Risk-averse contextual predictive maintenance and operations scheduling with flexible generation under wind energy uncertainty

Ensuring resiliency and sustainability of power systems operations under the uncertainty of the intermittent nature of renewables is becoming a critical concern while considering the integration of flexible generation resources that provide additional adjustability during planning. To address this e...

Full description

Saved in:
Bibliographic Details
Published in:European journal of operational research Vol. 327; no. 1; pp. 174 - 190
Main Authors: Randall, Natalie, Basciftci, Beste
Format: Journal Article
Language:English
Published: Elsevier B.V 16.11.2025
Subjects:
ISSN:0377-2217
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Ensuring resiliency and sustainability of power systems operations under the uncertainty of the intermittent nature of renewables is becoming a critical concern while considering the integration of flexible generation resources that provide additional adjustability during planning. To address this emerging issue, this study proposes a risk-averse contextual predictive generator maintenance and operations scheduling problem with traditional and flexible generation resources under wind energy uncertainty. We formulate this problem as a two-stage risk-averse stochastic mixed-integer program, where the first-stage determines the maintenance and unit commitment related decisions of the traditional generation units, whereas the second-stage determines the corresponding decisions for flexible generators along with the production related plans of all generators. To integrate contextual information and the uncertainty around the wind power, we propose a Gaussian Process Regression approach for predicting wind power generation, which is then leveraged into this stochastic program. Since this problem is computationally challenging to solve with a mixed-integer recourse due to the second-stage decisions involving flexible generation resources, we provide two versions of a progressive hedging based solution algorithm by first utilizing the classical progressive hedging approach and then leveraging the Frank–Wolfe algorithm for improving the solution quality. In both versions, we extend these algorithms to the risk-averse setting and present various computational enhancements. Our results on the IEEE 118-bus instances demonstrate the impact of adopting a risk-averse approach compared to risk-neutral and deterministic alternatives with a better worst-case performance, and highlight the value of integrating flexible generation and contextual information with resilient maintenance and operations schedules leading to cost-effective plans with less component failures. Furthermore, our solution algorithms provide good quality solutions in significantly less time compared to the off-the-shelf solver, where the Frank–Wolfe version of the algorithm is capable of finding optimal solutions in majority of the test instances. •Generator maintenance and operations scheduling problem with flexible generation.•Risk-averse contextual two-stage stochastic mixed-integer programming formulation.•Gaussian Process Regression approach for predicting uncertain wind energy.•Frank–Wolfe based progressive hedging algorithm with computational enhancements.•Extensive results highlighting risk-averse scheduling and algorithm performance.
AbstractList Ensuring resiliency and sustainability of power systems operations under the uncertainty of the intermittent nature of renewables is becoming a critical concern while considering the integration of flexible generation resources that provide additional adjustability during planning. To address this emerging issue, this study proposes a risk-averse contextual predictive generator maintenance and operations scheduling problem with traditional and flexible generation resources under wind energy uncertainty. We formulate this problem as a two-stage risk-averse stochastic mixed-integer program, where the first-stage determines the maintenance and unit commitment related decisions of the traditional generation units, whereas the second-stage determines the corresponding decisions for flexible generators along with the production related plans of all generators. To integrate contextual information and the uncertainty around the wind power, we propose a Gaussian Process Regression approach for predicting wind power generation, which is then leveraged into this stochastic program. Since this problem is computationally challenging to solve with a mixed-integer recourse due to the second-stage decisions involving flexible generation resources, we provide two versions of a progressive hedging based solution algorithm by first utilizing the classical progressive hedging approach and then leveraging the Frank–Wolfe algorithm for improving the solution quality. In both versions, we extend these algorithms to the risk-averse setting and present various computational enhancements. Our results on the IEEE 118-bus instances demonstrate the impact of adopting a risk-averse approach compared to risk-neutral and deterministic alternatives with a better worst-case performance, and highlight the value of integrating flexible generation and contextual information with resilient maintenance and operations schedules leading to cost-effective plans with less component failures. Furthermore, our solution algorithms provide good quality solutions in significantly less time compared to the off-the-shelf solver, where the Frank–Wolfe version of the algorithm is capable of finding optimal solutions in majority of the test instances. •Generator maintenance and operations scheduling problem with flexible generation.•Risk-averse contextual two-stage stochastic mixed-integer programming formulation.•Gaussian Process Regression approach for predicting uncertain wind energy.•Frank–Wolfe based progressive hedging algorithm with computational enhancements.•Extensive results highlighting risk-averse scheduling and algorithm performance.
Author Randall, Natalie
Basciftci, Beste
Author_xml – sequence: 1
  givenname: Natalie
  surname: Randall
  fullname: Randall, Natalie
  email: natalie-randall@uiowa.edu
  organization: Department of Mathematics, Applied Mathematical and Computational Sciences Program, College of Liberal Arts and Science, University of Iowa, United States of America
– sequence: 2
  givenname: Beste
  orcidid: 0000-0002-3876-2559
  surname: Basciftci
  fullname: Basciftci, Beste
  email: beste-basciftci@uiowa.edu
  organization: Department of Business Analytics, Tippie College of Business, University of Iowa, United States of America
BookMark eNp9kM1KAzEURrOoYFt9AVd5gRmTjJl0wI0U_6AgiK5DJrlpM04zJUlru_HZzVDXri58956Py5mhiR88IHRDSUkJrW-7ErohlIwwXpK6JIRP0JRUQhSMUXGJZjF2hBDKKZ-in3cXvwp1gBAB68EnOKa96vEugHE6uQPgrXI59sprwMobPOwgqOQGH3HUGzD73vk1_nZpg20PR9f2gNfg_47w3hsIeZ3JMVyfcqIhpLH1dIUurOojXP_NOfp8evxYvhSrt-fX5cOq0IxXqdCcNoI3jFgBpq5UtTCKK9MYsbCgKgK1gsYaZRmzFmhL7F3TirY1bME4s7SaI3bu1WGIMYCVu-C2KpwkJXK0Jjs5WpOjNUlqma1l6P4MQf7s4CDIqB3k540LoJM0g_sP_wWKIH9-
Cites_doi 10.1016/j.ejor.2015.08.045
10.1109/TPWRS.2015.2418158
10.1111/1467-9965.00068
10.1137/16M1076290
10.1137/S1052623400375075
10.1287/mnsc.2018.3253
10.1007/s10589-023-00532-w
10.1287/mnsc.27.1.1
10.1016/j.rser.2019.03.040
10.21314/JOR.2000.038
10.1287/msom.2016.0595
10.1007/s10287-010-0125-4
10.1287/moor.16.1.119
10.1109/TPWRS.2015.2506604
10.1007/s10107-016-1000-z
10.1016/j.ijhydene.2019.09.222
10.1007/s11228-017-0437-4
10.1109/TPWRS.2016.2521720
10.1109/TPWRS.2010.2040124
10.1016/j.cor.2011.03.017
10.1007/s10479-012-1092-7
10.1109/TPWRS.2018.2829175
10.1016/j.ejor.2006.11.018
10.1287/opre.2013.1174
10.1287/ijoc.2022.0154
10.3390/en13205509
10.1109/TPWRS.2022.3149506
10.1007/s12667-020-00401-z
10.1080/24725854.2019.1660831
10.1007/BF01580219
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID AAYXX
CITATION
DOI 10.1016/j.ejor.2025.06.005
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EndPage 190
ExternalDocumentID 10_1016_j_ejor_2025_06_005
S0377221725004746
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADGUI
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
ARUGR
AXJTR
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
XPP
ZMT
~02
~G-
1OL
29G
41~
9DU
AAAKG
AAQXK
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADIYS
ADJOM
ADMUD
ADNMO
ADXHL
AFFNX
AGQPQ
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
VH1
WUQ
~HD
ID FETCH-LOGICAL-c253t-c51975920f7ed63a38da5ad9d78fea30e6ae9fdaf22ffe1b0f49b7bbd28252f13
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001550401700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Sat Nov 29 07:38:52 EST 2025
Sat Sep 06 17:21:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Progressive hedging algorithm
OR in energy
Maintenance scheduling
Unit commitment
Gaussian process regression
Power systems
Stochastic integer programming
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c253t-c51975920f7ed63a38da5ad9d78fea30e6ae9fdaf22ffe1b0f49b7bbd28252f13
ORCID 0000-0002-3876-2559
PageCount 17
ParticipantIDs crossref_primary_10_1016_j_ejor_2025_06_005
elsevier_sciencedirect_doi_10_1016_j_ejor_2025_06_005
PublicationCentury 2000
PublicationDate 2025-11-16
PublicationDateYYYYMMDD 2025-11-16
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-16
  day: 16
PublicationDecade 2020
PublicationTitle European journal of operational research
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Artzner, Delbaen, Eber, Heath (b2) 1999; 9
Gade, Hackebeil, Ryan, Watson, Wets, Woodruff (b12) 2016; 157
Kaisermayer, Muschick, Horn, Gölles (b15) 2020; 12
Basciftci, Ahmed, Gebraeel, Yildirim (b4) 2018; 33
Blumsack (b6) 2006
Sadana, Chenreddy, Delage, Forel, Frejinger, Vidal (b26) 2024
Yu, Wang, Li, Jermsittiparsert, Nojavan (b33) 2019; 44
Fisher (b10) 1981; 27
Ordoudis, Pinson, Zugno, Morales (b20) 2015
Lubbe, Maritz, Harms (b16) 2020; 13
Hu, Wu (b14) 2016; 31
Rockafellar, Wets (b25) 1991; 16
Yildirim, Sun, Gebraeel (b32) 2016; 31
Froger, Gendreau, Mendoza, Pinson, Rousseau (b11) 2016; 251
Noyan (b17) 2012; 39
Zehtabian, Bastin (b34) 2016
Watson, Woodruff (b30) 2008; 8
Basciftci, Ahmed, Gebraeel (b3) 2020; 52
Zheng, Wang, Pardalos, Guan (b35) 2013; 210
Okumusoglu, Basciftci, Kocuk (b19) 2024; 36
Rockafellar (b23) 2018; 26
Papavasiliou, Oren (b21) 2013; 61
Wang, Li, Shahidehpour, Wu, Guo, Zhu (b28) 2016; 31
Sharifzadeh, Sikinioti-Lock, Shah (b27) 2019; 108
Rockafellar, Uryasev (b24) 2000; 3
Holloway (b13) 1974; 6
Christiansen, Brian, Eberhard, Oliveira (b9) 2023; 86
Wang, Zhao, Fan, Bo (b29) 2022; 37
Ogryczak, Ruszczynski (b18) 2002; 13
Bertsimas, Kallus (b5) 2020; 66
Canto (b8) 2008; 184
Boland, Christiansen, Dandurand, Eberhard, Linderoth, Luedtke (b7) 2018; 28
Wu, Shahidehpour, Fu (b31) 2010; 25
Rasmussen, Bousquet, Luxburg, Rätsch (b22) 2004; Vol. 3176
Al-Gwaiz, Chao, Wu (b1) 2017; 19
Al-Gwaiz (10.1016/j.ejor.2025.06.005_b1) 2017; 19
Fisher (10.1016/j.ejor.2025.06.005_b10) 1981; 27
Hu (10.1016/j.ejor.2025.06.005_b14) 2016; 31
Rockafellar (10.1016/j.ejor.2025.06.005_b25) 1991; 16
Blumsack (10.1016/j.ejor.2025.06.005_b6) 2006
Wang (10.1016/j.ejor.2025.06.005_b28) 2016; 31
Yildirim (10.1016/j.ejor.2025.06.005_b32) 2016; 31
Wang (10.1016/j.ejor.2025.06.005_b29) 2022; 37
Zehtabian (10.1016/j.ejor.2025.06.005_b34) 2016
Holloway (10.1016/j.ejor.2025.06.005_b13) 1974; 6
Ordoudis (10.1016/j.ejor.2025.06.005_b20) 2015
Gade (10.1016/j.ejor.2025.06.005_b12) 2016; 157
Lubbe (10.1016/j.ejor.2025.06.005_b16) 2020; 13
Kaisermayer (10.1016/j.ejor.2025.06.005_b15) 2020; 12
Noyan (10.1016/j.ejor.2025.06.005_b17) 2012; 39
Rasmussen (10.1016/j.ejor.2025.06.005_b22) 2004; Vol. 3176
Boland (10.1016/j.ejor.2025.06.005_b7) 2018; 28
Yu (10.1016/j.ejor.2025.06.005_b33) 2019; 44
Basciftci (10.1016/j.ejor.2025.06.005_b4) 2018; 33
Rockafellar (10.1016/j.ejor.2025.06.005_b23) 2018; 26
Christiansen (10.1016/j.ejor.2025.06.005_b9) 2023; 86
Okumusoglu (10.1016/j.ejor.2025.06.005_b19) 2024; 36
Watson (10.1016/j.ejor.2025.06.005_b30) 2008; 8
Ogryczak (10.1016/j.ejor.2025.06.005_b18) 2002; 13
Basciftci (10.1016/j.ejor.2025.06.005_b3) 2020; 52
Papavasiliou (10.1016/j.ejor.2025.06.005_b21) 2013; 61
Zheng (10.1016/j.ejor.2025.06.005_b35) 2013; 210
Bertsimas (10.1016/j.ejor.2025.06.005_b5) 2020; 66
Canto (10.1016/j.ejor.2025.06.005_b8) 2008; 184
Sharifzadeh (10.1016/j.ejor.2025.06.005_b27) 2019; 108
Rockafellar (10.1016/j.ejor.2025.06.005_b24) 2000; 3
Froger (10.1016/j.ejor.2025.06.005_b11) 2016; 251
Sadana (10.1016/j.ejor.2025.06.005_b26) 2024
Wu (10.1016/j.ejor.2025.06.005_b31) 2010; 25
Artzner (10.1016/j.ejor.2025.06.005_b2) 1999; 9
References_xml – year: 2024
  ident: b26
  article-title: A survey of contextual optimization methods for decision making under uncertainty
  publication-title: European Journal of Operational Research
– volume: 251
  start-page: 695
  year: 2016
  end-page: 706
  ident: b11
  article-title: Maintenance scheduling in the electricity industry: A literature review
  publication-title: European Journal of Operational Research
– volume: 28
  start-page: 1312
  year: 2018
  end-page: 1336
  ident: b7
  article-title: Combining progressive hedging with a frank–wolfe method to compute Lagrangian dual bounds in stochastic mixed-integer programming
  publication-title: SIAM Journal on Optimization
– volume: 8
  start-page: 355
  year: 2008
  end-page: 370
  ident: b30
  article-title: Progressive hedging innovations for a class of stochastic resource allocation problems
  publication-title: Computational Management Science
– volume: 9
  start-page: 203
  year: 1999
  end-page: 228
  ident: b2
  article-title: Coherent measures of risk
  publication-title: Mathematical Finance
– volume: 52
  start-page: 589
  year: 2020
  end-page: 602
  ident: b3
  article-title: Data-driven maintenance and operations scheduling in power systems under decision-dependent uncertainty
  publication-title: IISE Transactions
– start-page: 1
  year: 2015
  end-page: 6
  ident: b20
  article-title: Stochastic unit commitment via progressive hedging — extensive analysis of solution methods
  publication-title: 2015 IEEE Eindhoven PowerTech
– volume: 210
  start-page: 387
  year: 2013
  end-page: 410
  ident: b35
  article-title: A decomposition approach to the two-stage stochastic unit commitment problem
  publication-title: Annals of Operations Research
– volume: 27
  start-page: 1
  year: 1981
  end-page: 18
  ident: b10
  article-title: The Lagrangian relaxation method for solving integer programming problems
  publication-title: Management Science
– year: 2016
  ident: b34
  article-title: Penalty parameter update strategies in progressive hedging algorithm
– volume: 6
  start-page: 14
  year: 1974
  end-page: 27
  ident: b13
  article-title: An extension of the frank and Wolfe method of feasible directions
  publication-title: Mathematical Programming
– volume: 36
  start-page: 1147
  year: 2024
  end-page: 1358
  ident: b19
  article-title: An integrated predictive maintenance and operations scheduling framework for power systems under failure uncertainty
  publication-title: INFORMS Journal on Computing
– volume: 16
  start-page: 119
  year: 1991
  end-page: 147
  ident: b25
  article-title: Scenarios and policy aggregation in optimization under uncertainty
  publication-title: Mathematics of Operations Research
– volume: 31
  start-page: 1407
  year: 2016
  end-page: 1419
  ident: b14
  article-title: Robust SCUC considering continuous/discrete uncertainties and quick-start units: A two-stage robust optimization with mixed-integer recourse
  publication-title: IEEE Transactions on Power Systems
– volume: 19
  start-page: 114
  year: 2017
  end-page: 131
  ident: b1
  article-title: Understanding how generation flexibility and renewable energy affect power market competition
  publication-title: Manufacturing & Service Operations Management
– volume: 25
  start-page: 1674
  year: 2010
  end-page: 1685
  ident: b31
  article-title: Security-constrained generation and transmission outage scheduling with uncertainties
  publication-title: IEEE Transactions on Power Systems
– volume: 157
  start-page: 47
  year: 2016
  end-page: 67
  ident: b12
  article-title: Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs
  publication-title: Mathematical Programming
– volume: 37
  start-page: 4179
  year: 2022
  end-page: 4190
  ident: b29
  article-title: Distributionally robust unit commitment with flexible generation resources considering renewable energy uncertainty
  publication-title: IEEE Transactions on Power Systems
– year: 2006
  ident: b6
  article-title: Network topologies and transmission investment under electric-industry restructuring
– volume: 108
  start-page: 513
  year: 2019
  end-page: 538
  ident: b27
  article-title: Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian process regression
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 44
  start-page: 31204
  year: 2019
  end-page: 31215
  ident: b33
  article-title: Risk-averse stochastic operation of a power system integrated with hydrogen storage system and wind generation in the presence of demand response program
  publication-title: International Journal of Hydrogen Energy
– volume: 61
  start-page: 578
  year: 2013
  end-page: 592
  ident: b21
  article-title: Multiarea stochastic unit commitment for high wind penetration in a transmission constrained network
  publication-title: Operations Research
– volume: Vol. 3176
  year: 2004
  ident: b22
  article-title: Gaussian processes in machine learning
  publication-title: Advanced lectures on machine learning: ML summer schools 2003
– volume: 66
  start-page: 1025
  year: 2020
  end-page: 1044
  ident: b5
  article-title: From predictive to prescriptive analytics
  publication-title: Management Science
– volume: 13
  start-page: 5509
  year: 2020
  ident: b16
  article-title: Evaluating the potential of Gaussian process regression for solar radiation forecasting: A case study
  publication-title: Energies
– volume: 33
  start-page: 6755
  year: 2018
  end-page: 6765
  ident: b4
  article-title: Stochastic optimization of maintenance and operations schedules under unexpected failures
  publication-title: IEEE Transactions on Power Systems
– volume: 13
  start-page: 60
  year: 2002
  end-page: 78
  ident: b18
  article-title: Dual stochastic dominance and related mean-risk models
  publication-title: SIAM Journal on Optimization
– volume: 3
  start-page: 21
  year: 2000
  end-page: 41
  ident: b24
  article-title: Optimization of conditional value-at risk
  publication-title: Journal of Risk
– volume: 31
  start-page: 4795
  year: 2016
  end-page: 4805
  ident: b28
  article-title: Stochastic co-optimization of midterm and short-term maintenance outage scheduling considering covariates in power systems
  publication-title: IEEE Transactions on Power Systems
– volume: 184
  start-page: 759
  year: 2008
  end-page: 777
  ident: b8
  article-title: Application of Benders’ decomposition to power plant preventive maintenance scheduling
  publication-title: European Journal of Operational Research
– volume: 12
  start-page: 1
  year: 2020
  end-page: 29
  ident: b15
  article-title: Progressive hedging for stochastic energy management systems
  publication-title: Energy Systems
– volume: 39
  start-page: 541
  year: 2012
  end-page: 559
  ident: b17
  article-title: Risk-averse two-stage stochastic programming with an application to disaster management
  publication-title: Computers & Operations Research
– volume: 86
  start-page: 989
  year: 2023
  end-page: 1034
  ident: b9
  article-title: A study of progressive hedging for stochastic integer programming
  publication-title: Computational Optimization and Applications
– volume: 26
  year: 2018
  ident: b23
  article-title: Solving stochastic programming problems with risk measures by progressive hedging
  publication-title: Set-Valued and Variational Analysis
– volume: 31
  start-page: 4263
  year: 2016
  end-page: 4271
  ident: b32
  article-title: Sensor-driven condition-based generator maintenance scheduling—Part II: Incorporating operations
  publication-title: IEEE Transactions on Power Systems
– volume: 251
  start-page: 695
  issue: 3
  year: 2016
  ident: 10.1016/j.ejor.2025.06.005_b11
  article-title: Maintenance scheduling in the electricity industry: A literature review
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2015.08.045
– volume: 31
  start-page: 1407
  issue: 2
  year: 2016
  ident: 10.1016/j.ejor.2025.06.005_b14
  article-title: Robust SCUC considering continuous/discrete uncertainties and quick-start units: A two-stage robust optimization with mixed-integer recourse
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2015.2418158
– year: 2006
  ident: 10.1016/j.ejor.2025.06.005_b6
– volume: 9
  start-page: 203
  issue: 3
  year: 1999
  ident: 10.1016/j.ejor.2025.06.005_b2
  article-title: Coherent measures of risk
  publication-title: Mathematical Finance
  doi: 10.1111/1467-9965.00068
– volume: 28
  start-page: 1312
  issue: 2
  year: 2018
  ident: 10.1016/j.ejor.2025.06.005_b7
  article-title: Combining progressive hedging with a frank–wolfe method to compute Lagrangian dual bounds in stochastic mixed-integer programming
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/16M1076290
– volume: 13
  start-page: 60
  issue: 1
  year: 2002
  ident: 10.1016/j.ejor.2025.06.005_b18
  article-title: Dual stochastic dominance and related mean-risk models
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/S1052623400375075
– volume: 66
  start-page: 1025
  issue: 3
  year: 2020
  ident: 10.1016/j.ejor.2025.06.005_b5
  article-title: From predictive to prescriptive analytics
  publication-title: Management Science
  doi: 10.1287/mnsc.2018.3253
– volume: 86
  start-page: 989
  year: 2023
  ident: 10.1016/j.ejor.2025.06.005_b9
  article-title: A study of progressive hedging for stochastic integer programming
  publication-title: Computational Optimization and Applications
  doi: 10.1007/s10589-023-00532-w
– volume: 27
  start-page: 1
  issue: 1
  year: 1981
  ident: 10.1016/j.ejor.2025.06.005_b10
  article-title: The Lagrangian relaxation method for solving integer programming problems
  publication-title: Management Science
  doi: 10.1287/mnsc.27.1.1
– volume: 108
  start-page: 513
  year: 2019
  ident: 10.1016/j.ejor.2025.06.005_b27
  article-title: Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian process regression
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2019.03.040
– volume: 3
  start-page: 21
  year: 2000
  ident: 10.1016/j.ejor.2025.06.005_b24
  article-title: Optimization of conditional value-at risk
  publication-title: Journal of Risk
  doi: 10.21314/JOR.2000.038
– year: 2024
  ident: 10.1016/j.ejor.2025.06.005_b26
  article-title: A survey of contextual optimization methods for decision making under uncertainty
  publication-title: European Journal of Operational Research
– volume: 19
  start-page: 114
  issue: 1
  year: 2017
  ident: 10.1016/j.ejor.2025.06.005_b1
  article-title: Understanding how generation flexibility and renewable energy affect power market competition
  publication-title: Manufacturing & Service Operations Management
  doi: 10.1287/msom.2016.0595
– volume: 8
  start-page: 355
  year: 2008
  ident: 10.1016/j.ejor.2025.06.005_b30
  article-title: Progressive hedging innovations for a class of stochastic resource allocation problems
  publication-title: Computational Management Science
  doi: 10.1007/s10287-010-0125-4
– volume: 16
  start-page: 119
  issue: 1
  year: 1991
  ident: 10.1016/j.ejor.2025.06.005_b25
  article-title: Scenarios and policy aggregation in optimization under uncertainty
  publication-title: Mathematics of Operations Research
  doi: 10.1287/moor.16.1.119
– volume: 31
  start-page: 4263
  issue: 6
  year: 2016
  ident: 10.1016/j.ejor.2025.06.005_b32
  article-title: Sensor-driven condition-based generator maintenance scheduling—Part II: Incorporating operations
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2015.2506604
– volume: 157
  start-page: 47
  year: 2016
  ident: 10.1016/j.ejor.2025.06.005_b12
  article-title: Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-016-1000-z
– volume: 44
  start-page: 31204
  issue: 59
  year: 2019
  ident: 10.1016/j.ejor.2025.06.005_b33
  article-title: Risk-averse stochastic operation of a power system integrated with hydrogen storage system and wind generation in the presence of demand response program
  publication-title: International Journal of Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.09.222
– volume: 26
  year: 2018
  ident: 10.1016/j.ejor.2025.06.005_b23
  article-title: Solving stochastic programming problems with risk measures by progressive hedging
  publication-title: Set-Valued and Variational Analysis
  doi: 10.1007/s11228-017-0437-4
– volume: 31
  start-page: 4795
  issue: 6
  year: 2016
  ident: 10.1016/j.ejor.2025.06.005_b28
  article-title: Stochastic co-optimization of midterm and short-term maintenance outage scheduling considering covariates in power systems
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2016.2521720
– volume: 25
  start-page: 1674
  issue: 3
  year: 2010
  ident: 10.1016/j.ejor.2025.06.005_b31
  article-title: Security-constrained generation and transmission outage scheduling with uncertainties
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2010.2040124
– volume: 39
  start-page: 541
  issue: 3
  year: 2012
  ident: 10.1016/j.ejor.2025.06.005_b17
  article-title: Risk-averse two-stage stochastic programming with an application to disaster management
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2011.03.017
– volume: 210
  start-page: 387
  year: 2013
  ident: 10.1016/j.ejor.2025.06.005_b35
  article-title: A decomposition approach to the two-stage stochastic unit commitment problem
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-012-1092-7
– volume: 33
  start-page: 6755
  issue: 6
  year: 2018
  ident: 10.1016/j.ejor.2025.06.005_b4
  article-title: Stochastic optimization of maintenance and operations schedules under unexpected failures
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2018.2829175
– volume: 184
  start-page: 759
  issue: 2
  year: 2008
  ident: 10.1016/j.ejor.2025.06.005_b8
  article-title: Application of Benders’ decomposition to power plant preventive maintenance scheduling
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.11.018
– volume: 61
  start-page: 578
  issue: 3
  year: 2013
  ident: 10.1016/j.ejor.2025.06.005_b21
  article-title: Multiarea stochastic unit commitment for high wind penetration in a transmission constrained network
  publication-title: Operations Research
  doi: 10.1287/opre.2013.1174
– volume: 36
  start-page: 1147
  issue: 5
  year: 2024
  ident: 10.1016/j.ejor.2025.06.005_b19
  article-title: An integrated predictive maintenance and operations scheduling framework for power systems under failure uncertainty
  publication-title: INFORMS Journal on Computing
  doi: 10.1287/ijoc.2022.0154
– start-page: 1
  year: 2015
  ident: 10.1016/j.ejor.2025.06.005_b20
  article-title: Stochastic unit commitment via progressive hedging — extensive analysis of solution methods
– volume: Vol. 3176
  year: 2004
  ident: 10.1016/j.ejor.2025.06.005_b22
  article-title: Gaussian processes in machine learning
– volume: 13
  start-page: 5509
  year: 2020
  ident: 10.1016/j.ejor.2025.06.005_b16
  article-title: Evaluating the potential of Gaussian process regression for solar radiation forecasting: A case study
  publication-title: Energies
  doi: 10.3390/en13205509
– volume: 37
  start-page: 4179
  issue: 6
  year: 2022
  ident: 10.1016/j.ejor.2025.06.005_b29
  article-title: Distributionally robust unit commitment with flexible generation resources considering renewable energy uncertainty
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2022.3149506
– volume: 12
  start-page: 1
  year: 2020
  ident: 10.1016/j.ejor.2025.06.005_b15
  article-title: Progressive hedging for stochastic energy management systems
  publication-title: Energy Systems
  doi: 10.1007/s12667-020-00401-z
– volume: 52
  start-page: 589
  issue: 6
  year: 2020
  ident: 10.1016/j.ejor.2025.06.005_b3
  article-title: Data-driven maintenance and operations scheduling in power systems under decision-dependent uncertainty
  publication-title: IISE Transactions
  doi: 10.1080/24725854.2019.1660831
– year: 2016
  ident: 10.1016/j.ejor.2025.06.005_b34
– volume: 6
  start-page: 14
  issue: 1
  year: 1974
  ident: 10.1016/j.ejor.2025.06.005_b13
  article-title: An extension of the frank and Wolfe method of feasible directions
  publication-title: Mathematical Programming
  doi: 10.1007/BF01580219
SSID ssj0001515
Score 2.4906487
Snippet Ensuring resiliency and sustainability of power systems operations under the uncertainty of the intermittent nature of renewables is becoming a critical...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 174
SubjectTerms Gaussian process regression
Maintenance scheduling
OR in energy
Power systems
Progressive hedging algorithm
Stochastic integer programming
Unit commitment
Title Risk-averse contextual predictive maintenance and operations scheduling with flexible generation under wind energy uncertainty
URI https://dx.doi.org/10.1016/j.ejor.2025.06.005
Volume 327
WOSCitedRecordID wos001550401700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001515
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWFiE48FhALS_5wA0FJXYcJ8eCigChCqEi7S2yYxvtUrKrNFQ99X_wbxm_kmx5iB64RKus4uzufDszmfm-MULPSwhJZaFoUlSaJbkqWCJ5KZNC5FqagotcOqHwB350VC4W1cfZ7EfUwpyd8LYtz8-rzX81NZwDY1vp7BXMPSwKJ-A1GB2OYHY4_pPhPy1PvybCsi08ER28r5NbdbYl44hC34QdEtEOYoH1RneBEQfPuhB7ToYKrbHzMq246osbT-3AYmVnHbwNV2qvHITY6JkF_VaTeKvSH7Le4V5uQ4FJKc31mlolAkfbVpWWY8dfQKQ2feOoB69siXZarSDMyva8mDKqtDhPCPF6zeiBqR8PsAU1708zv4VPCM2Z31n0F6_vCxCrl3q1tiNeCXMjWVM2xrjY178U-gZCYuS6rWq7Rm3XqB3hj11Du4SzChzm7sG7w8X7IczbTNC1qMIXCoosTx68_El-n_VMMpnju-h2eATBBx4699BMt3N0Iyog5uhO3OkDB8c_R7cmYyvvo4sJxPAIMTxCDE8ghsGqeIQYHiGGLcRwhBgeIYYdxLCFGPYQwxOIPUCf3xwev36bhH08koYw2ieNFUeziqSGa1VQQUslmFCV4qXRgqa6ELoyShhCjNGZTE1eSS6lsrpqYjL6EO2061bvIWyb0rJRadVkMm9KKgwvNKVcckVlKfJ99CL-zvXGj2up_2zbfcSiKeqQcPpEsgZk_eW6R1e6y2N0c_wnPEE7ffddP0XXm7N-edo9C7D6CZuVrMs
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Risk-averse+contextual+predictive+maintenance+and+operations+scheduling+with+flexible+generation+under+wind+energy+uncertainty&rft.jtitle=European+journal+of+operational+research&rft.au=Randall%2C+Natalie&rft.au=Basciftci%2C+Beste&rft.date=2025-11-16&rft.issn=0377-2217&rft.volume=327&rft.issue=1&rft.spage=174&rft.epage=190&rft_id=info:doi/10.1016%2Fj.ejor.2025.06.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2025_06_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon