Risk-averse contextual predictive maintenance and operations scheduling with flexible generation under wind energy uncertainty
Ensuring resiliency and sustainability of power systems operations under the uncertainty of the intermittent nature of renewables is becoming a critical concern while considering the integration of flexible generation resources that provide additional adjustability during planning. To address this e...
Saved in:
| Published in: | European journal of operational research Vol. 327; no. 1; pp. 174 - 190 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
16.11.2025
|
| Subjects: | |
| ISSN: | 0377-2217 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Ensuring resiliency and sustainability of power systems operations under the uncertainty of the intermittent nature of renewables is becoming a critical concern while considering the integration of flexible generation resources that provide additional adjustability during planning. To address this emerging issue, this study proposes a risk-averse contextual predictive generator maintenance and operations scheduling problem with traditional and flexible generation resources under wind energy uncertainty. We formulate this problem as a two-stage risk-averse stochastic mixed-integer program, where the first-stage determines the maintenance and unit commitment related decisions of the traditional generation units, whereas the second-stage determines the corresponding decisions for flexible generators along with the production related plans of all generators. To integrate contextual information and the uncertainty around the wind power, we propose a Gaussian Process Regression approach for predicting wind power generation, which is then leveraged into this stochastic program. Since this problem is computationally challenging to solve with a mixed-integer recourse due to the second-stage decisions involving flexible generation resources, we provide two versions of a progressive hedging based solution algorithm by first utilizing the classical progressive hedging approach and then leveraging the Frank–Wolfe algorithm for improving the solution quality. In both versions, we extend these algorithms to the risk-averse setting and present various computational enhancements. Our results on the IEEE 118-bus instances demonstrate the impact of adopting a risk-averse approach compared to risk-neutral and deterministic alternatives with a better worst-case performance, and highlight the value of integrating flexible generation and contextual information with resilient maintenance and operations schedules leading to cost-effective plans with less component failures. Furthermore, our solution algorithms provide good quality solutions in significantly less time compared to the off-the-shelf solver, where the Frank–Wolfe version of the algorithm is capable of finding optimal solutions in majority of the test instances.
•Generator maintenance and operations scheduling problem with flexible generation.•Risk-averse contextual two-stage stochastic mixed-integer programming formulation.•Gaussian Process Regression approach for predicting uncertain wind energy.•Frank–Wolfe based progressive hedging algorithm with computational enhancements.•Extensive results highlighting risk-averse scheduling and algorithm performance. |
|---|---|
| AbstractList | Ensuring resiliency and sustainability of power systems operations under the uncertainty of the intermittent nature of renewables is becoming a critical concern while considering the integration of flexible generation resources that provide additional adjustability during planning. To address this emerging issue, this study proposes a risk-averse contextual predictive generator maintenance and operations scheduling problem with traditional and flexible generation resources under wind energy uncertainty. We formulate this problem as a two-stage risk-averse stochastic mixed-integer program, where the first-stage determines the maintenance and unit commitment related decisions of the traditional generation units, whereas the second-stage determines the corresponding decisions for flexible generators along with the production related plans of all generators. To integrate contextual information and the uncertainty around the wind power, we propose a Gaussian Process Regression approach for predicting wind power generation, which is then leveraged into this stochastic program. Since this problem is computationally challenging to solve with a mixed-integer recourse due to the second-stage decisions involving flexible generation resources, we provide two versions of a progressive hedging based solution algorithm by first utilizing the classical progressive hedging approach and then leveraging the Frank–Wolfe algorithm for improving the solution quality. In both versions, we extend these algorithms to the risk-averse setting and present various computational enhancements. Our results on the IEEE 118-bus instances demonstrate the impact of adopting a risk-averse approach compared to risk-neutral and deterministic alternatives with a better worst-case performance, and highlight the value of integrating flexible generation and contextual information with resilient maintenance and operations schedules leading to cost-effective plans with less component failures. Furthermore, our solution algorithms provide good quality solutions in significantly less time compared to the off-the-shelf solver, where the Frank–Wolfe version of the algorithm is capable of finding optimal solutions in majority of the test instances.
•Generator maintenance and operations scheduling problem with flexible generation.•Risk-averse contextual two-stage stochastic mixed-integer programming formulation.•Gaussian Process Regression approach for predicting uncertain wind energy.•Frank–Wolfe based progressive hedging algorithm with computational enhancements.•Extensive results highlighting risk-averse scheduling and algorithm performance. |
| Author | Randall, Natalie Basciftci, Beste |
| Author_xml | – sequence: 1 givenname: Natalie surname: Randall fullname: Randall, Natalie email: natalie-randall@uiowa.edu organization: Department of Mathematics, Applied Mathematical and Computational Sciences Program, College of Liberal Arts and Science, University of Iowa, United States of America – sequence: 2 givenname: Beste orcidid: 0000-0002-3876-2559 surname: Basciftci fullname: Basciftci, Beste email: beste-basciftci@uiowa.edu organization: Department of Business Analytics, Tippie College of Business, University of Iowa, United States of America |
| BookMark | eNp9kM1KAzEURrOoYFt9AVd5gRmTjJl0wI0U_6AgiK5DJrlpM04zJUlru_HZzVDXri58956Py5mhiR88IHRDSUkJrW-7ErohlIwwXpK6JIRP0JRUQhSMUXGJZjF2hBDKKZ-in3cXvwp1gBAB68EnOKa96vEugHE6uQPgrXI59sprwMobPOwgqOQGH3HUGzD73vk1_nZpg20PR9f2gNfg_47w3hsIeZ3JMVyfcqIhpLH1dIUurOojXP_NOfp8evxYvhSrt-fX5cOq0IxXqdCcNoI3jFgBpq5UtTCKK9MYsbCgKgK1gsYaZRmzFmhL7F3TirY1bME4s7SaI3bu1WGIMYCVu-C2KpwkJXK0Jjs5WpOjNUlqma1l6P4MQf7s4CDIqB3k540LoJM0g_sP_wWKIH9- |
| Cites_doi | 10.1016/j.ejor.2015.08.045 10.1109/TPWRS.2015.2418158 10.1111/1467-9965.00068 10.1137/16M1076290 10.1137/S1052623400375075 10.1287/mnsc.2018.3253 10.1007/s10589-023-00532-w 10.1287/mnsc.27.1.1 10.1016/j.rser.2019.03.040 10.21314/JOR.2000.038 10.1287/msom.2016.0595 10.1007/s10287-010-0125-4 10.1287/moor.16.1.119 10.1109/TPWRS.2015.2506604 10.1007/s10107-016-1000-z 10.1016/j.ijhydene.2019.09.222 10.1007/s11228-017-0437-4 10.1109/TPWRS.2016.2521720 10.1109/TPWRS.2010.2040124 10.1016/j.cor.2011.03.017 10.1007/s10479-012-1092-7 10.1109/TPWRS.2018.2829175 10.1016/j.ejor.2006.11.018 10.1287/opre.2013.1174 10.1287/ijoc.2022.0154 10.3390/en13205509 10.1109/TPWRS.2022.3149506 10.1007/s12667-020-00401-z 10.1080/24725854.2019.1660831 10.1007/BF01580219 |
| ContentType | Journal Article |
| Copyright | 2025 |
| Copyright_xml | – notice: 2025 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ejor.2025.06.005 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business |
| EndPage | 190 |
| ExternalDocumentID | 10_1016_j_ejor_2025_06_005 S0377221725004746 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYFN AAYWO ABAOU ABBOA ABFNM ABFRF ABJNI ABMAC ABUCO ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADGUI AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGCQF AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM APXCP ARUGR AXJTR BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W KOM LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ RXW SCC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSV SSW SSZ T5K TAE TN5 U5U XPP ZMT ~02 ~G- 1OL 29G 41~ 9DU AAAKG AAQXK AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ADIYS ADJOM ADMUD ADNMO ADXHL AFFNX AGQPQ AI. ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- VH1 WUQ ~HD |
| ID | FETCH-LOGICAL-c253t-c51975920f7ed63a38da5ad9d78fea30e6ae9fdaf22ffe1b0f49b7bbd28252f13 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001550401700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0377-2217 |
| IngestDate | Sat Nov 29 07:38:52 EST 2025 Sat Sep 06 17:21:51 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Progressive hedging algorithm OR in energy Maintenance scheduling Unit commitment Gaussian process regression Power systems Stochastic integer programming |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c253t-c51975920f7ed63a38da5ad9d78fea30e6ae9fdaf22ffe1b0f49b7bbd28252f13 |
| ORCID | 0000-0002-3876-2559 |
| PageCount | 17 |
| ParticipantIDs | crossref_primary_10_1016_j_ejor_2025_06_005 elsevier_sciencedirect_doi_10_1016_j_ejor_2025_06_005 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-16 |
| PublicationDateYYYYMMDD | 2025-11-16 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationTitle | European journal of operational research |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Artzner, Delbaen, Eber, Heath (b2) 1999; 9 Gade, Hackebeil, Ryan, Watson, Wets, Woodruff (b12) 2016; 157 Kaisermayer, Muschick, Horn, Gölles (b15) 2020; 12 Basciftci, Ahmed, Gebraeel, Yildirim (b4) 2018; 33 Blumsack (b6) 2006 Sadana, Chenreddy, Delage, Forel, Frejinger, Vidal (b26) 2024 Yu, Wang, Li, Jermsittiparsert, Nojavan (b33) 2019; 44 Fisher (b10) 1981; 27 Ordoudis, Pinson, Zugno, Morales (b20) 2015 Lubbe, Maritz, Harms (b16) 2020; 13 Hu, Wu (b14) 2016; 31 Rockafellar, Wets (b25) 1991; 16 Yildirim, Sun, Gebraeel (b32) 2016; 31 Froger, Gendreau, Mendoza, Pinson, Rousseau (b11) 2016; 251 Noyan (b17) 2012; 39 Zehtabian, Bastin (b34) 2016 Watson, Woodruff (b30) 2008; 8 Basciftci, Ahmed, Gebraeel (b3) 2020; 52 Zheng, Wang, Pardalos, Guan (b35) 2013; 210 Okumusoglu, Basciftci, Kocuk (b19) 2024; 36 Rockafellar (b23) 2018; 26 Papavasiliou, Oren (b21) 2013; 61 Wang, Li, Shahidehpour, Wu, Guo, Zhu (b28) 2016; 31 Sharifzadeh, Sikinioti-Lock, Shah (b27) 2019; 108 Rockafellar, Uryasev (b24) 2000; 3 Holloway (b13) 1974; 6 Christiansen, Brian, Eberhard, Oliveira (b9) 2023; 86 Wang, Zhao, Fan, Bo (b29) 2022; 37 Ogryczak, Ruszczynski (b18) 2002; 13 Bertsimas, Kallus (b5) 2020; 66 Canto (b8) 2008; 184 Boland, Christiansen, Dandurand, Eberhard, Linderoth, Luedtke (b7) 2018; 28 Wu, Shahidehpour, Fu (b31) 2010; 25 Rasmussen, Bousquet, Luxburg, Rätsch (b22) 2004; Vol. 3176 Al-Gwaiz, Chao, Wu (b1) 2017; 19 Al-Gwaiz (10.1016/j.ejor.2025.06.005_b1) 2017; 19 Fisher (10.1016/j.ejor.2025.06.005_b10) 1981; 27 Hu (10.1016/j.ejor.2025.06.005_b14) 2016; 31 Rockafellar (10.1016/j.ejor.2025.06.005_b25) 1991; 16 Blumsack (10.1016/j.ejor.2025.06.005_b6) 2006 Wang (10.1016/j.ejor.2025.06.005_b28) 2016; 31 Yildirim (10.1016/j.ejor.2025.06.005_b32) 2016; 31 Wang (10.1016/j.ejor.2025.06.005_b29) 2022; 37 Zehtabian (10.1016/j.ejor.2025.06.005_b34) 2016 Holloway (10.1016/j.ejor.2025.06.005_b13) 1974; 6 Ordoudis (10.1016/j.ejor.2025.06.005_b20) 2015 Gade (10.1016/j.ejor.2025.06.005_b12) 2016; 157 Lubbe (10.1016/j.ejor.2025.06.005_b16) 2020; 13 Kaisermayer (10.1016/j.ejor.2025.06.005_b15) 2020; 12 Noyan (10.1016/j.ejor.2025.06.005_b17) 2012; 39 Rasmussen (10.1016/j.ejor.2025.06.005_b22) 2004; Vol. 3176 Boland (10.1016/j.ejor.2025.06.005_b7) 2018; 28 Yu (10.1016/j.ejor.2025.06.005_b33) 2019; 44 Basciftci (10.1016/j.ejor.2025.06.005_b4) 2018; 33 Rockafellar (10.1016/j.ejor.2025.06.005_b23) 2018; 26 Christiansen (10.1016/j.ejor.2025.06.005_b9) 2023; 86 Okumusoglu (10.1016/j.ejor.2025.06.005_b19) 2024; 36 Watson (10.1016/j.ejor.2025.06.005_b30) 2008; 8 Ogryczak (10.1016/j.ejor.2025.06.005_b18) 2002; 13 Basciftci (10.1016/j.ejor.2025.06.005_b3) 2020; 52 Papavasiliou (10.1016/j.ejor.2025.06.005_b21) 2013; 61 Zheng (10.1016/j.ejor.2025.06.005_b35) 2013; 210 Bertsimas (10.1016/j.ejor.2025.06.005_b5) 2020; 66 Canto (10.1016/j.ejor.2025.06.005_b8) 2008; 184 Sharifzadeh (10.1016/j.ejor.2025.06.005_b27) 2019; 108 Rockafellar (10.1016/j.ejor.2025.06.005_b24) 2000; 3 Froger (10.1016/j.ejor.2025.06.005_b11) 2016; 251 Sadana (10.1016/j.ejor.2025.06.005_b26) 2024 Wu (10.1016/j.ejor.2025.06.005_b31) 2010; 25 Artzner (10.1016/j.ejor.2025.06.005_b2) 1999; 9 |
| References_xml | – year: 2024 ident: b26 article-title: A survey of contextual optimization methods for decision making under uncertainty publication-title: European Journal of Operational Research – volume: 251 start-page: 695 year: 2016 end-page: 706 ident: b11 article-title: Maintenance scheduling in the electricity industry: A literature review publication-title: European Journal of Operational Research – volume: 28 start-page: 1312 year: 2018 end-page: 1336 ident: b7 article-title: Combining progressive hedging with a frank–wolfe method to compute Lagrangian dual bounds in stochastic mixed-integer programming publication-title: SIAM Journal on Optimization – volume: 8 start-page: 355 year: 2008 end-page: 370 ident: b30 article-title: Progressive hedging innovations for a class of stochastic resource allocation problems publication-title: Computational Management Science – volume: 9 start-page: 203 year: 1999 end-page: 228 ident: b2 article-title: Coherent measures of risk publication-title: Mathematical Finance – volume: 52 start-page: 589 year: 2020 end-page: 602 ident: b3 article-title: Data-driven maintenance and operations scheduling in power systems under decision-dependent uncertainty publication-title: IISE Transactions – start-page: 1 year: 2015 end-page: 6 ident: b20 article-title: Stochastic unit commitment via progressive hedging — extensive analysis of solution methods publication-title: 2015 IEEE Eindhoven PowerTech – volume: 210 start-page: 387 year: 2013 end-page: 410 ident: b35 article-title: A decomposition approach to the two-stage stochastic unit commitment problem publication-title: Annals of Operations Research – volume: 27 start-page: 1 year: 1981 end-page: 18 ident: b10 article-title: The Lagrangian relaxation method for solving integer programming problems publication-title: Management Science – year: 2016 ident: b34 article-title: Penalty parameter update strategies in progressive hedging algorithm – volume: 6 start-page: 14 year: 1974 end-page: 27 ident: b13 article-title: An extension of the frank and Wolfe method of feasible directions publication-title: Mathematical Programming – volume: 36 start-page: 1147 year: 2024 end-page: 1358 ident: b19 article-title: An integrated predictive maintenance and operations scheduling framework for power systems under failure uncertainty publication-title: INFORMS Journal on Computing – volume: 16 start-page: 119 year: 1991 end-page: 147 ident: b25 article-title: Scenarios and policy aggregation in optimization under uncertainty publication-title: Mathematics of Operations Research – volume: 31 start-page: 1407 year: 2016 end-page: 1419 ident: b14 article-title: Robust SCUC considering continuous/discrete uncertainties and quick-start units: A two-stage robust optimization with mixed-integer recourse publication-title: IEEE Transactions on Power Systems – volume: 19 start-page: 114 year: 2017 end-page: 131 ident: b1 article-title: Understanding how generation flexibility and renewable energy affect power market competition publication-title: Manufacturing & Service Operations Management – volume: 25 start-page: 1674 year: 2010 end-page: 1685 ident: b31 article-title: Security-constrained generation and transmission outage scheduling with uncertainties publication-title: IEEE Transactions on Power Systems – volume: 157 start-page: 47 year: 2016 end-page: 67 ident: b12 article-title: Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs publication-title: Mathematical Programming – volume: 37 start-page: 4179 year: 2022 end-page: 4190 ident: b29 article-title: Distributionally robust unit commitment with flexible generation resources considering renewable energy uncertainty publication-title: IEEE Transactions on Power Systems – year: 2006 ident: b6 article-title: Network topologies and transmission investment under electric-industry restructuring – volume: 108 start-page: 513 year: 2019 end-page: 538 ident: b27 article-title: Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian process regression publication-title: Renewable and Sustainable Energy Reviews – volume: 44 start-page: 31204 year: 2019 end-page: 31215 ident: b33 article-title: Risk-averse stochastic operation of a power system integrated with hydrogen storage system and wind generation in the presence of demand response program publication-title: International Journal of Hydrogen Energy – volume: 61 start-page: 578 year: 2013 end-page: 592 ident: b21 article-title: Multiarea stochastic unit commitment for high wind penetration in a transmission constrained network publication-title: Operations Research – volume: Vol. 3176 year: 2004 ident: b22 article-title: Gaussian processes in machine learning publication-title: Advanced lectures on machine learning: ML summer schools 2003 – volume: 66 start-page: 1025 year: 2020 end-page: 1044 ident: b5 article-title: From predictive to prescriptive analytics publication-title: Management Science – volume: 13 start-page: 5509 year: 2020 ident: b16 article-title: Evaluating the potential of Gaussian process regression for solar radiation forecasting: A case study publication-title: Energies – volume: 33 start-page: 6755 year: 2018 end-page: 6765 ident: b4 article-title: Stochastic optimization of maintenance and operations schedules under unexpected failures publication-title: IEEE Transactions on Power Systems – volume: 13 start-page: 60 year: 2002 end-page: 78 ident: b18 article-title: Dual stochastic dominance and related mean-risk models publication-title: SIAM Journal on Optimization – volume: 3 start-page: 21 year: 2000 end-page: 41 ident: b24 article-title: Optimization of conditional value-at risk publication-title: Journal of Risk – volume: 31 start-page: 4795 year: 2016 end-page: 4805 ident: b28 article-title: Stochastic co-optimization of midterm and short-term maintenance outage scheduling considering covariates in power systems publication-title: IEEE Transactions on Power Systems – volume: 184 start-page: 759 year: 2008 end-page: 777 ident: b8 article-title: Application of Benders’ decomposition to power plant preventive maintenance scheduling publication-title: European Journal of Operational Research – volume: 12 start-page: 1 year: 2020 end-page: 29 ident: b15 article-title: Progressive hedging for stochastic energy management systems publication-title: Energy Systems – volume: 39 start-page: 541 year: 2012 end-page: 559 ident: b17 article-title: Risk-averse two-stage stochastic programming with an application to disaster management publication-title: Computers & Operations Research – volume: 86 start-page: 989 year: 2023 end-page: 1034 ident: b9 article-title: A study of progressive hedging for stochastic integer programming publication-title: Computational Optimization and Applications – volume: 26 year: 2018 ident: b23 article-title: Solving stochastic programming problems with risk measures by progressive hedging publication-title: Set-Valued and Variational Analysis – volume: 31 start-page: 4263 year: 2016 end-page: 4271 ident: b32 article-title: Sensor-driven condition-based generator maintenance scheduling—Part II: Incorporating operations publication-title: IEEE Transactions on Power Systems – volume: 251 start-page: 695 issue: 3 year: 2016 ident: 10.1016/j.ejor.2025.06.005_b11 article-title: Maintenance scheduling in the electricity industry: A literature review publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2015.08.045 – volume: 31 start-page: 1407 issue: 2 year: 2016 ident: 10.1016/j.ejor.2025.06.005_b14 article-title: Robust SCUC considering continuous/discrete uncertainties and quick-start units: A two-stage robust optimization with mixed-integer recourse publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2015.2418158 – year: 2006 ident: 10.1016/j.ejor.2025.06.005_b6 – volume: 9 start-page: 203 issue: 3 year: 1999 ident: 10.1016/j.ejor.2025.06.005_b2 article-title: Coherent measures of risk publication-title: Mathematical Finance doi: 10.1111/1467-9965.00068 – volume: 28 start-page: 1312 issue: 2 year: 2018 ident: 10.1016/j.ejor.2025.06.005_b7 article-title: Combining progressive hedging with a frank–wolfe method to compute Lagrangian dual bounds in stochastic mixed-integer programming publication-title: SIAM Journal on Optimization doi: 10.1137/16M1076290 – volume: 13 start-page: 60 issue: 1 year: 2002 ident: 10.1016/j.ejor.2025.06.005_b18 article-title: Dual stochastic dominance and related mean-risk models publication-title: SIAM Journal on Optimization doi: 10.1137/S1052623400375075 – volume: 66 start-page: 1025 issue: 3 year: 2020 ident: 10.1016/j.ejor.2025.06.005_b5 article-title: From predictive to prescriptive analytics publication-title: Management Science doi: 10.1287/mnsc.2018.3253 – volume: 86 start-page: 989 year: 2023 ident: 10.1016/j.ejor.2025.06.005_b9 article-title: A study of progressive hedging for stochastic integer programming publication-title: Computational Optimization and Applications doi: 10.1007/s10589-023-00532-w – volume: 27 start-page: 1 issue: 1 year: 1981 ident: 10.1016/j.ejor.2025.06.005_b10 article-title: The Lagrangian relaxation method for solving integer programming problems publication-title: Management Science doi: 10.1287/mnsc.27.1.1 – volume: 108 start-page: 513 year: 2019 ident: 10.1016/j.ejor.2025.06.005_b27 article-title: Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian process regression publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2019.03.040 – volume: 3 start-page: 21 year: 2000 ident: 10.1016/j.ejor.2025.06.005_b24 article-title: Optimization of conditional value-at risk publication-title: Journal of Risk doi: 10.21314/JOR.2000.038 – year: 2024 ident: 10.1016/j.ejor.2025.06.005_b26 article-title: A survey of contextual optimization methods for decision making under uncertainty publication-title: European Journal of Operational Research – volume: 19 start-page: 114 issue: 1 year: 2017 ident: 10.1016/j.ejor.2025.06.005_b1 article-title: Understanding how generation flexibility and renewable energy affect power market competition publication-title: Manufacturing & Service Operations Management doi: 10.1287/msom.2016.0595 – volume: 8 start-page: 355 year: 2008 ident: 10.1016/j.ejor.2025.06.005_b30 article-title: Progressive hedging innovations for a class of stochastic resource allocation problems publication-title: Computational Management Science doi: 10.1007/s10287-010-0125-4 – volume: 16 start-page: 119 issue: 1 year: 1991 ident: 10.1016/j.ejor.2025.06.005_b25 article-title: Scenarios and policy aggregation in optimization under uncertainty publication-title: Mathematics of Operations Research doi: 10.1287/moor.16.1.119 – volume: 31 start-page: 4263 issue: 6 year: 2016 ident: 10.1016/j.ejor.2025.06.005_b32 article-title: Sensor-driven condition-based generator maintenance scheduling—Part II: Incorporating operations publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2015.2506604 – volume: 157 start-page: 47 year: 2016 ident: 10.1016/j.ejor.2025.06.005_b12 article-title: Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs publication-title: Mathematical Programming doi: 10.1007/s10107-016-1000-z – volume: 44 start-page: 31204 issue: 59 year: 2019 ident: 10.1016/j.ejor.2025.06.005_b33 article-title: Risk-averse stochastic operation of a power system integrated with hydrogen storage system and wind generation in the presence of demand response program publication-title: International Journal of Hydrogen Energy doi: 10.1016/j.ijhydene.2019.09.222 – volume: 26 year: 2018 ident: 10.1016/j.ejor.2025.06.005_b23 article-title: Solving stochastic programming problems with risk measures by progressive hedging publication-title: Set-Valued and Variational Analysis doi: 10.1007/s11228-017-0437-4 – volume: 31 start-page: 4795 issue: 6 year: 2016 ident: 10.1016/j.ejor.2025.06.005_b28 article-title: Stochastic co-optimization of midterm and short-term maintenance outage scheduling considering covariates in power systems publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2016.2521720 – volume: 25 start-page: 1674 issue: 3 year: 2010 ident: 10.1016/j.ejor.2025.06.005_b31 article-title: Security-constrained generation and transmission outage scheduling with uncertainties publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2010.2040124 – volume: 39 start-page: 541 issue: 3 year: 2012 ident: 10.1016/j.ejor.2025.06.005_b17 article-title: Risk-averse two-stage stochastic programming with an application to disaster management publication-title: Computers & Operations Research doi: 10.1016/j.cor.2011.03.017 – volume: 210 start-page: 387 year: 2013 ident: 10.1016/j.ejor.2025.06.005_b35 article-title: A decomposition approach to the two-stage stochastic unit commitment problem publication-title: Annals of Operations Research doi: 10.1007/s10479-012-1092-7 – volume: 33 start-page: 6755 issue: 6 year: 2018 ident: 10.1016/j.ejor.2025.06.005_b4 article-title: Stochastic optimization of maintenance and operations schedules under unexpected failures publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2018.2829175 – volume: 184 start-page: 759 issue: 2 year: 2008 ident: 10.1016/j.ejor.2025.06.005_b8 article-title: Application of Benders’ decomposition to power plant preventive maintenance scheduling publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2006.11.018 – volume: 61 start-page: 578 issue: 3 year: 2013 ident: 10.1016/j.ejor.2025.06.005_b21 article-title: Multiarea stochastic unit commitment for high wind penetration in a transmission constrained network publication-title: Operations Research doi: 10.1287/opre.2013.1174 – volume: 36 start-page: 1147 issue: 5 year: 2024 ident: 10.1016/j.ejor.2025.06.005_b19 article-title: An integrated predictive maintenance and operations scheduling framework for power systems under failure uncertainty publication-title: INFORMS Journal on Computing doi: 10.1287/ijoc.2022.0154 – start-page: 1 year: 2015 ident: 10.1016/j.ejor.2025.06.005_b20 article-title: Stochastic unit commitment via progressive hedging — extensive analysis of solution methods – volume: Vol. 3176 year: 2004 ident: 10.1016/j.ejor.2025.06.005_b22 article-title: Gaussian processes in machine learning – volume: 13 start-page: 5509 year: 2020 ident: 10.1016/j.ejor.2025.06.005_b16 article-title: Evaluating the potential of Gaussian process regression for solar radiation forecasting: A case study publication-title: Energies doi: 10.3390/en13205509 – volume: 37 start-page: 4179 issue: 6 year: 2022 ident: 10.1016/j.ejor.2025.06.005_b29 article-title: Distributionally robust unit commitment with flexible generation resources considering renewable energy uncertainty publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2022.3149506 – volume: 12 start-page: 1 year: 2020 ident: 10.1016/j.ejor.2025.06.005_b15 article-title: Progressive hedging for stochastic energy management systems publication-title: Energy Systems doi: 10.1007/s12667-020-00401-z – volume: 52 start-page: 589 issue: 6 year: 2020 ident: 10.1016/j.ejor.2025.06.005_b3 article-title: Data-driven maintenance and operations scheduling in power systems under decision-dependent uncertainty publication-title: IISE Transactions doi: 10.1080/24725854.2019.1660831 – year: 2016 ident: 10.1016/j.ejor.2025.06.005_b34 – volume: 6 start-page: 14 issue: 1 year: 1974 ident: 10.1016/j.ejor.2025.06.005_b13 article-title: An extension of the frank and Wolfe method of feasible directions publication-title: Mathematical Programming doi: 10.1007/BF01580219 |
| SSID | ssj0001515 |
| Score | 2.4906487 |
| Snippet | Ensuring resiliency and sustainability of power systems operations under the uncertainty of the intermittent nature of renewables is becoming a critical... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 174 |
| SubjectTerms | Gaussian process regression Maintenance scheduling OR in energy Power systems Progressive hedging algorithm Stochastic integer programming Unit commitment |
| Title | Risk-averse contextual predictive maintenance and operations scheduling with flexible generation under wind energy uncertainty |
| URI | https://dx.doi.org/10.1016/j.ejor.2025.06.005 |
| Volume | 327 |
| WOSCitedRecordID | wos001550401700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0377-2217 databaseCode: AIEXJ dateStart: 19950105 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0001515 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWFiE48FhALS_5wA0FJXYcJ8eCigChCqEi7S2yYxvtUrKrNFQ99X_wbxm_kmx5iB64RKus4uzufDszmfm-MULPSwhJZaFoUlSaJbkqWCJ5KZNC5FqagotcOqHwB350VC4W1cfZ7EfUwpyd8LYtz8-rzX81NZwDY1vp7BXMPSwKJ-A1GB2OYHY4_pPhPy1PvybCsi08ER28r5NbdbYl44hC34QdEtEOYoH1RneBEQfPuhB7ToYKrbHzMq246osbT-3AYmVnHbwNV2qvHITY6JkF_VaTeKvSH7Le4V5uQ4FJKc31mlolAkfbVpWWY8dfQKQ2feOoB69siXZarSDMyva8mDKqtDhPCPF6zeiBqR8PsAU1708zv4VPCM2Z31n0F6_vCxCrl3q1tiNeCXMjWVM2xrjY178U-gZCYuS6rWq7Rm3XqB3hj11Du4SzChzm7sG7w8X7IczbTNC1qMIXCoosTx68_El-n_VMMpnju-h2eATBBx4699BMt3N0Iyog5uhO3OkDB8c_R7cmYyvvo4sJxPAIMTxCDE8ghsGqeIQYHiGGLcRwhBgeIYYdxLCFGPYQwxOIPUCf3xwev36bhH08koYw2ieNFUeziqSGa1VQQUslmFCV4qXRgqa6ELoyShhCjNGZTE1eSS6lsrpqYjL6EO2061bvIWyb0rJRadVkMm9KKgwvNKVcckVlKfJ99CL-zvXGj2up_2zbfcSiKeqQcPpEsgZk_eW6R1e6y2N0c_wnPEE7ffddP0XXm7N-edo9C7D6CZuVrMs |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Risk-averse+contextual+predictive+maintenance+and+operations+scheduling+with+flexible+generation+under+wind+energy+uncertainty&rft.jtitle=European+journal+of+operational+research&rft.au=Randall%2C+Natalie&rft.au=Basciftci%2C+Beste&rft.date=2025-11-16&rft.issn=0377-2217&rft.volume=327&rft.issue=1&rft.spage=174&rft.epage=190&rft_id=info:doi/10.1016%2Fj.ejor.2025.06.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2025_06_005 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon |