_bib0053) 2023; 152
Zhong (10.1016/j.ress.2025.111894_bib0050) 2024; 656
Qian (10.1016/j.ress.2025.111894_bib0026) 2022; 231
Gao (10.1016/j.ress.2025.111894_bib0029) 2026; 265
Amiri (10.1016/j.ress.2025.111894_bib0018) 2025; 263
Fu (10.1016/j.ress.2025.111894_bib0014) 2021; 101
Liu (10.1016/j.ress.2025.111894_bib0045) 2025; 67
Cannarile (10.1016/j.ress.2025.111894_bib0047) 2020
Chae (10.1016/j.ress.2025.111894_bib0031) 2025; 259
Mousavi (10.1016/j.ress.2025.111894_bib0003) 2022; 27
Amjad (10.1016/j.ress.2025.111894_bib0021) 2024; 182
Bourdalos (10.1016/j.ress.2025.111894_bib0041) 2025; 238
Kumar (10.1016/j.ress.2025.111894_bib0008) 2023; 126
Jin (10.1016/j.ress.2025.111894_bib0030) 2022; 189
Abdelhak (10.1016/j.ress.2025.111894_bib0019) 2025; 340
Guo (10.1016/j.ress.2025.111894_bib0052) 2024; 245
Wang (10.1016/j.ress.2025.111894_bib0015) 2023; 412
Gallon (10.1016/j.ress.2025.111894_bib0022) 2025; 76
Fahmi (10.1016/j.ress.2025.111894_bib0033) 2024; 160
Cheng (10.1016/j.ress.2025.111894_bib0007) 2025; 255
Kim (10.1016/j.ress.2025.111894_bib0032) 2023; 215
Watban Khalid Fahmia (10.1016/j.ress.2025.111894_bib0002) 2022; 134
Li (10.1016/j.ress.2025.111894_bib0035) 2025; 318
Hu (10.1016/j.ress.2025.111894_bib0028) 2025; 261
Bai (10.1016/j.ress.2025.111894_bib0017) 2020; 166
Fahmi (10.1016/j.ress.2025.111894_bib0020) 2024; 37
Surase (10.1016/j.ress.2025.111894_bib0001) 2025; 327
Sun (10.1016/j.ress.2025.111894_bib0016) 2025; 211
González-Muñiz (10.1016/j.ress.2025.111894_bib0037) 2022; 224
Chao (10.1016/j.ress.2025.111894_bib0048) 2021; 6
Hu (10.1016/j.ress.2025.111894_bib0011) 2023; 36
Antwarg (10.1016/j.ress.2025.111894_bib0051) 2021; 186
Saeed (10.1016/j.ress.2025.111894_bib0027) 2026; 296
Ignacio (10.1016/j.ress.2025.111894_bib0046) 2023; 134
Danti (10.1016/j.ress.2025.111894_bib0036) 2023; 58
Du (10.1016/j.ress.2025.111894_bib0038) 2023; 35
Yue (10.1016/j.ress.2025.111894_bib0005) 2025; 224
Strem (10.1016/j.ress.2025.111894_bib0025) 2025; 261
Naeim (10.1016/j.ress.2025.111894_bib0006) 2022; 34
Fahmi (10.1016/j.ress.2025.111894_bib0034) 2024; 14
Song (10.1016/j.ress.2025.111894_bib0043) 2025; 256
Abed (10.1016/j.ress.2025.111894_bib0004) 2024; 252
Chen (10.1016/j.ress.2025.111894_bib0044) 2025; 66
Zulfauzi (10.1016/j.ress.2025.111894_bib0024) 2023; 9
Zhou (10.1016/j.ress.2025.111894_bib0042) 2025; 256
Lu (10.1016/j.ress.2025.111894_bib0010) 2016; 58
Brahimi (10.1016/j.ress.2025.111894_bib0013) 2024; 191
Yao (10.1016/j.ress.2025.111894_bib0039) 2024; 214
Wilhelm (10.1016/j.ress.2025.111894_bib0009) 2021; 99
References_xml – volume: 101
  year: 2021
  ident: bib0014
  article-title: A re-optimized deep auto-encoder for gas turbine unsupervised anomaly detection
  publication-title: Eng Appl Artif Intell
– volume: 135
  year: 2024
  ident: bib0023
  article-title: Graph neural networks for anomaly detection and diagnosis in hydrogen extraction systems
  publication-title: Eng Appl Artif Intell
– volume: 318
  year: 2025
  ident: bib0035
  article-title: Research on anomaly detection of steam power system based on the coupling of thermoeconomics and autoencoder
  publication-title: Energy
– volume: 24
  start-page: 1184
  year: 2016
  end-page: 1200
  ident: bib0012
  article-title: Sensor fault detection, isolation,and identification using multiple-model-based hybrid Kalman filter for gas turbine engines
  publication-title: IEEE Trans Control Syst Technol
– volume: 255
  year: 2025
  ident: bib0007
  article-title: Diagnostics and prognostics in power plants: a systematic review
  publication-title: Reliab Eng Syst Saf
– volume: 126
  year: 2023
  ident: bib0008
  article-title: Review on prognostics and health management in smart factory: from conventional to deep learning perspectives
  publication-title: Eng Appl Artif Intell
– volume: 9
  start-page: 154
  year: 2023
  end-page: 158
  ident: bib0024
  article-title: Anomaly detection using K-Means and long-short term memory for predictive maintenance of large-scale solar (LSS) photovoltaic plant
  publication-title: Energy Rep
– volume: 237
  year: 2025
  ident: bib0040
  article-title: A health monitoring and early fault detection method of rotating machines based on latent variables of diffusion model
  publication-title: Mech Syst Signal Process
– volume: 36
  start-page: 449
  year: 2023
  end-page: 470
  ident: bib0011
  article-title: Digital twin model of gas turbine and its application in warning of performance fault
  publication-title: Chin J Aeronaut
– volume: 238
  year: 2025
  ident: bib0041
  article-title: A statistical time series model-based method for robust detection of incipient faults in rotating machinery under different operating conditions
  publication-title: Mech Syst Signal Process
– volume: 35
  start-page: 12208
  year: 2023
  end-page: 12219
  ident: bib0038
  article-title: Gan-based anomaly detection for multivariate time series using polluted training set
  publication-title: IEEE Trans Knowl Data Eng
– volume: 263
  year: 2025
  ident: bib0018
  article-title: An innovative data-driven AI approach for detecting and isolating faults in gas turbines at power plants
  publication-title: Expert Syst Appl
– volume: 296
  year: 2026
  ident: bib0027
  article-title: Generative adversarial networks-enabled anomaly detection systems: A survey
  publication-title: Expert Syst Appl
– volume: 214
  year: 2024
  ident: bib0039
  article-title: A novel stochastic process diffusion model for wind turbines condition monitoring and fault identification with multi-parameter information fusion
  publication-title: Mech Syst Signal Process
– volume: 58
  year: 2023
  ident: bib0036
  article-title: A methodology to determine the optimal train-set size for autoencoders applied to energy systems
  publication-title: Adv Eng Inform
– volume: 256
  year: 2025
  ident: bib0043
  article-title: Residual feature-based semi-supervised anomaly detection for Gearbox under varying rotational speeds
  publication-title: Measurement
– volume: 14
  start-page: 4551
  year: 2024
  ident: bib0034
  article-title: Advancements in gas turbine fault detection: A machine learning approach based on the temporal convolutional network–autoencoder model
  publication-title: Appl Sci
– volume: 99
  start-page: 278
  year: 2021
  end-page: 283
  ident: bib0009
  article-title: Overview on hybrid approaches to fault detection and diagnosis: Combining data-driven, physics-based and knowledge-based models
  publication-title: Procedia CIRP
– volume: 134
  year: 2023
  ident: bib0046
  article-title: Unsupervised learning of global factors in deep generative models
  publication-title: Pattern Recognit
– volume: 37
  start-page: 1691
  year: 2024
  end-page: 1699
  ident: bib0020
  article-title: Enhanced autoregressive integrated moving average model for anomaly detection in power plant operations
  publication-title: IJE Trans B: Appl
– volume: 224
  year: 2025
  ident: bib0005
  article-title: An anomaly detection method for gas turbines based on single-condition training with zero-fault sample
  publication-title: Mech Syst Signal Process
– volume: 259
  year: 2025
  ident: bib0031
  article-title: An adaptive mixture prior in Bayesian convolutional autoencoder for early detecting anomalous degradation behaviors in lithium-ion batteries
  publication-title: Reliab Eng Syst Saf
– volume: 252
  year: 2024
  ident: bib0004
  article-title: Implementing data mining techniques for gas-turbine (GT) health tracking and life management: The bibliographic perspective
  publication-title: Expert Syst Appl
– volume: 412
  year: 2023
  ident: bib0015
  article-title: Research on anomaly detection and positioning of marine nuclear power steam turbine unit based on isolated forest
  publication-title: Nucl Eng Des
– volume: 152
  year: 2023
  ident: bib0053
  article-title: OpenTwins: An open-source framework for the development of next-gen compositional digital twins
  publication-title: Comput Ind
– volume: 656
  year: 2024
  ident: bib0050
  article-title: Refining one-class representation: a unified transformer for unsupervised time-series anomaly detection
  publication-title: Inf Sci (Ny)
– volume: 228
  year: 2025
  ident: bib0049
  article-title: Fault detection and monitoring using a data-driven information-based strategy: Method, theory, and application
  publication-title: Mech Syst Signal Process
– volume: 231
  year: 2022
  ident: bib0026
  article-title: A review on autoencoder based representation learning for fault detection and diagnosis in industrial processes
  publication-title: Chemom Intell Lab Syst
– volume: 67
  year: 2025
  ident: bib0045
  article-title: Speed-Normalized Expansion-and-Shrinkage network for health indicator generating under time-varying conditions
  publication-title: Adv Eng Inform
– volume: 261
  year: 2025
  ident: bib0028
  article-title: A deep autoencoder with structured latent space for process monitoring and anomaly detection in coal-fired power units
  publication-title: Reliab Eng Syst Saf
– volume: 327
  year: 2025
  ident: bib0001
  article-title: Efficient polynomial PID controller and nonlinear autoregressive with exogenous for increasing the efficiency of combined gas turbine (CGT) plant
  publication-title: Energy
– volume: 245
  year: 2024
  ident: bib0052
  article-title: A lightweight residual network based on improved knowledge transfer and quantized distillation for cross-domain fault diagnosis of rolling bearings
  publication-title: Expert Syst Appl
– volume: 58
  start-page: 36
  year: 2016
  end-page: 47
  ident: bib0010
  article-title: An improved extended Kalman filter with inequality constraints for gas turbine engine health monitoring
  publication-title: Aerosp Sci Technol
– volume: 265
  year: 2026
  ident: bib0029
  article-title: Partial sensing information-driven threshold cyclic update graph autoencoder for mechanical anomaly detection
  publication-title: Reliab Eng Syst Saf
– volume: 211
  year: 2025
  ident: bib0016
  article-title: KPCA-based fault detection and diagnosis model for the chemical and volume control system in nuclear power plants
  publication-title: Ann Nucl Energy
– volume: 160
  year: 2024
  ident: bib0033
  article-title: Fault detection in the gas turbine of the Kirkuk power plant: an anomaly detection approach using DLSTM-Autoencoder
  publication-title: Eng Fail Anal
– volume: 182
  year: 2024
  ident: bib0021
  article-title: Time series forecasting and anomaly detection using deep learning
  publication-title: Comput Chem Eng
– volume: 261
  year: 2025
  ident: bib0025
  article-title: APT: alarm prediction transformer
  publication-title: Expert Syst Appl
– volume: 256
  year: 2025
  ident: bib0042
  article-title: Unsupervised anomaly detection of machines operating under time-varying conditions: DCD-VAE enabled feature disentanglement of operating conditions and states
  publication-title: Reliab Eng Syst Saf
– volume: 215
  year: 2023
  ident: bib0032
  article-title: Opt-TCAE: Optimal temporal convolutional auto-encoder for boiler tube leakage detection in a thermal power plant using multi-sensor data
  publication-title: Expert Syst Appl
– volume: 189
  year: 2022
  ident: bib0030
  article-title: A new auto-encoder-based dynamic threshold to reduce false alarm rate for anomaly detection of steam turbines
  publication-title: Expert Syst Appl
– volume: 166
  year: 2020
  ident: bib0017
  article-title: Anomaly detection of gas turbines based on normal pattern extraction
  publication-title: Appl Therm Eng
– volume: 134
  year: 2022
  ident: bib0002
  article-title: A comprehensive review on mechanical failures cause vibration in the gas turbine of combined cycle power plants
  publication-title: Eng Fail Anal
– volume: 224
  year: 2022
  ident: bib0037
  article-title: Health indicator for machine condition monitoring built in the latent space of a deep autoencoder
  publication-title: Reliab Eng Syst Saf
– year: 2020
  ident: bib0047
  article-title: The aramis data challenge: prognostics and health management in evolving environments
  publication-title: Proceedings of the 30th European Safety and Reliability Conference
– volume: 191
  year: 2024
  ident: bib0013
  article-title: Advancing predictive maintenance for gas turbines: An intelligent monitoring approach with ANFIS, LSTM, and reliability analysis
  publication-title: Comput Ind Eng
– volume: 66
  year: 2025
  ident: bib0044
  article-title: A polynomial speed normalized health indicator for both incipient fault detection and prognosis of variable-speed wind turbine bearings
  publication-title: Adv Eng Inform
– volume: 186
  year: 2021
  ident: bib0051
  article-title: Explaining anomalies detected by autoencoders using shapley additive explanations
  publication-title: Expert Syst Appl
– volume: 340
  year: 2025
  ident: bib0019
  article-title: Scour identification around offshore wind turbine monopile foundations using an unsupervised anomaly detection approach
  publication-title: Ocean Eng
– volume: 27
  start-page: 3339
  year: 2022
  end-page: 3349
  ident: bib0003
  article-title: A new fault diagnosis approach for heavy-duty gas turbines
  publication-title: IEEE/ASME Trans Mechatron
– volume: 34
  year: 2022
  ident: bib0006
  article-title: Thermodynamic analysis of gas turbine performance using the enthalpy–entropy approach
  publication-title: Case Stud Therm Eng
– volume: 76
  start-page: 2960
  year: 2025
  end-page: 2976
  ident: bib0022
  article-title: Convolutional neural network design and evaluation for real-time multivariate time series fault detection in spacecraft attitude sensors
  publication-title: Adv Space Res
– volume: 6
  start-page: 5
  year: 2021
  ident: bib0048
  article-title: Aircraft engine run-to-failure dataset under real flight conditions for prognostics and diagnostics
  publication-title: Data
– volume: 134
  year: 2022
  ident: 10.1016/j.ress.2025.111894_bib0002
  article-title: A comprehensive review on mechanical failures cause vibration in the gas turbine of combined cycle power plants
  publication-title: Eng Fail Anal
  doi: 10.1016/j.engfailanal.2022.106094
– volume: 191
  year: 2024
  ident: 10.1016/j.ress.2025.111894_bib0013
  article-title: Advancing predictive maintenance for gas turbines: An intelligent monitoring approach with ANFIS, LSTM, and reliability analysis
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2024.110094
– volume: 67
  year: 2025
  ident: 10.1016/j.ress.2025.111894_bib0045
  article-title: Speed-Normalized Expansion-and-Shrinkage network for health indicator generating under time-varying conditions
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2025.103571
– volume: 238
  year: 2025
  ident: 10.1016/j.ress.2025.111894_bib0041
  article-title: A statistical time series model-based method for robust detection of incipient faults in rotating machinery under different operating conditions
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2025.113204
– volume: 296
  year: 2026
  ident: 10.1016/j.ress.2025.111894_bib0027
  article-title: Generative adversarial networks-enabled anomaly detection systems: A survey
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2025.128978
– volume: 252
  year: 2024
  ident: 10.1016/j.ress.2025.111894_bib0004
  article-title: Implementing data mining techniques for gas-turbine (GT) health tracking and life management: The bibliographic perspective
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2024.124077
– volume: 36
  start-page: 449
  issue: 03
  year: 2023
  ident: 10.1016/j.ress.2025.111894_bib0011
  article-title: Digital twin model of gas turbine and its application in warning of performance fault
  publication-title: Chin J Aeronaut
  doi: 10.1016/j.cja.2022.07.021
– volume: 76
  start-page: 2960
  year: 2025
  ident: 10.1016/j.ress.2025.111894_bib0022
  article-title: Convolutional neural network design and evaluation for real-time multivariate time series fault detection in spacecraft attitude sensors
  publication-title: Adv Space Res
  doi: 10.1016/j.asr.2025.06.068
– volume: 182
  year: 2024
  ident: 10.1016/j.ress.2025.111894_bib0021
  article-title: Time series forecasting and anomaly detection using deep learning
  publication-title: Comput Chem Eng
– volume: 224
  year: 2025
  ident: 10.1016/j.ress.2025.111894_bib0005
  article-title: An anomaly detection method for gas turbines based on single-condition training with zero-fault sample
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2024.112209
– volume: 231
  year: 2022
  ident: 10.1016/j.ress.2025.111894_bib0026
  article-title: A review on autoencoder based representation learning for fault detection and diagnosis in industrial processes
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2022.104711
– volume: 66
  year: 2025
  ident: 10.1016/j.ress.2025.111894_bib0044
  article-title: A polynomial speed normalized health indicator for both incipient fault detection and prognosis of variable-speed wind turbine bearings
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2025.103455
– volume: 656
  year: 2024
  ident: 10.1016/j.ress.2025.111894_bib0050
  article-title: Refining one-class representation: a unified transformer for unsupervised time-series anomaly detection
  publication-title: Inf Sci (Ny)
  doi: 10.1016/j.ins.2023.119914
– volume: 211
  year: 2025
  ident: 10.1016/j.ress.2025.111894_bib0016
  article-title: KPCA-based fault detection and diagnosis model for the chemical and volume control system in nuclear power plants
  publication-title: Ann Nucl Energy
  doi: 10.1016/j.anucene.2024.110973
– volume: 412
  year: 2023
  ident: 10.1016/j.ress.2025.111894_bib0015
  article-title: Research on anomaly detection and positioning of marine nuclear power steam turbine unit based on isolated forest
  publication-title: Nucl Eng Des
  doi: 10.1016/j.nucengdes.2023.112466
– volume: 58
  year: 2023
  ident: 10.1016/j.ress.2025.111894_bib0036
  article-title: A methodology to determine the optimal train-set size for autoencoders applied to energy systems
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2023.102139
– volume: 24
  start-page: 1184
  issue: 4
  year: 2016
  ident: 10.1016/j.ress.2025.111894_bib0012
  article-title: Sensor fault detection, isolation,and identification using multiple-model-based hybrid Kalman filter for gas turbine engines
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2015.2480003
– volume: 101
  year: 2021
  ident: 10.1016/j.ress.2025.111894_bib0014
  article-title: A re-optimized deep auto-encoder for gas turbine unsupervised anomaly detection
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2021.104199
– volume: 6
  start-page: 5
  issue: 1
  year: 2021
  ident: 10.1016/j.ress.2025.111894_bib0048
  article-title: Aircraft engine run-to-failure dataset under real flight conditions for prognostics and diagnostics
  publication-title: Data
  doi: 10.3390/data6010005
– volume: 340
  year: 2025
  ident: 10.1016/j.ress.2025.111894_bib0019
  article-title: Scour identification around offshore wind turbine monopile foundations using an unsupervised anomaly detection approach
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2025.122365
– volume: 259
  year: 2025
  ident: 10.1016/j.ress.2025.111894_bib0031
  article-title: An adaptive mixture prior in Bayesian convolutional autoencoder for early detecting anomalous degradation behaviors in lithium-ion batteries
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2025.110926
– volume: 228
  year: 2025
  ident: 10.1016/j.ress.2025.111894_bib0049
  article-title: Fault detection and monitoring using a data-driven information-based strategy: Method, theory, and application
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2025.112403
– volume: 265
  year: 2026
  ident: 10.1016/j.ress.2025.111894_bib0029
  article-title: Partial sensing information-driven threshold cyclic update graph autoencoder for mechanical anomaly detection
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2025.111558
– volume: 318
  year: 2025
  ident: 10.1016/j.ress.2025.111894_bib0035
  article-title: Research on anomaly detection of steam power system based on the coupling of thermoeconomics and autoencoder
  publication-title: Energy
  doi: 10.1016/j.energy.2025.134819
– volume: 261
  year: 2025
  ident: 10.1016/j.ress.2025.111894_bib0025
  article-title: APT: alarm prediction transformer
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2024.125521
– volume: 189
  year: 2022
  ident: 10.1016/j.ress.2025.111894_bib0030
  article-title: A new auto-encoder-based dynamic threshold to reduce false alarm rate for anomaly detection of steam turbines
  publication-title: Expert Syst Appl
– volume: 14
  start-page: 4551
  issue: 11
  year: 2024
  ident: 10.1016/j.ress.2025.111894_bib0034
  article-title: Advancements in gas turbine fault detection: A machine learning approach based on the temporal convolutional network–autoencoder model
  publication-title: Appl Sci
  doi: 10.3390/app14114551
– volume: 37
  start-page: 1691
  issue: 08
  year: 2024
  ident: 10.1016/j.ress.2025.111894_bib0020
  article-title: Enhanced autoregressive integrated moving average model for anomaly detection in power plant operations
  publication-title: IJE Trans B: Appl
– volume: 34
  year: 2022
  ident: 10.1016/j.ress.2025.111894_bib0006
  article-title: Thermodynamic analysis of gas turbine performance using the enthalpy–entropy approach
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2022.102036
– volume: 261
  year: 2025
  ident: 10.1016/j.ress.2025.111894_bib0028
  article-title: A deep autoencoder with structured latent space for process monitoring and anomaly detection in coal-fired power units
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2025.111060
– volume: 256
  year: 2025
  ident: 10.1016/j.ress.2025.111894_bib0042
  article-title: Unsupervised anomaly detection of machines operating under time-varying conditions: DCD-VAE enabled feature disentanglement of operating conditions and states
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2024.110653
– volume: 160
  year: 2024
  ident: 10.1016/j.ress.2025.111894_bib0033
  article-title: Fault detection in the gas turbine of the Kirkuk power plant: an anomaly detection approach using DLSTM-Autoencoder
  publication-title: Eng Fail Anal
– year: 2020
  ident: 10.1016/j.ress.2025.111894_bib0047
  article-title: The aramis data challenge: prognostics and health management in evolving environments
– volume: 27
  start-page: 3339
  issue: 5
  year: 2022
  ident: 10.1016/j.ress.2025.111894_bib0003
  article-title: A new fault diagnosis approach for heavy-duty gas turbines
  publication-title: IEEE/ASME Trans Mechatron
  doi: 10.1109/TMECH.2021.3138834
– volume: 99
  start-page: 278
  year: 2021
  ident: 10.1016/j.ress.2025.111894_bib0009
  article-title: Overview on hybrid approaches to fault detection and diagnosis: Combining data-driven, physics-based and knowledge-based models
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2021.03.041
– volume: 245
  year: 2024
  ident: 10.1016/j.ress.2025.111894_bib0052
  article-title: A lightweight residual network based on improved knowledge transfer and quantized distillation for cross-domain fault diagnosis of rolling bearings
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.123083
– volume: 256
  year: 2025
  ident: 10.1016/j.ress.2025.111894_bib0043
  article-title: Residual feature-based semi-supervised anomaly detection for Gearbox under varying rotational speeds
  publication-title: Measurement
  doi: 10.1016/j.measurement.2025.118236
– volume: 237
  year: 2025
  ident: 10.1016/j.ress.2025.111894_bib0040
  article-title: A health monitoring and early fault detection method of rotating machines based on latent variables of diffusion model
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2025.113122
– volume: 126
  year: 2023
  ident: 10.1016/j.ress.2025.111894_bib0008
  article-title: Review on prognostics and health management in smart factory: from conventional to deep learning perspectives
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.107126
– volume: 152
  year: 2023
  ident: 10.1016/j.ress.2025.111894_bib0053
  article-title: OpenTwins: An open-source framework for the development of next-gen compositional digital twins
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2023.104007
– volume: 255
  year: 2025
  ident: 10.1016/j.ress.2025.111894_bib0007
  article-title: Diagnostics and prognostics in power plants: a systematic review
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2024.110663
– volume: 58
  start-page: 36
  year: 2016
  ident: 10.1016/j.ress.2025.111894_bib0010
  article-title: An improved extended Kalman filter with inequality constraints for gas turbine engine health monitoring
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2016.08.008
– volume: 186
  year: 2021
  ident: 10.1016/j.ress.2025.111894_bib0051
  article-title: Explaining anomalies detected by autoencoders using shapley additive explanations
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.115736
– volume: 263
  year: 2025
  ident: 10.1016/j.ress.2025.111894_bib0018
  article-title: An innovative data-driven AI approach for detecting and isolating faults in gas turbines at power plants
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2024.125497
– volume: 9
  start-page: 154
  year: 2023
  ident: 10.1016/j.ress.2025.111894_bib0024
  article-title: Anomaly detection using K-Means and long-short term memory for predictive maintenance of large-scale solar (LSS) photovoltaic plant
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2023.09.159
– volume: 134
  year: 2023
  ident: 10.1016/j.ress.2025.111894_bib0046
  article-title: Unsupervised learning of global factors in deep generative models
  publication-title: Pattern Recognit
– volume: 327
  year: 2025
  ident: 10.1016/j.ress.2025.111894_bib0001
  article-title: Efficient polynomial PID controller and nonlinear autoregressive with exogenous for increasing the efficiency of combined gas turbine (CGT) plant
  publication-title: Energy
  doi: 10.1016/j.energy.2025.136334
– volume: 214
  year: 2024
  ident: 10.1016/j.ress.2025.111894_bib0039
  article-title: A novel stochastic process diffusion model for wind turbines condition monitoring and fault identification with multi-parameter information fusion
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2024.111397
– volume: 215
  year: 2023
  ident: 10.1016/j.ress.2025.111894_bib0032
  article-title: Opt-TCAE: Optimal temporal convolutional auto-encoder for boiler tube leakage detection in a thermal power plant using multi-sensor data
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.119377
– volume: 35
  start-page: 12208
  issue: 12
  year: 2023
  ident: 10.1016/j.ress.2025.111894_bib0038
  article-title: Gan-based anomaly detection for multivariate time series using polluted training set
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2021.3128667
– volume: 166
  year: 2020
  ident: 10.1016/j.ress.2025.111894_bib0017
  article-title: Anomaly detection of gas turbines based on normal pattern extraction
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2019.114664
– volume: 135
  year: 2024
  ident: 10.1016/j.ress.2025.111894_bib0023
  article-title: Graph neural networks for anomaly detection and diagnosis in hydrogen extraction systems
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2024.108846
– volume: 224
  year: 2022
  ident: 10.1016/j.ress.2025.111894_bib0037
  article-title: Health indicator for machine condition monitoring built in the latent space of a deep autoencoder
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.108482
SSID ssj0004957
Score 2.4725728
Snippet An innovative anomaly detection (AD) framework designed for gas turbines (GTs) in power plants working under variable operating conditions (OCs) was proposed...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 111894
SubjectTerms Anomaly detection
Conditional variational autoencoder
Gas turbine
Self-attention
Variable operating conditions
Title An anomaly detection method for gas turbines in power plants using conditional variational autoencoder optimized with self-attention
URI https://dx.doi.org/10.1016/j.ress.2025.111894
Volume 267
WOSCitedRecordID wos001613977100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0951-8320
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004957
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE9RXvKBW5QqbyfHFSoChCokioi4RLbjtKm2Sekmqy1nfgA_mXHGTkJBCJC4RKtIcVaeb2fGs998Q8jzMq18yfzYBd9fupCBV_CT8oQrGIPw7QOsq2FqyVt2eJjmefZusfhme2E2K9Y06Xabnf9XU8M9MLZunf0Lc4-Lwg34DEaHK5gdrn9k-KWmF7dnfHXplKpTOAocB0UPnMJjvnYgzgjNdx845HpOmp4mrQkxvWnC1X9kY5FwA4dpWzDkfddq4UutP9GCrzmrv1j2-lqtKldrdTajpa3st1rVKAZ-6ahJ_XDAHOpIO2teGTkSZBoYV9g2x_KEtyNnaCAe5HW_rcdYkvcDDGG9z_2E84-mCP7ppDWB2dQ1gmQidmGxzTbcTOwmrFr6Ljghb-7AAxzo8VMwwLrE6b6uW-zDK2IdH1KcqXxFZPu9XlivCxmhDyfe6BrZDVicgZ_cXb4-yN9MvbYZqsfaL2IasZAzePVNv052ZgnM0W1yy5w86BIRc4csVHOX3JzpUd4jX5cNNdihI3YoYocCdihgh1rs0LqhA3YoYocO2KEz7NAZdugMO3TEDtXYoT9i5z758PLg6MUr14zpcGUQh50r4QgvIW-UkDxnvkpEEKQlD8syYoEnM-mJKoaQmqkgkUlWqUSJMEohSyo9LlnihQ_ITtM26iGhrBS-4Ix7QoaR5BXEBBnHvExTEXMeBXvEsftZnKMaS2FpiqeF3v1C736Bu79HYrvlhcknMU8sACG_ee7RPz73mNyYgPyE7HQXvXpKrstNV68vnhkgfQeFU6Mr
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+anomaly+detection+method+for+gas+turbines+in+power+plants+using+conditional+variational+autoencoder+optimized+with+self-attention&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Chen%2C+Dongchao&rft.au=Li%2C+Xiuxia&rft.au=Xu%2C+Jingquan&rft.au=Wang%2C+Zhong&rft.date=2026-03-01&rft.pub=Elsevier+Ltd&rft.issn=0951-8320&rft.volume=267&rft_id=info:doi/10.1016%2Fj.ress.2025.111894&rft.externalDocID=S0951832025010944
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon