Enhancing Binary-State Network Reliability with Layer-Cut BAT-MCS
This paper introduces layer-cut BAT-MCS, an enhanced algorithm for binary-state network reliability assessment. The original BAT-MCS integrates the deterministic Binary Addition Tree (BAT) algorithm with stochastic Monte Carlo simulation (MCS) in terms of the novel supervectors, creating a self-regu...
Uloženo v:
| Vydáno v: | Reliability engineering & system safety Ročník 264; s. 111446 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.12.2025
|
| Témata: | |
| ISSN: | 0951-8320 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper introduces layer-cut BAT-MCS, an enhanced algorithm for binary-state network reliability assessment. The original BAT-MCS integrates the deterministic Binary Addition Tree (BAT) algorithm with stochastic Monte Carlo simulation (MCS) in terms of the novel supervectors, creating a self-regulating mechanism that reduces variance and improves efficiency. Despite its advantages, BAT-MCS exhibits limitations in supervector selection methodology and computational complexity of approximate reliability calculations. The proposed layer-cut BAT-MCS addresses these weaknesses through a novel layer-cut approach for supervector selection that significantly outperforms traditional min-cut methods. This innovation simplifies MCS complexity while maintaining comprehensive network analysis capabilities. Extensive numerical experiments conducted on small and medium-sized binary-state networks demonstrate that layer-cut BAT-MCS achieves superior computational efficiency and accuracy compared to both traditional MCS and the original BAT-MCS implementations. The results indicate that the layer-cut technique provides a more efficient network decomposition strategy, substantially reducing both runtime and variance. These improvements make layer-cut BAT-MCS particularly valuable for reliability assessment of small-scale or sparse network systems where computational resources are limited and high accuracy is required. |
|---|---|
| AbstractList | This paper introduces layer-cut BAT-MCS, an enhanced algorithm for binary-state network reliability assessment. The original BAT-MCS integrates the deterministic Binary Addition Tree (BAT) algorithm with stochastic Monte Carlo simulation (MCS) in terms of the novel supervectors, creating a self-regulating mechanism that reduces variance and improves efficiency. Despite its advantages, BAT-MCS exhibits limitations in supervector selection methodology and computational complexity of approximate reliability calculations. The proposed layer-cut BAT-MCS addresses these weaknesses through a novel layer-cut approach for supervector selection that significantly outperforms traditional min-cut methods. This innovation simplifies MCS complexity while maintaining comprehensive network analysis capabilities. Extensive numerical experiments conducted on small and medium-sized binary-state networks demonstrate that layer-cut BAT-MCS achieves superior computational efficiency and accuracy compared to both traditional MCS and the original BAT-MCS implementations. The results indicate that the layer-cut technique provides a more efficient network decomposition strategy, substantially reducing both runtime and variance. These improvements make layer-cut BAT-MCS particularly valuable for reliability assessment of small-scale or sparse network systems where computational resources are limited and high accuracy is required. |
| ArticleNumber | 111446 |
| Author | Yeh, Wei-Chang |
| Author_xml | – sequence: 1 givenname: Wei-Chang orcidid: 0000-0001-7393-0768 surname: Yeh fullname: Yeh, Wei-Chang email: yeh@ieee.org organization: Department of Industrial Engineering and Engineering Management, National Tsing Hua University |
| BookMark | eNp9j81OAjEYRbvAREBfwNW8QMf-0JlO4gYmKCajJoLrprRfpYgd01YJby8E167u6tycM0KD0AdA6IaSkhJa3W7LCCmVjDBRUkonk2qAhqQRFEvOyCUapbQlhEwaUQ_RdB42Ohgf3ouZDzoe8DLrDMUz5H0fP4pX2Hm99jufD8Xe503R6QNE3H7nYjZd4ad2eYUunN4luP7bMXq7n6_aBe5eHh7baYcNEzxjrQU0YJyt6FoSyq2Tta6l0WAryZsaGNduba0AAFtb5qRgFQPprNO80Q0fI3b-NbFPKYJTX9F_Ho0VJeoUrrbqFK5O4eocfoTuzhAczX48RJWMh2DA-ggmK9v7__BfyJJmRQ |
| Cites_doi | 10.1017/S0269964800003387 10.1016/j.ress.2020.107048 10.1016/j.ress.2021.107822 10.1287/opre.34.4.581 10.1016/j.ress.2024.109990 10.1016/j.ress.2023.109378 10.1016/j.ress.2022.108796 10.1016/j.ress.2022.108371 10.1103/PhysRevLett.134.020601 10.1007/s10479-024-06377-8 10.1016/j.patrec.2024.03.013 10.1016/j.asoc.2023.110743 10.1109/TR.2018.2807198 10.1080/07408170802322622 10.1007/s10479-022-04911-0 10.1016/S0888-613X(97)10004-4 10.1016/j.ress.2021.107950 10.1109/TR.2023.3312752 10.1007/s10479-024-06409-3 10.1016/j.ress.2023.109297 10.1016/j.ress.2022.108557 10.1016/j.ress.2021.107448 10.1111/risa.13820 10.1016/j.ress.2022.108564 10.1504/IJOR.2020.105764 10.1016/j.ress.2021.107917 10.1016/j.eswa.2009.09.070 10.1016/j.ress.2022.108970 10.1016/j.ress.2024.110376 10.1016/j.ress.2023.109175 10.1016/j.ress.2023.109102 10.1016/j.ress.2005.08.002 |
| ContentType | Journal Article |
| Copyright | 2025 |
| Copyright_xml | – notice: 2025 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ress.2025.111446 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_ress_2025_111446 S0951832025006465 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AABNK AAEDT AAEDW AAFJI AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABEFU ABFNM ABJNI ABMAC ABMMH ABWVN ABXDB ACDAQ ACGFS ACIWK ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFRAH AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOMHK APXCP ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSB SSO SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~G- ~HD 9DU AAYXX CITATION |
| ID | FETCH-LOGICAL-c253t-aa5e9ecfd61b8013df87a78caed68397e23afbdd5eeed7d2f85262e8fdfa39a93 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001550033600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0951-8320 |
| IngestDate | Sat Nov 29 07:30:12 EST 2025 Sat Oct 11 16:50:48 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Supervector Binary-Addition-Tree algorithm (BAT) Binary-State Network Reliability, Monte Carlo Simulation (MCS) BAT-MCS |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c253t-aa5e9ecfd61b8013df87a78caed68397e23afbdd5eeed7d2f85262e8fdfa39a93 |
| ORCID | 0000-0001-7393-0768 |
| ParticipantIDs | crossref_primary_10_1016_j_ress_2025_111446 elsevier_sciencedirect_doi_10_1016_j_ress_2025_111446 |
| PublicationCentury | 2000 |
| PublicationDate | December 2025 2025-12-00 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: December 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Reliability engineering & system safety |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Hsieh (bib0013) 2023; 230 Yeh (bib0035) 2008; 41 Huang (bib0012) 2024 Wang, Li (bib0003) 2023; 233 Kozyra (bib0002) 2023; 234 Yeh (bib0001) 2021; 216 Zhang, Sun, Li (bib0037) 2022; 225 Yeh (bib0025) 2022; 228 Li (bib0020) 2018; 67 Hernández, Moral, Salmerón (bib0024) 1998; 18 Hao, Yeh, Liu, Forghani-elahabad (bib0017) 2020; 203 Liu, Hu, Yeh (bib0029) 2023; 147 Fishman (bib0021) 1986; 34 Song, Deng, Cattani, Qi, Yang, Yao, Chen, Yan, Zio (bib0026) 2024; 181 Forghani-Elahabad, Mahdavi-Amiri, Kagan (bib0014) 2020; 37 Colbourn (bib0015) 1987 Shier (bib0018) 1991 Yeh, Tan, Forghani-elahabad, ElKhadiri, Jiang, Lin (bib0038) 2022; 224 Forghani-elahabad, Yeh (bib0009) 2022; 221 Kozyra (bib0010) 2024; 251 Chang, Yeng, Cheng, Lin (bib0019) 2024; 245 Huang, Huang, Lin, Chen (bib0027) 2022; 348 Yeh, Forghani-elahabad (bib0030) 2024 Bulteau, Khadiri (bib0023) 1998; 32 Yeh (bib0031) 2021; 216 (bib0036) 2025 Huang, Huang, Lin (bib0011) 2023; 237 Fishman (bib0033) 1996 Yeh (bib0034) 2006; 91 Puviani, Borah, Zen, Olle, Marquardt (bib0008) 2025; 134 Lomonosov (bib0022) 1994; 8 Niu (bib0005) 2021; 215 Nguyen, Lin (bib0007) 2023; 73 Gongora-Svartzman, Ramirez-Marquez (bib0006) 2022; 42 Yeh (bib0028) 2021; 208 Hsieh (bib0016) 2023; 236 Niu, Xiang, Xu (bib0004) 2024; 251 Yeh, Lin, Chung (bib0032) 2010; 37 Song (10.1016/j.ress.2025.111446_bib0026) 2024; 181 Shier (10.1016/j.ress.2025.111446_bib0018) 1991 Hernández (10.1016/j.ress.2025.111446_bib0024) 1998; 18 Yeh (10.1016/j.ress.2025.111446_bib0028) 2021; 208 Yeh (10.1016/j.ress.2025.111446_bib0032) 2010; 37 Nguyen (10.1016/j.ress.2025.111446_bib0007) 2023; 73 Niu (10.1016/j.ress.2025.111446_bib0005) 2021; 215 Bulteau (10.1016/j.ress.2025.111446_bib0023) 1998; 32 Yeh (10.1016/j.ress.2025.111446_bib0035) 2008; 41 Li (10.1016/j.ress.2025.111446_bib0020) 2018; 67 Yeh (10.1016/j.ress.2025.111446_bib0030) 2024 Fishman (10.1016/j.ress.2025.111446_bib0021) 1986; 34 Puviani (10.1016/j.ress.2025.111446_bib0008) 2025; 134 Huang (10.1016/j.ress.2025.111446_bib0012) 2024 Fishman (10.1016/j.ress.2025.111446_bib0033) 1996 Yeh (10.1016/j.ress.2025.111446_bib0038) 2022; 224 Yeh (10.1016/j.ress.2025.111446_bib0001) 2021; 216 Kozyra (10.1016/j.ress.2025.111446_bib0010) 2024; 251 Zhang (10.1016/j.ress.2025.111446_bib0037) 2022; 225 Wang (10.1016/j.ress.2025.111446_bib0003) 2023; 233 Yeh (10.1016/j.ress.2025.111446_bib0031) 2021; 216 Liu (10.1016/j.ress.2025.111446_bib0029) 2023; 147 Hsieh (10.1016/j.ress.2025.111446_bib0013) 2023; 230 Yeh (10.1016/j.ress.2025.111446_bib0025) 2022; 228 Forghani-Elahabad (10.1016/j.ress.2025.111446_bib0014) 2020; 37 Huang (10.1016/j.ress.2025.111446_bib0027) 2022; 348 Forghani-elahabad (10.1016/j.ress.2025.111446_bib0009) 2022; 221 Lomonosov (10.1016/j.ress.2025.111446_bib0022) 1994; 8 Hsieh (10.1016/j.ress.2025.111446_bib0016) 2023; 236 Hao (10.1016/j.ress.2025.111446_bib0017) 2020; 203 Yeh (10.1016/j.ress.2025.111446_bib0034) 2006; 91 Niu (10.1016/j.ress.2025.111446_bib0004) 2024; 251 Kozyra (10.1016/j.ress.2025.111446_bib0002) 2023; 234 Chang (10.1016/j.ress.2025.111446_bib0019) 2024; 245 Gongora-Svartzman (10.1016/j.ress.2025.111446_bib0006) 2022; 42 Huang (10.1016/j.ress.2025.111446_bib0011) 2023; 237 Colbourn (10.1016/j.ress.2025.111446_bib0015) 1987 |
| References_xml | – volume: 42 start-page: 1686 year: 2022 end-page: 1703 ident: bib0006 article-title: Social cohesion: mitigating societal risk in case studies of digital media in Hurricanes Harvey, Irma, and Maria publication-title: Risk Anal. – volume: 34 start-page: 581 year: 1986 end-page: 594 ident: bib0021 article-title: A Monte Carlo sampling plan for estimating network reliability publication-title: Oper Res – volume: 216 year: 2021 ident: bib0031 article-title: A quick BAT for evaluating the reliability of binary-State networks publication-title: Reliab. Eng. Syst. Saf. – volume: 234 year: 2023 ident: bib0002 article-title: The usefulness of (d, b)-MCs and (d, b)-MPs in network reliability evaluation under delivery or maintenance cost constraints publication-title: Reliab. Eng. Syst. Saf. – volume: 221 year: 2022 ident: bib0009 article-title: An improved algorithm for reliability evaluation of flow networks publication-title: Reliab. Eng. Syst. Saf. – volume: 230 year: 2023 ident: bib0013 article-title: Performance indicator-based multi-objective reliability optimization for multi-type production systems with heterogeneous machines publication-title: Reliab. Eng. Syst. Saf. – volume: 236 year: 2023 ident: bib0016 article-title: A Q-learning guided search for developing a hybrid of mixed redundancy strategies to improve system reliability publication-title: Reliab. Eng. Syst. Saf. – year: 1991 ident: bib0018 article-title: Network Reliability and Algebraic Structures – volume: 208 year: 2021 ident: bib0028 article-title: Novel binary-addition tree algorithm (BAT) for binary-state network reliability problem publication-title: Reliab. Eng. Syst. Saf. – volume: 215 year: 2021 ident: bib0005 article-title: Performance measure of a multi-state flow network under reliability and maintenance cost considerations publication-title: Reliab. Eng. Syst. Saf. – volume: 91 start-page: 800 year: 2006 end-page: 808 ident: bib0034 article-title: The k-out-of-n acyclic multistate-node networks reliability evaluation using the universal generating function method publication-title: Reliab. Eng. Syst. Saf. – volume: 251 year: 2024 ident: bib0010 article-title: A parallel algorithm for reliability assessment of multi-state flow networks based on simultaneous finding of all multi-state minimal paths and performing state space decomposition publication-title: Reliab. Eng. Syst. Saf. – volume: 224 year: 2022 ident: bib0038 article-title: New binary-addition tree algorithm for the all-multiterminal binary-State network reliability problem publication-title: Reliab. Eng. Syst. Saf. – volume: 181 start-page: 120 year: 2024 end-page: 125 ident: bib0026 article-title: On the prediction of power outage length based on linear multifractional Lévy stable motion publication-title: Pattern Recognit Lett – volume: 203 year: 2020 ident: bib0017 article-title: General multi-state rework network and reliability algorithm publication-title: Reliab. Eng. Syst. Saf. – volume: 251 year: 2024 ident: bib0004 article-title: Expected performance evaluation and optimization of a multi-distribution multi-state logistics network based on network reliability publication-title: Reliab. Eng. Syst. Saf. – volume: 73 start-page: 1619 year: 2023 end-page: 1632 ident: bib0007 article-title: Reliability of a multiple-demand multistate air transport network with flight delays and budget constraints publication-title: IEEE Trans. Reliab. – year: 2024 ident: bib0012 article-title: A Monte Carlo-based algorithm for the quickest path flow network reliability problem publication-title: Ann Oper Res – volume: 134 year: 2025 ident: bib0008 article-title: Non-Markovian feedback for optimized quantum error correction publication-title: Phys. Rev. Lett – year: 1996 ident: bib0033 article-title: Monte Carlo: Concepts, Algorithms, and Applications – volume: 237 year: 2023 ident: bib0011 article-title: Network reliability prediction for random capacitated-flow networks via an artificial neural network publication-title: Reliab. Eng. Syst. Saf. – volume: 228 year: 2022 ident: bib0025 article-title: Novel self-adaptive Monte Carlo simulation based on binary-addition-tree algorithm for binary-State network reliability approximation publication-title: Reliab. Eng. Syst. Saf. – volume: 348 start-page: 75 year: 2022 end-page: 92 ident: bib0027 article-title: Network reliability evaluation of manufacturing systems by using a deep learning approach publication-title: Ann Oper Res – volume: 32 start-page: 271 year: 1998 end-page: 287 ident: bib0023 article-title: A Monte Carlo simulation of the flow network reliability using importance and stratified sampling. RAIRO publication-title: Rech. opér. – volume: 37 start-page: 479 year: 2020 end-page: 490 ident: bib0014 article-title: On multi-state two separate minimal paths reliability problem with time and budget constraints publication-title: Int. J. Oper. Res. – volume: 233 year: 2023 ident: bib0003 article-title: Bioinspired membrane learnable spiking neural network for autonomous vehicle sensors fault diagnosis under open environments publication-title: Reliab. Eng. Syst. Saf. – year: 1987 ident: bib0015 article-title: The Combinatorics of Network Reliability – year: 2024 ident: bib0030 article-title: An efficient parallel approach for binary-state network reliability problems publication-title: Ann Oper Res – volume: 8 start-page: 245 year: 1994 end-page: 264 ident: bib0022 article-title: On Monte Carlo estimates in network reliability publication-title: Probab. Eng. Inf. Sci. – volume: 147 year: 2023 ident: bib0029 article-title: Risk-averse two-stage stochastic programming-based closed-loop supply chain network design under uncertain demand publication-title: Appl Soft Comput – volume: 245 year: 2024 ident: bib0019 article-title: Assessing network reliability in a hybrid flow shop with rush order insertion publication-title: Reliab. Eng. Syst. Saf. – volume: 37 start-page: 3537 year: 2010 end-page: 3544 ident: bib0032 article-title: Performance analysis of cellular Automata Monte Carlo simulation for estimating network reliability publication-title: Expert Syst Appl – volume: 225 year: 2022 ident: bib0037 article-title: Reliability–redundancy allocation problem in multi-state flow network: minimal cut-based approximation scheme publication-title: Reliab. Eng. Syst. Saf. – volume: 216 year: 2021 ident: bib0001 article-title: Novel algorithm for computing all-pairs homogeneity-arc binary-State undirected network reliability publication-title: Reliab. Eng. Syst. Saf. – volume: 18 start-page: 53 year: 1998 end-page: 91 ident: bib0024 article-title: A Monte Carlo algorithm for probabilistic propagation in belief networks based on importance sampling and stratified simulation techniques publication-title: Int. J. Approx. Reason. – volume: 67 year: 2018 ident: bib0020 article-title: Guest editorial: special section on reliability, resilience, and prognostics modeling of complex engineering systems publication-title: IEEE Trans. Reliab. – volume: 41 start-page: 3 year: 2008 end-page: 11 ident: bib0035 article-title: A simple universal generating function method for estimating the reliability of general multi-state node networks publication-title: IIE Trans. – year: 2025 ident: bib0036 – volume: 8 start-page: 245 issue: 2 year: 1994 ident: 10.1016/j.ress.2025.111446_bib0022 article-title: On Monte Carlo estimates in network reliability publication-title: Probab. Eng. Inf. Sci. doi: 10.1017/S0269964800003387 – volume: 203 year: 2020 ident: 10.1016/j.ress.2025.111446_bib0017 article-title: General multi-state rework network and reliability algorithm publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2020.107048 – volume: 215 year: 2021 ident: 10.1016/j.ress.2025.111446_bib0005 article-title: Performance measure of a multi-state flow network under reliability and maintenance cost considerations publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2021.107822 – volume: 34 start-page: 581 issue: 4 year: 1986 ident: 10.1016/j.ress.2025.111446_bib0021 article-title: A Monte Carlo sampling plan for estimating network reliability publication-title: Oper Res doi: 10.1287/opre.34.4.581 – volume: 245 year: 2024 ident: 10.1016/j.ress.2025.111446_bib0019 article-title: Assessing network reliability in a hybrid flow shop with rush order insertion publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2024.109990 – volume: 237 year: 2023 ident: 10.1016/j.ress.2025.111446_bib0011 article-title: Network reliability prediction for random capacitated-flow networks via an artificial neural network publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2023.109378 – volume: 228 year: 2022 ident: 10.1016/j.ress.2025.111446_bib0025 article-title: Novel self-adaptive Monte Carlo simulation based on binary-addition-tree algorithm for binary-State network reliability approximation publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2022.108796 – year: 1996 ident: 10.1016/j.ress.2025.111446_bib0033 – volume: 221 year: 2022 ident: 10.1016/j.ress.2025.111446_bib0009 article-title: An improved algorithm for reliability evaluation of flow networks publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2022.108371 – volume: 134 year: 2025 ident: 10.1016/j.ress.2025.111446_bib0008 article-title: Non-Markovian feedback for optimized quantum error correction publication-title: Phys. Rev. Lett doi: 10.1103/PhysRevLett.134.020601 – year: 2024 ident: 10.1016/j.ress.2025.111446_bib0012 article-title: A Monte Carlo-based algorithm for the quickest path flow network reliability problem publication-title: Ann Oper Res doi: 10.1007/s10479-024-06377-8 – year: 1987 ident: 10.1016/j.ress.2025.111446_bib0015 – volume: 32 start-page: 271 issue: 3 year: 1998 ident: 10.1016/j.ress.2025.111446_bib0023 article-title: A Monte Carlo simulation of the flow network reliability using importance and stratified sampling. RAIRO publication-title: Rech. opér. – volume: 181 start-page: 120 year: 2024 ident: 10.1016/j.ress.2025.111446_bib0026 article-title: On the prediction of power outage length based on linear multifractional Lévy stable motion publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2024.03.013 – volume: 147 year: 2023 ident: 10.1016/j.ress.2025.111446_bib0029 article-title: Risk-averse two-stage stochastic programming-based closed-loop supply chain network design under uncertain demand publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2023.110743 – volume: 67 issue: 1 year: 2018 ident: 10.1016/j.ress.2025.111446_bib0020 article-title: Guest editorial: special section on reliability, resilience, and prognostics modeling of complex engineering systems publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2018.2807198 – volume: 41 start-page: 3 issue: 1 year: 2008 ident: 10.1016/j.ress.2025.111446_bib0035 article-title: A simple universal generating function method for estimating the reliability of general multi-state node networks publication-title: IIE Trans. doi: 10.1080/07408170802322622 – year: 1991 ident: 10.1016/j.ress.2025.111446_bib0018 – volume: 348 start-page: 75 year: 2022 ident: 10.1016/j.ress.2025.111446_bib0027 article-title: Network reliability evaluation of manufacturing systems by using a deep learning approach publication-title: Ann Oper Res doi: 10.1007/s10479-022-04911-0 – volume: 18 start-page: 53 issue: 1–2 year: 1998 ident: 10.1016/j.ress.2025.111446_bib0024 article-title: A Monte Carlo algorithm for probabilistic propagation in belief networks based on importance sampling and stratified simulation techniques publication-title: Int. J. Approx. Reason. doi: 10.1016/S0888-613X(97)10004-4 – volume: 216 year: 2021 ident: 10.1016/j.ress.2025.111446_bib0001 article-title: Novel algorithm for computing all-pairs homogeneity-arc binary-State undirected network reliability publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2021.107950 – volume: 73 start-page: 1619 issue: 3 year: 2023 ident: 10.1016/j.ress.2025.111446_bib0007 article-title: Reliability of a multiple-demand multistate air transport network with flight delays and budget constraints publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2023.3312752 – year: 2024 ident: 10.1016/j.ress.2025.111446_bib0030 article-title: An efficient parallel approach for binary-state network reliability problems publication-title: Ann Oper Res doi: 10.1007/s10479-024-06409-3 – volume: 236 year: 2023 ident: 10.1016/j.ress.2025.111446_bib0016 article-title: A Q-learning guided search for developing a hybrid of mixed redundancy strategies to improve system reliability publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2023.109297 – volume: 224 year: 2022 ident: 10.1016/j.ress.2025.111446_bib0038 article-title: New binary-addition tree algorithm for the all-multiterminal binary-State network reliability problem publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2022.108557 – volume: 208 year: 2021 ident: 10.1016/j.ress.2025.111446_bib0028 article-title: Novel binary-addition tree algorithm (BAT) for binary-state network reliability problem publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2021.107448 – volume: 42 start-page: 1686 issue: 8 year: 2022 ident: 10.1016/j.ress.2025.111446_bib0006 article-title: Social cohesion: mitigating societal risk in case studies of digital media in Hurricanes Harvey, Irma, and Maria publication-title: Risk Anal. doi: 10.1111/risa.13820 – volume: 225 year: 2022 ident: 10.1016/j.ress.2025.111446_bib0037 article-title: Reliability–redundancy allocation problem in multi-state flow network: minimal cut-based approximation scheme publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2022.108564 – volume: 37 start-page: 479 issue: 4 year: 2020 ident: 10.1016/j.ress.2025.111446_bib0014 article-title: On multi-state two separate minimal paths reliability problem with time and budget constraints publication-title: Int. J. Oper. Res. doi: 10.1504/IJOR.2020.105764 – volume: 216 year: 2021 ident: 10.1016/j.ress.2025.111446_bib0031 article-title: A quick BAT for evaluating the reliability of binary-State networks publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2021.107917 – volume: 37 start-page: 3537 issue: 5 year: 2010 ident: 10.1016/j.ress.2025.111446_bib0032 article-title: Performance analysis of cellular Automata Monte Carlo simulation for estimating network reliability publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.09.070 – volume: 230 year: 2023 ident: 10.1016/j.ress.2025.111446_bib0013 article-title: Performance indicator-based multi-objective reliability optimization for multi-type production systems with heterogeneous machines publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2022.108970 – volume: 251 year: 2024 ident: 10.1016/j.ress.2025.111446_bib0010 article-title: A parallel algorithm for reliability assessment of multi-state flow networks based on simultaneous finding of all multi-state minimal paths and performing state space decomposition publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2024.110376 – volume: 234 year: 2023 ident: 10.1016/j.ress.2025.111446_bib0002 article-title: The usefulness of (d, b)-MCs and (d, b)-MPs in network reliability evaluation under delivery or maintenance cost constraints publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2023.109175 – volume: 233 year: 2023 ident: 10.1016/j.ress.2025.111446_bib0003 article-title: Bioinspired membrane learnable spiking neural network for autonomous vehicle sensors fault diagnosis under open environments publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2023.109102 – volume: 251 issue: 1 year: 2024 ident: 10.1016/j.ress.2025.111446_bib0004 article-title: Expected performance evaluation and optimization of a multi-distribution multi-state logistics network based on network reliability publication-title: Reliab. Eng. Syst. Saf. – volume: 91 start-page: 800 issue: 7 year: 2006 ident: 10.1016/j.ress.2025.111446_bib0034 article-title: The k-out-of-n acyclic multistate-node networks reliability evaluation using the universal generating function method publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2005.08.002 |
| SSID | ssj0004957 |
| Score | 2.471384 |
| Snippet | This paper introduces layer-cut BAT-MCS, an enhanced algorithm for binary-state network reliability assessment. The original BAT-MCS integrates the... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 111446 |
| SubjectTerms | BAT-MCS Binary-Addition-Tree algorithm (BAT) Binary-State Network Reliability, Monte Carlo Simulation (MCS) Supervector |
| Title | Enhancing Binary-State Network Reliability with Layer-Cut BAT-MCS |
| URI | https://dx.doi.org/10.1016/j.ress.2025.111446 |
| Volume | 264 |
| WOSCitedRecordID | wos001550033600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0951-8320 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0004957 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELagMMCAeIq3MrBVrqgTx_ZYUBEgQAxFdIuc2AY6BEQLgn_POXZa8xQMLFFkORfLnx-fT3efEdqDLTVXhRKYaKVwogjHXMB8ZDyXmpm8LWmVKHzGLi54vy8u_UXbw-o6AVaW_OVFPPwr1FAGYNvU2T_APTYKBfAOoMMTYIfnr4DvlrdWQ6O8aR5Uuba44pM2s9fGYFUxyE6b-9U5Yc8ksG58-DSCM3sPn_srDWvN7qC2nkgXVgPGiUA3h9J4LRHne638NNf6DleJC6FXgdAgQqN2D7YxzPb9cKUkaRKsdbBKJs59-GkZdh6BQct6DFrWfGtS-b3m9Ye9aBwhWAefDTJrI7M2MmdjGs0QRgVvoJnOSbd_OsmCFU7XtW65T5Fy0XwfW_I1DQmoRW8RLfgzQdRxWC6hKV0uo_lAKXIFdcaoRiGqkUc1CnCKLKrRGNXIo7qKro66vcNj7G-_wAWh8QhLmCVCF0al7RxoRKwMZ5LxQmqVAqtlmsTS5EpRDTSHKWI4JSnR3CgjYyFFvIYa5X2p11FUwKm7rVKTJ0QmMP_giEvlfq4SllNNRLKBmnVnZA9O5CT7HoANROv-yjxNc_QrA_h_-G7zT3_ZQnOTcbmNGqPHJ72DZovn0d3wcddj_wa_7l1K |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Binary-State+Network+Reliability+with+Layer-Cut+BAT-MCS&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Yeh%2C+Wei-Chang&rft.date=2025-12-01&rft.issn=0951-8320&rft.volume=264&rft.spage=111446&rft_id=info:doi/10.1016%2Fj.ress.2025.111446&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ress_2025_111446 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon |