Prediction model of coal spontaneous combustion oxidation state based on MICPO-LSSVM

•A novel model combining game theory and grey target decision determines the oxidation state of coal spontaneous combustion.•A multi-strategy improved CPO algorithm is proposed, significantly enhancing its performance.•A prediction model for coal spontaneous combustion is established and validated e...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Fuel (Guildford) Ročník 407; s. 137366
Hlavní autoři: WANG, Wei, WANG, Huangrui, LI, Xuping, QI, Yun, CUI, Xinchao, BAI, Chenhao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.03.2026
Témata:
ISSN:0016-2361
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A novel model combining game theory and grey target decision determines the oxidation state of coal spontaneous combustion.•A multi-strategy improved CPO algorithm is proposed, significantly enhancing its performance.•A prediction model for coal spontaneous combustion is established and validated experimentally. To achieve more accurate prediction of coal spontaneous combustion (CSC) temperature and oxidation state, a Least Squares Support Vector Machine (LSSVM) optimized by the Multi-strategy Improved Crested Porcupine Optimizer (MICPO) was developed. First, programmed temperature-raising experiments and thermogravimetric analysis of CSC were conducted. Based on the experimental results, predictive indicators for the oxidation state were selected, and the oxidation stages of CSC were defined. Subsequently, the Improved CRITIC (ICRITIC) method and Improved Analytic Hierarchy Process (IAHP) method were employed to calculate the weights of the indicators, and a game theory combination weighting method was applied to optimize these weights. Then, based on the weighted grey target decision principle, a comprehensive target distance distribution set corresponding to different CSC temperatures was established and used as the input features for the model. MICPO was used to optimize the LSSVM, thereby improving the prediction accuracy of the model. A comparative analysis of the prediction results from the MICPO-LSSVM, Sparrow Search Algorithm-Back Propagation Neural Network (SSA-BPNN), Whale Optimization Algorithm-Bidirectional Long Short-Term Memory (WOA-BiLSTM), and Particle Swarm Optimization-Support Vector Machine (PSO-SVM) models showed that: in terms of regression performance, the MICPO-LSSVM model reduced the Mean Absolute Error (MAE) by 12.22, 11.79, and 5.63; the Mean Absolute Percentage Error (MAPE) by 4.82%, 4.58%, and 1.48%; the Root Mean Square Error (RMSE) by 16.45, 16.52, and 24.32; and increased the Coefficient of Determination (R2) by 0.06, 0.06, and 0.10, respectively. In terms of classification performance, the model improved Accuracy by 0.15, 0.21, and 0.17; Macro-Precision by 0.34, 0.30, and 0.31; Macro-Recall by 0.23, 0.30, and 0.27; and Macro-F1 by 0.29, 0.30, and 0.31, respectively. The MICPO-LSSVM model was applied to predict the oxidation state of CSC in the goaf of the 1303 fully mechanized top-coal caving face at Jinniu Coal Mine. The prediction results were consistent with practical engineering conditions, demonstrating that the MICPO-LSSVM model is suitable for predicting the temperature and oxidation state of CSC.
AbstractList •A novel model combining game theory and grey target decision determines the oxidation state of coal spontaneous combustion.•A multi-strategy improved CPO algorithm is proposed, significantly enhancing its performance.•A prediction model for coal spontaneous combustion is established and validated experimentally. To achieve more accurate prediction of coal spontaneous combustion (CSC) temperature and oxidation state, a Least Squares Support Vector Machine (LSSVM) optimized by the Multi-strategy Improved Crested Porcupine Optimizer (MICPO) was developed. First, programmed temperature-raising experiments and thermogravimetric analysis of CSC were conducted. Based on the experimental results, predictive indicators for the oxidation state were selected, and the oxidation stages of CSC were defined. Subsequently, the Improved CRITIC (ICRITIC) method and Improved Analytic Hierarchy Process (IAHP) method were employed to calculate the weights of the indicators, and a game theory combination weighting method was applied to optimize these weights. Then, based on the weighted grey target decision principle, a comprehensive target distance distribution set corresponding to different CSC temperatures was established and used as the input features for the model. MICPO was used to optimize the LSSVM, thereby improving the prediction accuracy of the model. A comparative analysis of the prediction results from the MICPO-LSSVM, Sparrow Search Algorithm-Back Propagation Neural Network (SSA-BPNN), Whale Optimization Algorithm-Bidirectional Long Short-Term Memory (WOA-BiLSTM), and Particle Swarm Optimization-Support Vector Machine (PSO-SVM) models showed that: in terms of regression performance, the MICPO-LSSVM model reduced the Mean Absolute Error (MAE) by 12.22, 11.79, and 5.63; the Mean Absolute Percentage Error (MAPE) by 4.82%, 4.58%, and 1.48%; the Root Mean Square Error (RMSE) by 16.45, 16.52, and 24.32; and increased the Coefficient of Determination (R2) by 0.06, 0.06, and 0.10, respectively. In terms of classification performance, the model improved Accuracy by 0.15, 0.21, and 0.17; Macro-Precision by 0.34, 0.30, and 0.31; Macro-Recall by 0.23, 0.30, and 0.27; and Macro-F1 by 0.29, 0.30, and 0.31, respectively. The MICPO-LSSVM model was applied to predict the oxidation state of CSC in the goaf of the 1303 fully mechanized top-coal caving face at Jinniu Coal Mine. The prediction results were consistent with practical engineering conditions, demonstrating that the MICPO-LSSVM model is suitable for predicting the temperature and oxidation state of CSC.
ArticleNumber 137366
Author QI, Yun
CUI, Xinchao
WANG, Huangrui
WANG, Wei
LI, Xuping
BAI, Chenhao
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0001-9558-3242
  surname: WANG
  fullname: WANG, Wei
  email: 2024981@imust.edu.cn
  organization: School of Mining and Coal, Inner Mongolia University of Science and Technology, Baotou 014010, PR China
– sequence: 2
  givenname: Huangrui
  orcidid: 0009-0006-2556-0962
  surname: WANG
  fullname: WANG, Huangrui
  email: 13283643889@163.com
  organization: School of Coal Engineering, Shanxi Datong University, Datong 037000, PR China
– sequence: 3
  givenname: Xuping
  surname: LI
  fullname: LI, Xuping
  email: nkdlxp@163.com
  organization: School of Mining and Coal, Inner Mongolia University of Science and Technology, Baotou 014010, PR China
– sequence: 4
  givenname: Yun
  surname: QI
  fullname: QI, Yun
  email: qiyun_sx@163.com
  organization: School of Mining and Coal, Inner Mongolia University of Science and Technology, Baotou 014010, PR China
– sequence: 5
  givenname: Xinchao
  surname: CUI
  fullname: CUI, Xinchao
  email: cxc1723452598@163.com
  organization: School of Coal Engineering, Shanxi Datong University, Datong 037000, PR China
– sequence: 6
  givenname: Chenhao
  surname: BAI
  fullname: BAI, Chenhao
  email: 15248405464@163.com
  organization: School of Coal Engineering, Shanxi Datong University, Datong 037000, PR China
BookMark eNp9kMlqwzAQQHVIoUnaH-jJP2BXiyXZ0EsJXQIJCSTtVcjSCBRsK0hOaf--TtJzT7O-YXgzNOlDDwg9EFwQTMTjoXAnaAuKKS8Ik0yICZricZJTJsgtmqV0wBjLipdTtN9GsN4MPvRZFyy0WXCZCbrN0jH0g-4hnNLY6JpTuiyFb2_1JUuDHiBrdAKbjeV6udhu8tVu97m-QzdOtwnu_-Icfby-7Bfv-Wrztlw8r3JDORtyIzGVjtvaEgkAAsqqdqXAUDvaVAIqAM6ltYIKTgUFarFkTFamaYQpsWVzRK93TQwpRXDqGH2n448iWJ1dqIM6u1BnF-rqYoSerhCMn315iCoZD70ZNUQwg7LB_4f_AocTbC0
Cites_doi 10.1016/j.engappai.2013.12.004
10.1016/j.fuel.2025.135528
10.1016/j.fuel.2021.122352
10.1016/j.energy.2024.134268
10.1016/j.fuel.2025.134647
10.1016/j.fuel.2023.129541
10.1016/j.fuel.2025.134761
10.1016/j.energy.2024.130470
10.1371/journal.pone.0256911
10.1038/s41598-025-90665-1
10.1016/j.knosys.2023.111257
10.1038/s41598-022-22296-9
10.1016/j.fuel.2022.124670
10.1016/j.fuel.2025.136726
10.1007/s10462-024-10986-x
10.1016/j.psep.2025.107489
10.1016/j.energy.2024.130824
10.1016/j.fuel.2023.130462
10.1016/j.energy.2023.127485
10.1109/ACCESS.2020.3020045
10.1016/j.psep.2025.106855
10.3390/fire6100381
10.1016/j.fuel.2025.134937
10.1016/j.fuel.2025.134681
10.1109/TNNLS.2014.2333879
10.1016/j.fuel.2025.134572
10.1016/j.energy.2023.130212
10.1016/j.fuel.2025.136065
10.1016/j.energy.2024.133980
10.1016/j.fuel.2025.136718
10.1021/acsomega.1c00169
10.1016/j.fuel.2025.134991
10.1016/j.atmosres.2025.107921
10.1038/s41598-023-45806-9
10.1021/acsomega.4c02853
10.1016/j.fuel.2024.131225
10.1016/j.fuel.2025.134569
10.3390/w15244294
10.1016/j.energy.2023.130158
10.1371/journal.pone.0257499
10.1016/j.eswa.2020.113897
10.1016/j.fuel.2022.124832
10.1016/j.ins.2020.09.032
10.1016/j.energy.2021.121659
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.fuel.2025.137366
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_fuel_2025_137366
S0016236125030923
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABNUV
ACDAQ
ACIWK
ACLOT
ACNCT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADECG
ADEWK
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJSZI
AKBMS
AKIFW
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSJ
SSK
SSR
SSZ
T5K
TWZ
WH7
ZMT
~02
~G-
~HD
29H
8WZ
9DU
A6W
AAQXK
AAYXX
ABDEX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFFNX
AGQPQ
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
LY6
M41
R2-
SAC
SCB
VH1
WUQ
XPP
ZY4
ID FETCH-LOGICAL-c253t-c7027f5d9d17eee6e489f460e9f2b86e8ee557dd6265262e2d073378cbb6c40d3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001612596800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0016-2361
IngestDate Thu Nov 27 00:46:45 EST 2025
Sat Nov 29 17:09:31 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Coal spontaneous combustion (CSC)
Least squares support vector machine (LSSVM)
Oxidation state
Prediction model
Multi-strategy improved crested porcupine optimizer (MICPO)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c253t-c7027f5d9d17eee6e489f460e9f2b86e8ee557dd6265262e2d073378cbb6c40d3
ORCID 0009-0006-2556-0962
0000-0001-9558-3242
ParticipantIDs crossref_primary_10_1016_j_fuel_2025_137366
elsevier_sciencedirect_doi_10_1016_j_fuel_2025_137366
PublicationCentury 2000
PublicationDate 2026-03-01
2026-03-00
PublicationDateYYYYMMDD 2026-03-01
PublicationDate_xml – month: 03
  year: 2026
  text: 2026-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Fuel (Guildford)
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lei, Feng, Zhu, Cui, Bao, Deng (b0035) 2025; 393
Li, Xu, Xue, Liu, Xu (b0095) 2022; 324
Meichang, Yun, Wei, Ran, Rongzheng, Chenhao (b0085) 2024; 34
Gao, Lu, Zhu, Liang, He, Li (b0040) 2025; 390
Qi, Zhou, Khandelwal, Onifade, Lawal, Li (b0245) 2026; 403
Luo, Qin, Yuan, Ma, Deng, Zhou (b0055) 2026; 405
Cao, Wu, Li, Fu, Liu, Li (b0115) 2024; 55
Wang, Liang, Qi, Cui, Liu (b0060) 2024; 14
Li, Zhu, Zhang, Zhang, Wang, Hu (b0005) 2025; 391
Xu, Wang, Wang, Hei, Zhao (b0250) 2014; 29
Wang, Li, Du, Zhang, Wang, Sun (b0140) 2024; 290
Biao, Sixiang, Xiangming, Tao, Xushuai, Date (b0105) 2023; 50
Gupta, Prakash, Chembolu (b0200) 2025; 315
Mao, Tang, Ma, Li, Jia, Chen (b0045) 2025; 393
Chen, Qu, Liu, Xu, Wang, Liu (b0130) 2025; 314
Wang, Liu, Niu, Shao, Wang, Wang (b0050) 2025; 391
Jia, Zhang, Rao, Abualigah (b0240) 2024; 58
Ma, Ma, Yue, Tian (b0220) 2020; 8
Wei, Ran, Yun, Baoshan, Zewei (b0110) 2023; 33
Li, Song (b0125) 2025; 15
Li, Wu, Wang, Du, Zhang, Wang (b0235) 2024; 359
Pan, Fan, Deng, Shi, Wang, Lei (b0135) 2025; 196
Wang, Deng, Ren, Qu, Wang, Guo (b0165) 2025; 398
Deng, Li, Wang, Wang, Ren, Qu (b0015) 2025; 201
Hong, Wang, Song, Gao, Liu, Long (b0275) 2022; 238
Vikram, Bhattacharjee, Paul, Vinay (b0210) 2024; 356
Li, Jiang, Jing (b0080) 2024; 9
Zhang, Song, Wu, Luo, Zhao, Wang (b0065) 2022; 325
Wang, Qi, Jia, Yao (b0150) 2021; 16
Wang, Huang, Deng, Zhang, Wang (b0070) 2024; 294
Wei, Xinchao, Yun, Ran, Baoshan, Kailong (b0120) 2023; 33
Li, He, Liu (b0255) 2022; 310
Zhang, Wang, Chen, Heidari, Wang, Zhao (b0260) 2021; 165
Chen, Xie, Li, Zhu, Xu, Gooi (b0265) 2023; 277
Xiong, Wang, Gao, Huang, Tao (b0215) 2023; 15
Qi, Qi, Wang, Zhou (b0145) 2019; 19
Song, Qin (b0155) 2025; 137923
Zhang, Hou, Yang, Deng (b0160) 2024; 290
Wang, Liang, Qi, Cui, Liu, Xue (b0100) 2023; 6
Vikram, Bhattacharjee, Paul (b0180) 2025; 388
Ning, Zhang, Xu (b0205) 2024; 45
Deng, Chen, Wang, Wang (b0090) 2021; 6
Zhang, Yi, Deng, Xiao (b0020) 2025; 390
Hu, Pan, Chao, Jia, Liu (b0175) 2025; 314
Zhang, Gui, Lu, Bai, Qiao, Li (b0190) 2024; 365
Abdel-Basset, Mohamed, Abouhawwash (b0225) 2024; 284
Hao, Qin, Yang, Shi (b0170) 2025; 137598
Hua, Zhu, Yi, Zhang, Huang (b0230) 2021; 546
Qi, Wang, Qi, Ning, Yao (b0025) 2021; 16
Wei, Baoshan, Yun (b0075) 2019; 29
Mall, Suykens (b0270) 2015; 26
Rasool, Gurmani, Niazai, Zulqarnain, Alballa, Khalifa (b0195) 2025; 15(1):6122
Wang, Qi, Liu (b0010) 2022; 12
Gao, Tan, Li, Lu, Ren, Wang (b0030) 2026; 405
Gao, Bai, Jia, Zhang, Li (b0185) 2024; 293
Xu (10.1016/j.fuel.2025.137366_b0250) 2014; 29
Wei (10.1016/j.fuel.2025.137366_b0075) 2019; 29
Abdel-Basset (10.1016/j.fuel.2025.137366_b0225) 2024; 284
Wang (10.1016/j.fuel.2025.137366_b0070) 2024; 294
Wang (10.1016/j.fuel.2025.137366_b0010) 2022; 12
Luo (10.1016/j.fuel.2025.137366_b0055) 2026; 405
Vikram (10.1016/j.fuel.2025.137366_b0210) 2024; 356
Zhang (10.1016/j.fuel.2025.137366_b0160) 2024; 290
Vikram (10.1016/j.fuel.2025.137366_b0180) 2025; 388
Mall (10.1016/j.fuel.2025.137366_b0270) 2015; 26
Meichang (10.1016/j.fuel.2025.137366_b0085) 2024; 34
Cao (10.1016/j.fuel.2025.137366_b0115) 2024; 55
Mao (10.1016/j.fuel.2025.137366_b0045) 2025; 393
Rasool (10.1016/j.fuel.2025.137366_b0195) 2025; 15(1):6122
Gao (10.1016/j.fuel.2025.137366_b0185) 2024; 293
Pan (10.1016/j.fuel.2025.137366_b0135) 2025; 196
Biao (10.1016/j.fuel.2025.137366_b0105) 2023; 50
Xiong (10.1016/j.fuel.2025.137366_b0215) 2023; 15
Hua (10.1016/j.fuel.2025.137366_b0230) 2021; 546
Zhang (10.1016/j.fuel.2025.137366_b0260) 2021; 165
Jia (10.1016/j.fuel.2025.137366_b0240) 2024; 58
Hu (10.1016/j.fuel.2025.137366_b0175) 2025; 314
Ning (10.1016/j.fuel.2025.137366_b0205) 2024; 45
Chen (10.1016/j.fuel.2025.137366_b0265) 2023; 277
Wang (10.1016/j.fuel.2025.137366_b0050) 2025; 391
Hong (10.1016/j.fuel.2025.137366_b0275) 2022; 238
Li (10.1016/j.fuel.2025.137366_b0095) 2022; 324
Wang (10.1016/j.fuel.2025.137366_b0140) 2024; 290
Song (10.1016/j.fuel.2025.137366_b0155) 2025; 137923
Gao (10.1016/j.fuel.2025.137366_b0030) 2026; 405
Chen (10.1016/j.fuel.2025.137366_b0130) 2025; 314
Hao (10.1016/j.fuel.2025.137366_b0170) 2025; 137598
Zhang (10.1016/j.fuel.2025.137366_b0190) 2024; 365
Wang (10.1016/j.fuel.2025.137366_b0165) 2025; 398
Li (10.1016/j.fuel.2025.137366_b0005) 2025; 391
Li (10.1016/j.fuel.2025.137366_b0235) 2024; 359
Lei (10.1016/j.fuel.2025.137366_b0035) 2025; 393
Qi (10.1016/j.fuel.2025.137366_b0145) 2019; 19
Gupta (10.1016/j.fuel.2025.137366_b0200) 2025; 315
Qi (10.1016/j.fuel.2025.137366_b0245) 2026; 403
Li (10.1016/j.fuel.2025.137366_b0125) 2025; 15
Wang (10.1016/j.fuel.2025.137366_b0150) 2021; 16
Qi (10.1016/j.fuel.2025.137366_b0025) 2021; 16
Zhang (10.1016/j.fuel.2025.137366_b0020) 2025; 390
Wang (10.1016/j.fuel.2025.137366_b0060) 2024; 14
Wang (10.1016/j.fuel.2025.137366_b0100) 2023; 6
Wei (10.1016/j.fuel.2025.137366_b0120) 2023; 33
Gao (10.1016/j.fuel.2025.137366_b0040) 2025; 390
Wei (10.1016/j.fuel.2025.137366_b0110) 2023; 33
Li (10.1016/j.fuel.2025.137366_b0255) 2022; 310
Ma (10.1016/j.fuel.2025.137366_b0220) 2020; 8
Deng (10.1016/j.fuel.2025.137366_b0090) 2021; 6
Zhang (10.1016/j.fuel.2025.137366_b0065) 2022; 325
Deng (10.1016/j.fuel.2025.137366_b0015) 2025; 201
Li (10.1016/j.fuel.2025.137366_b0080) 2024; 9
References_xml – volume: 290
  year: 2024
  ident: b0160
  article-title: Transformation and migration of key elements during the thermal reaction of coal spontaneous combustion
  publication-title: Energy
– volume: 388
  year: 2025
  ident: b0180
  article-title: Determination of spontaneous combustion propensity and ignition time of Indian coal using adiabatic oxidation method
  publication-title: Fuel
– volume: 314
  year: 2025
  ident: b0130
  article-title: Spontaneous coal combustion temperature prediction based on an improved grey wolf optimizer-gated recurrent unit model
  publication-title: Energy
– volume: 393
  year: 2025
  ident: b0045
  article-title: Controlling the underground spontaneous combustion of coal using an expansive aerosol
  publication-title: Fuel
– volume: 26
  start-page: 1086
  year: 2015
  end-page: 1097
  ident: b0270
  article-title: Very sparse LSSVM reductions for large-scale data
  publication-title: IEEE Trans Neural Networks Learn Syst
– volume: 390
  year: 2025
  ident: b0020
  article-title: Inhibitory effects of three fungi on active microstructure in the oxidation process of lignite coal
  publication-title: Fuel
– volume: 325
  year: 2022
  ident: b0065
  article-title: Prediction of coal self-ignition tendency using machine learning
  publication-title: Fuel
– volume: 16
  year: 2021
  ident: b0150
  article-title: Dynamic prediction model of spontaneous combustion risk in goaf based on improved CRITIC-G2-TOPSIS method and its application
  publication-title: PLoS One
– volume: 391
  year: 2025
  ident: b0050
  article-title: Study on the difference of coal spontaneous combustion characteristic parameters after lean oxygen combustion in different inert gas environments: Microscopic and macroscopic
  publication-title: Fuel
– volume: 6
  start-page: 381
  year: 2023
  ident: b0100
  article-title: Study on the prediction model of coal spontaneous combustion limit parameters and its application
  publication-title: Fire
– volume: 391
  year: 2025
  ident: b0005
  article-title: Pyrite-enhanced coal spontaneous combustion: Insights from experiments and molecular simulations
  publication-title: Fuel
– volume: 15
  start-page: 4294
  year: 2023
  ident: b0215
  article-title: Leakage Risk Assessment of Urban Water distribution Network based on Unascertained measure Theory and Game Theory Weighting Method
  publication-title: Water
– volume: 19
  start-page: 1526
  year: 2019
  end-page: 1531
  ident: b0145
  article-title: A forecast model for the spontaneous combustion risk in the goaf based on set valued statistics-entropy and its application
  publication-title: J Saf Environ
– volume: 33
  start-page: 136
  year: 2023
  ident: b0120
  article-title: Regression analysis model of coal spontaneous combustion temperature in goaf based on SSA-RF
  publication-title: China Safety Science Journal
– volume: 238
  year: 2022
  ident: b0275
  article-title: A performance evaluation framework for deep peak shaving of the CFB boiler unit based on the DBN-LSSVM algorithm
  publication-title: Energy
– volume: 14
  start-page: 5
  year: 2024
  ident: b0060
  article-title: Prediction model of spontaneous combustion risk of extraction borehole based on PSO-BPNN and its application
  publication-title: Sci Rep
– volume: 29
  start-page: 26
  year: 2019
  ident: b0075
  article-title: Prediction model of spontaneous combustion risk of extraction drilling based on improved CRITIC modified G2-TOPSIS method and its application
  publication-title: China Safety Science Journal
– volume: 315
  year: 2025
  ident: b0200
  article-title: Multi criteria evaluation of downscaled CMIP6 models in predicting precipitation extremes
  publication-title: Atmos Res
– volume: 405
  year: 2026
  ident: b0055
  article-title: Quantitative analysis of microstructural influences on coal spontaneous combustion across coal ranks
  publication-title: Fuel
– volume: 58
  start-page: 5
  year: 2024
  ident: b0240
  article-title: Improved sandcat swarm optimization algorithm for solving global optimum problems
  publication-title: Artif Intell Rev
– volume: 8
  start-page: 162847
  year: 2020
  end-page: 162854
  ident: b0220
  article-title: Kullback-Leibler distance based generalized grey target decision method with index and weight both containing mixed attribute values
  publication-title: IEEE Access
– volume: 398
  year: 2025
  ident: b0165
  article-title: Acoustic wave propagation characteristics and spontaneous combustion warning of coal during oxidative warming of loose coal
  publication-title: Fuel
– volume: 45
  start-page: 251
  year: 2024
  end-page: 259
  ident: b0205
  article-title: Comprehensive safety evaluation of energy storage power station based on improved AHP-TOPSIS
  publication-title: Acta energiae solaris sinica
– volume: 403
  year: 2026
  ident: b0245
  article-title: An optimized machine learning framework for prediction of coal abrasive index: Leveraging supervised learning, metaheuristic optimization, and interpretability analysis
  publication-title: Fuel
– volume: 365
  year: 2024
  ident: b0190
  article-title: Experimental study on the effect of inhibitor on coal spontaneous combustion under low temperature freezing
  publication-title: Fuel
– volume: 277
  year: 2023
  ident: b0265
  article-title: An improved metaheuristic-based MPPT for centralized thermoelectric generation systems under dynamic temperature conditions
  publication-title: Energy
– volume: 15(1):6122
  year: 2025
  ident: b0195
  article-title: An integrated CRITIC and EDAS model using linguistic T spherical fuzzy Hamacher aggregation operators and its application to group decision making
  publication-title: Sci Rep
– volume: 390
  year: 2025
  ident: b0040
  article-title: Highly efficient sulfamic acid inhibitor enhanced coal spontaneous combustion prevention through acid corrosion and hydrolysis
  publication-title: Fuel
– volume: 284
  year: 2024
  ident: b0225
  article-title: Crested Porcupine Optimizer: a new nature-inspired metaheuristic
  publication-title: Knowl-Based Syst
– volume: 9
  start-page: 31765
  year: 2024
  end-page: 31775
  ident: b0080
  article-title: Prediction Model of Spontaneous Combustion of Lignite in Zhalainuoer Mining Area
  publication-title: ACS Omega
– volume: 34
  start-page: 147
  year: 2024
  ident: b0085
  article-title: Evolution characteristics of spontaneous combustion hazard zone in layered mining of extra thick coal seams
  publication-title: China Safety Science Journal
– volume: 310
  year: 2022
  ident: b0255
  article-title: Low NOx combustion optimization based on partial dimension opposition-based learning particle swarm optimization
  publication-title: Fuel
– volume: 137598
  year: 2025
  ident: b0170
  article-title: Critical thresholds of pre-oxidation in coal spontaneous combustion: microstructural drivers and kinetic implications
  publication-title: Energy
– volume: 405
  year: 2026
  ident: b0030
  article-title: Research on the release characteristics and prediction model of large molecular hydrocarbon gases during coal spontaneous combustion
  publication-title: Fuel
– volume: 314
  year: 2025
  ident: b0175
  article-title: Spontaneous combustion characteristics of hydrothermal erosion coal from deep mining and its microscopic mechanism
  publication-title: Energy
– volume: 356
  year: 2024
  ident: b0210
  article-title: Determinants of prioritised influencing factors on coal spontaneous combustion propensity-a Fuzzy-Delphi-geometric mean analytic hierarchy process
  publication-title: Fuel
– volume: 546
  start-page: 1063
  year: 2021
  end-page: 1083
  ident: b0230
  article-title: Cross-plane colour image encryption using a two-dimensional logistic tent modular map
  publication-title: Inf Sci
– volume: 196
  year: 2025
  ident: b0135
  article-title: GCN-based prediction method for coal spontaneous combustion temperature
  publication-title: Process Saf Environ Prot
– volume: 6
  start-page: 11307
  year: 2021
  end-page: 11318
  ident: b0090
  article-title: Prediction model for coal spontaneous combustion based on SA-SVM
  publication-title: ACS Omega
– volume: 33
  start-page: 127
  year: 2023
  ident: b0110
  article-title: Prediction model of coal spontaneous combustion risk based on PSO-BPNN
  publication-title: China Safety Science Journal
– volume: 165
  year: 2021
  ident: b0260
  article-title: Ensemble mutation-driven salp swarm algorithm with restart mechanism: Framework and fundamental analysis
  publication-title: Expert Syst Appl
– volume: 55
  start-page: 106
  year: 2024
  end-page: 113
  ident: b0115
  article-title: Prediction of coal spontaneous combustion temperature with multi-gas index based on machine learning
  publication-title: Safety in Coal Mines
– volume: 12
  start-page: 17399
  year: 2022
  ident: b0010
  article-title: Study on multi field coupling numerical simulation of nitrogen injection in goaf and fire-fighting technology
  publication-title: Sci Rep
– volume: 294
  year: 2024
  ident: b0070
  article-title: A spatio-temporal temperature prediction model for coal spontaneous combustion based on back propagation neural network
  publication-title: Energy
– volume: 137923
  year: 2025
  ident: b0155
  article-title: Classification method for coal spontaneous combustion tendency based on excess oxidation reaction rate model
  publication-title: Energy
– volume: 50
  start-page: 30
  year: 2023
  end-page: 36
  ident: b0105
  article-title: Study on prediction of coal spontaneous combustion based on MSWOA-BP
  publication-title: Mining Safety & Environmental Protection
– volume: 29
  start-page: 1
  year: 2014
  end-page: 12
  ident: b0250
  article-title: A review of opposition-based learning from 2005 to 2012
  publication-title: Eng Appl Artif Intel
– volume: 201
  year: 2025
  ident: b0015
  article-title: Advances and prospects in risk prediction and early warning technology for the compound disaster of coal spontaneous combustion and gas explosion
  publication-title: Process Saf Environ Prot
– volume: 16
  year: 2021
  ident: b0025
  article-title: Distribution of spontaneous combustion three zones and optimization of nitrogen injection location in the goaf of a fully mechanized top coal caving face
  publication-title: PLoS One
– volume: 15
  start-page: 6298
  year: 2025
  ident: b0125
  article-title: Research on coal spontaneous combustion hierarchical prediction model based on NSGA-II-RF
  publication-title: Sci Rep
– volume: 324
  year: 2022
  ident: b0095
  article-title: Prediction of coal spontaneous combustion temperature based on improved grey wolf optimizer algorithm and support vector regression
  publication-title: Fuel
– volume: 293
  year: 2024
  ident: b0185
  article-title: Influence and inerting mechanism of inert gas atmospheres on the characteristics of oxidative spontaneous combustion in coal
  publication-title: Energy
– volume: 359
  year: 2024
  ident: b0235
  article-title: Research on prediction of coal-gas compound dynamic disaster based on ICSA-CNN
  publication-title: Fuel
– volume: 290
  year: 2024
  ident: b0140
  article-title: Research on prediction model of coal spontaneous combustion temperature based on SSA-CNN
  publication-title: Energy
– volume: 393
  year: 2025
  ident: b0035
  article-title: Multiple indicator gases and temperature prediction of coal spontaneous combustion oxidation process
  publication-title: Fuel
– volume: 29
  start-page: 1
  year: 2014
  ident: 10.1016/j.fuel.2025.137366_b0250
  article-title: A review of opposition-based learning from 2005 to 2012
  publication-title: Eng Appl Artif Intel
  doi: 10.1016/j.engappai.2013.12.004
– volume: 398
  year: 2025
  ident: 10.1016/j.fuel.2025.137366_b0165
  article-title: Acoustic wave propagation characteristics and spontaneous combustion warning of coal during oxidative warming of loose coal
  publication-title: Fuel
  doi: 10.1016/j.fuel.2025.135528
– volume: 310
  year: 2022
  ident: 10.1016/j.fuel.2025.137366_b0255
  article-title: Low NOx combustion optimization based on partial dimension opposition-based learning particle swarm optimization
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.122352
– volume: 314
  year: 2025
  ident: 10.1016/j.fuel.2025.137366_b0175
  article-title: Spontaneous combustion characteristics of hydrothermal erosion coal from deep mining and its microscopic mechanism
  publication-title: Energy
  doi: 10.1016/j.energy.2024.134268
– volume: 33
  start-page: 136
  issue: 9
  year: 2023
  ident: 10.1016/j.fuel.2025.137366_b0120
  article-title: Regression analysis model of coal spontaneous combustion temperature in goaf based on SSA-RF
  publication-title: China Safety Science Journal
– volume: 390
  year: 2025
  ident: 10.1016/j.fuel.2025.137366_b0020
  article-title: Inhibitory effects of three fungi on active microstructure in the oxidation process of lignite coal
  publication-title: Fuel
  doi: 10.1016/j.fuel.2025.134647
– volume: 356
  year: 2024
  ident: 10.1016/j.fuel.2025.137366_b0210
  article-title: Determinants of prioritised influencing factors on coal spontaneous combustion propensity-a Fuzzy-Delphi-geometric mean analytic hierarchy process
  publication-title: Fuel
  doi: 10.1016/j.fuel.2023.129541
– volume: 391
  year: 2025
  ident: 10.1016/j.fuel.2025.137366_b0005
  article-title: Pyrite-enhanced coal spontaneous combustion: Insights from experiments and molecular simulations
  publication-title: Fuel
  doi: 10.1016/j.fuel.2025.134761
– volume: 34
  start-page: 147
  issue: 8
  year: 2024
  ident: 10.1016/j.fuel.2025.137366_b0085
  article-title: Evolution characteristics of spontaneous combustion hazard zone in layered mining of extra thick coal seams
  publication-title: China Safety Science Journal
– volume: 29
  start-page: 26
  issue: 11
  year: 2019
  ident: 10.1016/j.fuel.2025.137366_b0075
  article-title: Prediction model of spontaneous combustion risk of extraction drilling based on improved CRITIC modified G2-TOPSIS method and its application
  publication-title: China Safety Science Journal
– volume: 137923
  year: 2025
  ident: 10.1016/j.fuel.2025.137366_b0155
  article-title: Classification method for coal spontaneous combustion tendency based on excess oxidation reaction rate model
  publication-title: Energy
– volume: 293
  year: 2024
  ident: 10.1016/j.fuel.2025.137366_b0185
  article-title: Influence and inerting mechanism of inert gas atmospheres on the characteristics of oxidative spontaneous combustion in coal
  publication-title: Energy
  doi: 10.1016/j.energy.2024.130470
– volume: 16
  issue: 9
  year: 2021
  ident: 10.1016/j.fuel.2025.137366_b0025
  article-title: Distribution of spontaneous combustion three zones and optimization of nitrogen injection location in the goaf of a fully mechanized top coal caving face
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0256911
– volume: 15
  start-page: 6298
  issue: 1
  year: 2025
  ident: 10.1016/j.fuel.2025.137366_b0125
  article-title: Research on coal spontaneous combustion hierarchical prediction model based on NSGA-II-RF
  publication-title: Sci Rep
  doi: 10.1038/s41598-025-90665-1
– volume: 284
  year: 2024
  ident: 10.1016/j.fuel.2025.137366_b0225
  article-title: Crested Porcupine Optimizer: a new nature-inspired metaheuristic
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2023.111257
– volume: 12
  start-page: 17399
  issue: 1
  year: 2022
  ident: 10.1016/j.fuel.2025.137366_b0010
  article-title: Study on multi field coupling numerical simulation of nitrogen injection in goaf and fire-fighting technology
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-22296-9
– volume: 324
  year: 2022
  ident: 10.1016/j.fuel.2025.137366_b0095
  article-title: Prediction of coal spontaneous combustion temperature based on improved grey wolf optimizer algorithm and support vector regression
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.124670
– volume: 405
  year: 2026
  ident: 10.1016/j.fuel.2025.137366_b0030
  article-title: Research on the release characteristics and prediction model of large molecular hydrocarbon gases during coal spontaneous combustion
  publication-title: Fuel
  doi: 10.1016/j.fuel.2025.136726
– volume: 55
  start-page: 106
  issue: 4
  year: 2024
  ident: 10.1016/j.fuel.2025.137366_b0115
  article-title: Prediction of coal spontaneous combustion temperature with multi-gas index based on machine learning
  publication-title: Safety in Coal Mines
– volume: 58
  start-page: 5
  issue: 1
  year: 2024
  ident: 10.1016/j.fuel.2025.137366_b0240
  article-title: Improved sandcat swarm optimization algorithm for solving global optimum problems
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-024-10986-x
– volume: 201
  year: 2025
  ident: 10.1016/j.fuel.2025.137366_b0015
  article-title: Advances and prospects in risk prediction and early warning technology for the compound disaster of coal spontaneous combustion and gas explosion
  publication-title: Process Saf Environ Prot
  doi: 10.1016/j.psep.2025.107489
– volume: 294
  year: 2024
  ident: 10.1016/j.fuel.2025.137366_b0070
  article-title: A spatio-temporal temperature prediction model for coal spontaneous combustion based on back propagation neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2024.130824
– volume: 359
  year: 2024
  ident: 10.1016/j.fuel.2025.137366_b0235
  article-title: Research on prediction of coal-gas compound dynamic disaster based on ICSA-CNN
  publication-title: Fuel
  doi: 10.1016/j.fuel.2023.130462
– volume: 277
  year: 2023
  ident: 10.1016/j.fuel.2025.137366_b0265
  article-title: An improved metaheuristic-based MPPT for centralized thermoelectric generation systems under dynamic temperature conditions
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127485
– volume: 19
  start-page: 1526
  issue: 5
  year: 2019
  ident: 10.1016/j.fuel.2025.137366_b0145
  article-title: A forecast model for the spontaneous combustion risk in the goaf based on set valued statistics-entropy and its application
  publication-title: J Saf Environ
– volume: 45
  start-page: 251
  issue: 5
  year: 2024
  ident: 10.1016/j.fuel.2025.137366_b0205
  article-title: Comprehensive safety evaluation of energy storage power station based on improved AHP-TOPSIS
  publication-title: Acta energiae solaris sinica
– volume: 8
  start-page: 162847
  year: 2020
  ident: 10.1016/j.fuel.2025.137366_b0220
  article-title: Kullback-Leibler distance based generalized grey target decision method with index and weight both containing mixed attribute values
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3020045
– volume: 196
  year: 2025
  ident: 10.1016/j.fuel.2025.137366_b0135
  article-title: GCN-based prediction method for coal spontaneous combustion temperature
  publication-title: Process Saf Environ Prot
  doi: 10.1016/j.psep.2025.106855
– volume: 6
  start-page: 381
  issue: 10
  year: 2023
  ident: 10.1016/j.fuel.2025.137366_b0100
  article-title: Study on the prediction model of coal spontaneous combustion limit parameters and its application
  publication-title: Fire
  doi: 10.3390/fire6100381
– volume: 393
  year: 2025
  ident: 10.1016/j.fuel.2025.137366_b0045
  article-title: Controlling the underground spontaneous combustion of coal using an expansive aerosol
  publication-title: Fuel
  doi: 10.1016/j.fuel.2025.134937
– volume: 50
  start-page: 30
  issue: 5
  year: 2023
  ident: 10.1016/j.fuel.2025.137366_b0105
  article-title: Study on prediction of coal spontaneous combustion based on MSWOA-BP
  publication-title: Mining Safety & Environmental Protection
– volume: 390
  year: 2025
  ident: 10.1016/j.fuel.2025.137366_b0040
  article-title: Highly efficient sulfamic acid inhibitor enhanced coal spontaneous combustion prevention through acid corrosion and hydrolysis
  publication-title: Fuel
  doi: 10.1016/j.fuel.2025.134681
– volume: 26
  start-page: 1086
  issue: 5
  year: 2015
  ident: 10.1016/j.fuel.2025.137366_b0270
  article-title: Very sparse LSSVM reductions for large-scale data
  publication-title: IEEE Trans Neural Networks Learn Syst
  doi: 10.1109/TNNLS.2014.2333879
– volume: 391
  year: 2025
  ident: 10.1016/j.fuel.2025.137366_b0050
  article-title: Study on the difference of coal spontaneous combustion characteristic parameters after lean oxygen combustion in different inert gas environments: Microscopic and macroscopic
  publication-title: Fuel
  doi: 10.1016/j.fuel.2025.134572
– volume: 33
  start-page: 127
  issue: 7
  year: 2023
  ident: 10.1016/j.fuel.2025.137366_b0110
  article-title: Prediction model of coal spontaneous combustion risk based on PSO-BPNN
  publication-title: China Safety Science Journal
– volume: 290
  year: 2024
  ident: 10.1016/j.fuel.2025.137366_b0160
  article-title: Transformation and migration of key elements during the thermal reaction of coal spontaneous combustion
  publication-title: Energy
  doi: 10.1016/j.energy.2023.130212
– volume: 403
  year: 2026
  ident: 10.1016/j.fuel.2025.137366_b0245
  article-title: An optimized machine learning framework for prediction of coal abrasive index: Leveraging supervised learning, metaheuristic optimization, and interpretability analysis
  publication-title: Fuel
  doi: 10.1016/j.fuel.2025.136065
– volume: 314
  year: 2025
  ident: 10.1016/j.fuel.2025.137366_b0130
  article-title: Spontaneous coal combustion temperature prediction based on an improved grey wolf optimizer-gated recurrent unit model
  publication-title: Energy
  doi: 10.1016/j.energy.2024.133980
– volume: 15(1):6122
  year: 2025
  ident: 10.1016/j.fuel.2025.137366_b0195
  article-title: An integrated CRITIC and EDAS model using linguistic T spherical fuzzy Hamacher aggregation operators and its application to group decision making
  publication-title: Sci Rep
– volume: 137598
  year: 2025
  ident: 10.1016/j.fuel.2025.137366_b0170
  article-title: Critical thresholds of pre-oxidation in coal spontaneous combustion: microstructural drivers and kinetic implications
  publication-title: Energy
– volume: 405
  year: 2026
  ident: 10.1016/j.fuel.2025.137366_b0055
  article-title: Quantitative analysis of microstructural influences on coal spontaneous combustion across coal ranks
  publication-title: Fuel
  doi: 10.1016/j.fuel.2025.136718
– volume: 6
  start-page: 11307
  issue: 17
  year: 2021
  ident: 10.1016/j.fuel.2025.137366_b0090
  article-title: Prediction model for coal spontaneous combustion based on SA-SVM
  publication-title: ACS Omega
  doi: 10.1021/acsomega.1c00169
– volume: 393
  year: 2025
  ident: 10.1016/j.fuel.2025.137366_b0035
  article-title: Multiple indicator gases and temperature prediction of coal spontaneous combustion oxidation process
  publication-title: Fuel
  doi: 10.1016/j.fuel.2025.134991
– volume: 315
  year: 2025
  ident: 10.1016/j.fuel.2025.137366_b0200
  article-title: Multi criteria evaluation of downscaled CMIP6 models in predicting precipitation extremes
  publication-title: Atmos Res
  doi: 10.1016/j.atmosres.2025.107921
– volume: 14
  start-page: 5
  issue: 1
  year: 2024
  ident: 10.1016/j.fuel.2025.137366_b0060
  article-title: Prediction model of spontaneous combustion risk of extraction borehole based on PSO-BPNN and its application
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-45806-9
– volume: 9
  start-page: 31765
  issue: 29
  year: 2024
  ident: 10.1016/j.fuel.2025.137366_b0080
  article-title: Prediction Model of Spontaneous Combustion of Lignite in Zhalainuoer Mining Area
  publication-title: ACS Omega
  doi: 10.1021/acsomega.4c02853
– volume: 365
  year: 2024
  ident: 10.1016/j.fuel.2025.137366_b0190
  article-title: Experimental study on the effect of inhibitor on coal spontaneous combustion under low temperature freezing
  publication-title: Fuel
  doi: 10.1016/j.fuel.2024.131225
– volume: 388
  year: 2025
  ident: 10.1016/j.fuel.2025.137366_b0180
  article-title: Determination of spontaneous combustion propensity and ignition time of Indian coal using adiabatic oxidation method
  publication-title: Fuel
  doi: 10.1016/j.fuel.2025.134569
– volume: 15
  start-page: 4294
  issue: 24
  year: 2023
  ident: 10.1016/j.fuel.2025.137366_b0215
  article-title: Leakage Risk Assessment of Urban Water distribution Network based on Unascertained measure Theory and Game Theory Weighting Method
  publication-title: Water
  doi: 10.3390/w15244294
– volume: 290
  year: 2024
  ident: 10.1016/j.fuel.2025.137366_b0140
  article-title: Research on prediction model of coal spontaneous combustion temperature based on SSA-CNN
  publication-title: Energy
  doi: 10.1016/j.energy.2023.130158
– volume: 16
  issue: 10
  year: 2021
  ident: 10.1016/j.fuel.2025.137366_b0150
  article-title: Dynamic prediction model of spontaneous combustion risk in goaf based on improved CRITIC-G2-TOPSIS method and its application
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0257499
– volume: 165
  year: 2021
  ident: 10.1016/j.fuel.2025.137366_b0260
  article-title: Ensemble mutation-driven salp swarm algorithm with restart mechanism: Framework and fundamental analysis
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113897
– volume: 325
  year: 2022
  ident: 10.1016/j.fuel.2025.137366_b0065
  article-title: Prediction of coal self-ignition tendency using machine learning
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.124832
– volume: 546
  start-page: 1063
  year: 2021
  ident: 10.1016/j.fuel.2025.137366_b0230
  article-title: Cross-plane colour image encryption using a two-dimensional logistic tent modular map
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.09.032
– volume: 238
  year: 2022
  ident: 10.1016/j.fuel.2025.137366_b0275
  article-title: A performance evaluation framework for deep peak shaving of the CFB boiler unit based on the DBN-LSSVM algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121659
SSID ssj0007854
Score 2.4918377
Snippet •A novel model combining game theory and grey target decision determines the oxidation state of coal spontaneous combustion.•A multi-strategy improved CPO...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 137366
SubjectTerms Coal spontaneous combustion (CSC)
Least squares support vector machine (LSSVM)
Multi-strategy improved crested porcupine optimizer (MICPO)
Oxidation state
Prediction model
Title Prediction model of coal spontaneous combustion oxidation state based on MICPO-LSSVM
URI https://dx.doi.org/10.1016/j.fuel.2025.137366
Volume 407
WOSCitedRecordID wos001612596800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0016-2361
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007854
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMcEE_R8tAeuEWu4rX3dYxQqxaVEqmBhpNZe9dVKuREIa7y8zvj9YvwED1wsZJRMn7Mp9lvx_Mg5B04uNTGoQ3GaZgFccyjII2sDgSDvYNyPGPaVMMm5Pm5ms_1dDD41tTC3HyXRaG2W736r6YGGRgbS2fvYO5WKQjgMxgdjmB2OP6T4adrfPdSmbUac-MTx7EsZLUsgAo6THqFE6c4xwvZ4nbh5yqNquKiEa5rFt8hgIGmn4Kzi4svH_sU9rgEnRhcwIHaPjW-DSZcTnwJ1KVb7IpOSlNcrctWfnaK0nm5atZOjL5Wsq9l0Y9FMNElYzX-NRQBtnPp-9fYj7WtPWQYycjPWfnFefs4wvVhDvcBO3fGD7sf_9wpe2cFa_MKm5S16wR1JKgj8TrukT0muVZDsjc5PZp_aFdrqbjv1F1feV1Y5XMAd6_k9-SlR0hmj8mjeidBJx4BT8jAFU_Jw15_yWdk1mGBVligy5wiFmgPC7TDAm2xQCss0AoLFL72sPCcfD4-mr0_CeoxGkHGeLQJMjlmMudW21A654SLlc5jMXY6Z6kSTjnHubQWtracCeaYxUGeUmVpKrJ4bKMXZFgsC_eS0NAYozOgjTo1wGqEcUblWhns6gZMW-yTUfN8kpXvlpL82Sb7hDePMKn5nudxCSDiL_87uNNZXpEHHVRfk-FmXbo35H52s1n8WL-t4XALowByvg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+model+of+coal+spontaneous+combustion+oxidation+state+based+on+MICPO-LSSVM&rft.jtitle=Fuel+%28Guildford%29&rft.au=WANG%2C+Wei&rft.au=WANG%2C+Huangrui&rft.au=LI%2C+Xuping&rft.au=QI%2C+Yun&rft.date=2026-03-01&rft.issn=0016-2361&rft.volume=407&rft.spage=137366&rft_id=info:doi/10.1016%2Fj.fuel.2025.137366&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fuel_2025_137366
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon