Anomaly detection of ship behavior based on deep neural networks

•A HybridAttn-BiRNN model with temporal and feature attention is proposed for ship trajectory prediction.•An anomaly detection framework integrating HDBSCAN clustering and the HybridAttn-BiRNN model is established.•Multiple anomaly types are detected using threshold discrimination and feature deviat...

Full description

Saved in:
Bibliographic Details
Published in:Reliability engineering & system safety Vol. 266; p. 111801
Main Authors: Shu, Yaqing, Dong, Ao, Liu, Chengyong, Gan, Langxiong, Song, Lan
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.02.2026
Subjects:
ISSN:0951-8320
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A HybridAttn-BiRNN model with temporal and feature attention is proposed for ship trajectory prediction.•An anomaly detection framework integrating HDBSCAN clustering and the HybridAttn-BiRNN model is established.•Multiple anomaly types are detected using threshold discrimination and feature deviation analysis.•Ship anomalies are detected with 92.7 % accuracy using Shanghai Port AIS data in experiments. With the acceleration of the digitalization process in the global shipping industry. The anomaly detection of ship behaviors, including ship speed, course, and trajectory, has become a core challenge to ensure maritime traffic safety. To address this challenge, a method that integrates a hierarchical density-based spatial clustering algorithm (HDBSCAN) with a deep learning model is proposed in this paper. Unlike conventional approaches that rely solely on clustering or prediction models, AIS trajectories are compressed and clustered by our method to extract normal behavior patterns. Ship behavior is then predicted using a deep learning model with feature and temporal attention mechanisms. A dual-threshold mechanism is employed to identify various anomalies, including speed and course deviations, based on prediction errors. A case study is conducted using the AIS data from the waters of Shanghai Port. The experimental results show that abnormal ship behavior can be effectively identified by this method, with an average detection accuracy of 92.7% for various types of anomalies. The method proposed in this research could proactively identify potential maritime risks, thereby improving the overall safety and reliability of shipping operations.
AbstractList •A HybridAttn-BiRNN model with temporal and feature attention is proposed for ship trajectory prediction.•An anomaly detection framework integrating HDBSCAN clustering and the HybridAttn-BiRNN model is established.•Multiple anomaly types are detected using threshold discrimination and feature deviation analysis.•Ship anomalies are detected with 92.7 % accuracy using Shanghai Port AIS data in experiments. With the acceleration of the digitalization process in the global shipping industry. The anomaly detection of ship behaviors, including ship speed, course, and trajectory, has become a core challenge to ensure maritime traffic safety. To address this challenge, a method that integrates a hierarchical density-based spatial clustering algorithm (HDBSCAN) with a deep learning model is proposed in this paper. Unlike conventional approaches that rely solely on clustering or prediction models, AIS trajectories are compressed and clustered by our method to extract normal behavior patterns. Ship behavior is then predicted using a deep learning model with feature and temporal attention mechanisms. A dual-threshold mechanism is employed to identify various anomalies, including speed and course deviations, based on prediction errors. A case study is conducted using the AIS data from the waters of Shanghai Port. The experimental results show that abnormal ship behavior can be effectively identified by this method, with an average detection accuracy of 92.7% for various types of anomalies. The method proposed in this research could proactively identify potential maritime risks, thereby improving the overall safety and reliability of shipping operations.
ArticleNumber 111801
Author Liu, Chengyong
Gan, Langxiong
Shu, Yaqing
Dong, Ao
Song, Lan
Author_xml – sequence: 1
  givenname: Yaqing
  surname: Shu
  fullname: Shu, Yaqing
  organization: State Key Laboratory of Maritime Technology and Safety, Wuhan University of Technology, Wuhan 430063, China
– sequence: 2
  givenname: Ao
  surname: Dong
  fullname: Dong, Ao
  organization: School of Navigation, Wuhan University of Technology, Wuhan 430063, China
– sequence: 3
  givenname: Chengyong
  surname: Liu
  fullname: Liu, Chengyong
  organization: State Key Laboratory of Maritime Technology and Safety, Wuhan University of Technology, Wuhan 430063, China
– sequence: 4
  givenname: Langxiong
  surname: Gan
  fullname: Gan, Langxiong
  organization: State Key Laboratory of Maritime Technology and Safety, Wuhan University of Technology, Wuhan 430063, China
– sequence: 5
  givenname: Lan
  surname: Song
  fullname: Song, Lan
  email: lansong@eitech.edu.cn
  organization: College of Engineering, Eastern Institute of Technology, Ningbo 315200, China
BookMark eNp9j71OwzAUhT0UibbwAkx-gYRrJ3YSiYGq4k-qxAKz5cTXqkMaR3Yo6tuTKMxMZzj6js63Iave90jIHYOUAZP3bRowxpQDFyljrAS2ImuoBEvKjMM12cTYAkBeiWJNHne9P-nuQg2O2IzO99RbGo9uoDUe9dn5QGsd0dCpMYgD7fE76G6K8ceHr3hDrqzuIt7-5ZZ8Pj997F-Tw_vL2353SBousjGpjOS6yEAi54iiKHIuC2lLUclcgObWGMihFGCEFkZWAEYyU9eiqXMLNsu2hC-7TfAxBrRqCO6kw0UxULO3atXsrWZvtXhP0MMC4fTs7DCo2DjsGzQuTLbKePcf_gvZLGSh
Cites_doi 10.1109/TGCN.2022.3158004
10.1016/j.oceaneng.2024.119189
10.1016/j.ocecoaman.2024.107473
10.1016/j.ocecoaman.2021.106015
10.1016/j.ress.2024.110344
10.1016/j.ress.2021.108061
10.1016/j.oceaneng.2023.116640
10.1016/j.aap.2023.107342
10.1016/j.tra.2025.104427
10.1016/j.trc.2020.102685
10.1016/j.oceaneng.2024.119530
10.1016/j.ress.2024.110105
10.1016/j.eswa.2017.09.040
10.1016/j.ress.2024.110553
10.1016/j.ress.2024.110046
10.1016/j.oceaneng.2024.119057
10.1016/j.ocecoaman.2024.107320
10.1016/j.isatra.2021.02.030
10.3390/jmse9060566
10.1109/TPAMI.1979.4766909
10.1016/j.oceaneng.2025.121303
10.1016/j.joes.2021.03.001
10.1017/S0373463319000031
10.1016/j.ress.2021.107819
10.1016/j.ress.2020.107395
10.1016/j.oceaneng.2025.121023
10.1016/j.apenergy.2024.123382
10.1016/j.oceaneng.2023.116316
10.1016/j.oceaneng.2022.112777
10.1016/j.ress.2025.110810
10.1109/TITS.2021.3055614
10.1016/j.trpro.2014.10.051
10.1016/j.oceaneng.2024.117186
10.1016/j.ress.2024.110463
10.1016/j.oceaneng.2023.115723
10.1016/j.oceaneng.2025.120796
10.1016/j.ress.2023.109166
10.1016/j.oceaneng.2024.118026
10.1109/TITS.2022.3190834
10.1016/j.oceaneng.2023.116082
10.1016/j.ress.2024.110187
10.1016/j.ress.2024.110489
10.1016/j.ress.2025.110804
10.1016/j.oceaneng.2023.113673
10.1016/j.ress.2025.110911
10.1016/j.oceaneng.2024.119791
10.1016/j.ocecoaman.2024.107311
10.1016/j.ress.2024.110148
10.1016/j.tre.2024.103770
10.1016/j.knosys.2023.111313
10.1016/j.ijar.2013.03.012
10.1016/j.ocecoaman.2022.106323
10.1016/j.ress.2024.110765
10.1016/j.ress.2023.109195
10.1016/j.oceaneng.2020.107092
10.1016/j.ress.2025.111156
10.1016/j.oceaneng.2025.121138
10.1016/j.eswa.2023.120561
10.1016/j.oceaneng.2025.121073
10.1016/j.ocecoaman.2024.107168
10.1016/0377-0427(87)90125-7
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID AAYXX
CITATION
DOI 10.1016/j.ress.2025.111801
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_ress_2025_111801
S0951832025010014
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9DU
9JN
9JO
AABNK
AAEDT
AAEDW
AAFJI
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFRAH
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOMHK
APXCP
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c253t-9d62a7306e22ee57742676f8596450a2fdd040850d5a5d6900d61dbb5cb4f0f33
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001608386000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-8320
IngestDate Thu Nov 27 01:06:25 EST 2025
Wed Dec 10 14:26:09 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords HDBSCAN
AIS data
Deep neural networks
Anomaly detection
Ship behavior
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c253t-9d62a7306e22ee57742676f8596450a2fdd040850d5a5d6900d61dbb5cb4f0f33
ParticipantIDs crossref_primary_10_1016_j_ress_2025_111801
elsevier_sciencedirect_doi_10_1016_j_ress_2025_111801
PublicationCentury 2000
PublicationDate February 2026
2026-02-00
PublicationDateYYYYMMDD 2026-02-01
PublicationDate_xml – month: 02
  year: 2026
  text: February 2026
PublicationDecade 2020
PublicationTitle Reliability engineering & system safety
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Lee, Lee (bib0066) 2018; 92
Dugan, Utne (bib0010) 2025; 262
Gan, Zheng, Song, Cui, Shu, Yang (bib0013) 2025; 331
Zhang, Ren, Wang, Wang (bib0064) 2020
Murray, Perera (bib0038) 2022; 7
Rousseeuw (bib0046) 1987; 20
Wang, Wang, Ding, Yu (bib0057) 2024; 252
Jiang, Zhang, Wan, Zhang, Soares (bib0019) 2024; 259
Wang, Chen, Chen, Mou (bib0056) 2021; 9
Bolbot, Bergström, Rahikainen, Valdez Banda (bib0003) 2025; 257
Montewka, Wróbel, Heikkilä, Valdez Banda, Goerlandt, Haugen (bib0035) 2018; 14
Zaman, Marijan, Kholodna (bib0063) 2024; 312
Zhang, Taimuri, Zhang, Zhang, Yan, Kujala, Hirdaris (bib0068) 2025; 253
Osekowska, Johnson, Carlsson (bib0040) 2014; 3
Zhang, Liu, Guo, Liu (bib0065) 2023; 288
Hussain, Zhang (bib0018) 2025; 254
Xu, Huang, Huang, Wen, Cheng, van Gelder (bib0060) 2025; 329
Czaplewski, Dzwonkowski (bib0007) 2022; 119
Davies, Bouldin (bib0008) 2009
Shu, Xiong, Zhu, Liu, Liu, Xu, Gan, Zhang (bib0053) 2024; 253
Yildiz, Uğurlu, Wang, Loughney (bib0061) 2021; 208
Gan, Gao, Zhang, Xu, Liu, Xie, Shu (bib0011) 2025; 257
Liu, Li, Liu (bib0030) 2024; 305
Nguyen, Vadaine, Hajduch, Garello, Fablet (bib0039) 2022; 23
Ma, Lian, Zhang, Lang, Rong, Mao, Zhang (bib0032) 2025; 315
Singh, Fowdur, Gawlikowski, Medina (bib0054) 2022; 23
Shu, Hu, Zheng, Gan, Xiao, Zhou, Song (bib0051) 2023; 287
Zhou, Shen, Fu, Zhang, Hao (bib0070) 2025; 325
Laxhammar, R., Falkman, G., Sviestins, E., Ieee, 2009. Anomaly detection in sea traffic - a comparison of the Gaussian Mixture Model and the kernel density Estimator, FUSION: 2009 12TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, pp. 756-+.
Munim, Sørli, Kim, Alon (bib0036) 2024; 248
Rong, Teixeira, Guedes Soares (bib0045) 2024; 247
Zhao, Shi (bib0069) 2019; 72
Ou, Wang, Liu, Zhu, Li, Zhao, Deng (bib0041) 2025; 330
Guo, Bolbot, Valdez Banda (bib0015) 2024; 312
Han, Zhang, Fan, Zhang, Zhang (bib0016) 2024; 194
Lentzakis, Seshadri, Akkinepally, Vu, Ben-Akiva (bib0023) 2020; 118
Li, Çelik, Bashir, Zou, Yang (bib0024) 2024; 249
Gil, Montewka, Krata (bib0014) 2025; 256
Liu, Guo, Nie, Hu, Xiong, Yu, Guizani (bib0031) 2022; 6
Shu, Han, Song, Yan, Gan, Zhu, Zheng (bib0050) 2024; 367
Gan, Li, Yan, Song, Xiao, Shu (bib0012) 2025; 317
Papageorgiou, Hansen, Dittmann, Blanke (bib0042) 2022; 266
Wang, Liu, Liu, Liu, Yuan (bib0058) 2023; 271
Duan, Ma, Miao, Zhang (bib0009) 2022; 218
Liu, Jia, Li, Liu, Qi (bib0028) 2023; 290
Shiokari, Itoh, Yuzui, Ishimura, Miyake, Kudo, Kawashima (bib0048) 2024; 247
Rong, Teixeira, Guedes Soares (bib0044) 2022; 217
Smith, Reece, Roberts, Rezek (bib0055) 2012
Li, Li, Wang, Yang, Guan, Zhang (bib0025) 2024; 313
Murray, Perera (bib0037) 2021; 215
Bairami-Khankandi, Bolbot, BahooToroody, Goerlandt (bib0002) 2025; 258
Chen, Zhang, Huang, Dai, Hu (bib0006) 2022; 228
Kong, Lin, Li, He (bib0021) 2024; 251
Xie, Bai, Xu, Xiao (bib0059) 2024; 293
Huang, Wen, Guo, Zhu, Zhou, Zhang, Zhu (bib0017) 2020; 201
Mascaro, Nicholson, Korb (bib0033) 2014; 55
Meng, Li, Zhang, Zhou, Yang (bib0034) 2024; 256
Johansen, Blindheim, Torben, Utne, Johansen, Sørensen (bib0020) 2023; 234
Liang, Weng, Gao, Li, Du (bib0027) 2024; 284
Li, Xing, Jiao, Yuen, Gao, Li, Matthews, Yang (bib0026) 2024; 192
Shu, Huang, Wu, Chen, Song, Gan, Yang (bib0052) 2025
Antão, Sun, Teixeira, Guedes Soares (bib0001) 2023; 234
Yu, Liu, Kong, Xin (bib0062) 2025; 194
Shahir, Glasser, Shahir, Wehn (bib0047) 2015
Liu, Wu, Li, Zong, Shu (bib0029) 2025
Zhang, Liu, Zhang, Wu, Dong (bib0067) 2025; 330
Campello, Moulavi, Sander (bib0004) 2013
Ribeiro, Paes, Oliveira (bib0043) 2023; 231
Shu, Cui, Song, Gan, Xu, Wu, Zheng (bib0049) 2024; 256
Chen, Yang, Mou, Chen, Li (bib0005) 2024; 299
Li (10.1016/j.ress.2025.111801_bib0025) 2024; 313
Shu (10.1016/j.ress.2025.111801_bib0049) 2024; 256
Rousseeuw (10.1016/j.ress.2025.111801_bib0046) 1987; 20
Zhang (10.1016/j.ress.2025.111801_bib0066) 2018; 92
Zhou (10.1016/j.ress.2025.111801_bib0070) 2025; 325
Wang (10.1016/j.ress.2025.111801_bib0058) 2023; 271
Shu (10.1016/j.ress.2025.111801_bib0051) 2023; 287
Smith (10.1016/j.ress.2025.111801_bib0055) 2012
Nguyen (10.1016/j.ress.2025.111801_bib0039) 2022; 23
Zaman (10.1016/j.ress.2025.111801_bib0063) 2024; 312
Zhang (10.1016/j.ress.2025.111801_bib0068) 2025; 253
Rong (10.1016/j.ress.2025.111801_bib0045) 2024; 247
Davies (10.1016/j.ress.2025.111801_bib0008) 2009
Johansen (10.1016/j.ress.2025.111801_bib0020) 2023; 234
Wang (10.1016/j.ress.2025.111801_bib0057) 2024; 252
Zhang (10.1016/j.ress.2025.111801_bib0065) 2023; 288
Jiang (10.1016/j.ress.2025.111801_bib0019) 2024; 259
Papageorgiou (10.1016/j.ress.2025.111801_bib0042) 2022; 266
Campello (10.1016/j.ress.2025.111801_bib0004) 2013
Dugan (10.1016/j.ress.2025.111801_bib0010) 2025; 262
Shu (10.1016/j.ress.2025.111801_bib0052) 2025
Kong (10.1016/j.ress.2025.111801_bib0021) 2024; 251
Czaplewski (10.1016/j.ress.2025.111801_bib0007) 2022; 119
Liu (10.1016/j.ress.2025.111801_bib0030) 2024; 305
Mascaro (10.1016/j.ress.2025.111801_bib0033) 2014; 55
Zhang (10.1016/j.ress.2025.111801_bib0064) 2020
Gil (10.1016/j.ress.2025.111801_bib0014) 2025; 256
Shahir (10.1016/j.ress.2025.111801_bib0047) 2015
Gan (10.1016/j.ress.2025.111801_bib0013) 2025; 331
Shu (10.1016/j.ress.2025.111801_bib0053) 2024; 253
Guo (10.1016/j.ress.2025.111801_bib0015) 2024; 312
Liu (10.1016/j.ress.2025.111801_bib0028) 2023; 290
Munim (10.1016/j.ress.2025.111801_bib0036) 2024; 248
Meng (10.1016/j.ress.2025.111801_bib0034) 2024; 256
Singh (10.1016/j.ress.2025.111801_bib0054) 2022; 23
Hussain (10.1016/j.ress.2025.111801_bib0018) 2025; 254
Shu (10.1016/j.ress.2025.111801_bib0050) 2024; 367
Murray (10.1016/j.ress.2025.111801_bib0037) 2021; 215
Zhang (10.1016/j.ress.2025.111801_bib0067) 2025; 330
Antão (10.1016/j.ress.2025.111801_bib0001) 2023; 234
Bairami-Khankandi (10.1016/j.ress.2025.111801_bib0002) 2025; 258
Liu (10.1016/j.ress.2025.111801_bib0031) 2022; 6
Ribeiro (10.1016/j.ress.2025.111801_bib0043) 2023; 231
Duan (10.1016/j.ress.2025.111801_bib0009) 2022; 218
Gan (10.1016/j.ress.2025.111801_bib0011) 2025; 257
Osekowska (10.1016/j.ress.2025.111801_bib0040) 2014; 3
Yu (10.1016/j.ress.2025.111801_bib0062) 2025; 194
Ma (10.1016/j.ress.2025.111801_bib0032) 2025; 315
Ou (10.1016/j.ress.2025.111801_bib0041) 2025; 330
Xu (10.1016/j.ress.2025.111801_bib0060) 2025; 329
Li (10.1016/j.ress.2025.111801_bib0026) 2024; 192
Montewka (10.1016/j.ress.2025.111801_bib0035) 2018; 14
Liang (10.1016/j.ress.2025.111801_bib0027) 2024; 284
Han (10.1016/j.ress.2025.111801_bib0016) 2024; 194
Zhao (10.1016/j.ress.2025.111801_bib0069) 2019; 72
Chen (10.1016/j.ress.2025.111801_bib0005) 2024; 299
Huang (10.1016/j.ress.2025.111801_bib0017) 2020; 201
Gan (10.1016/j.ress.2025.111801_bib0012) 2025; 317
Yildiz (10.1016/j.ress.2025.111801_bib0061) 2021; 208
Liu (10.1016/j.ress.2025.111801_bib0029) 2025
Wang (10.1016/j.ress.2025.111801_bib0056) 2021; 9
Xie (10.1016/j.ress.2025.111801_bib0059) 2024; 293
Bolbot (10.1016/j.ress.2025.111801_bib0003) 2025; 257
Li (10.1016/j.ress.2025.111801_bib0024) 2024; 249
Chen (10.1016/j.ress.2025.111801_bib0006) 2022; 228
Murray (10.1016/j.ress.2025.111801_bib0038) 2022; 7
10.1016/j.ress.2025.111801_bib0022
Lentzakis (10.1016/j.ress.2025.111801_bib0023) 2020; 118
Shiokari (10.1016/j.ress.2025.111801_bib0048) 2024; 247
Rong (10.1016/j.ress.2025.111801_bib0044) 2022; 217
References_xml – volume: 266
  year: 2022
  ident: bib0042
  article-title: Anticipation of ship behaviours in multi-vessel scenarios
  publication-title: Ocean Eng
– volume: 6
  start-page: 1574
  year: 2022
  end-page: 1587
  ident: bib0031
  article-title: Intelligent edge-enabled efficient multi-source data fusion for autonomous surface vehicles in maritime internet of things
  publication-title: IEEE Trans Green Commun Netw
– volume: 9
  year: 2021
  ident: bib0056
  article-title: Ship AIS trajectory clustering: an HDBSCAN-based approach
  publication-title: J Mar Sci Eng
– volume: 218
  year: 2022
  ident: bib0009
  article-title: A semi-supervised deep learning approach for vessel trajectory classification based on AIS data
  publication-title: Ocean Coast Manag
– volume: 293
  year: 2024
  ident: bib0059
  article-title: An anomaly detection method based on ship behavior trajectory
  publication-title: Ocean Eng
– volume: 215
  year: 2021
  ident: bib0037
  article-title: An AIS-based deep learning framework for regional ship behavior prediction
  publication-title: Reliab Eng Syst Saf
– volume: 258
  year: 2025
  ident: bib0002
  article-title: A systems-theoretic approach using association rule mining and predictive bayesian trend analysis to identify patterns in maritime accident causes
  publication-title: Reliab Eng Syst Saf
– volume: 248
  year: 2024
  ident: bib0036
  article-title: Predicting maritime accident risk using Automated Machine Learning
  publication-title: Reliab Eng Syst Saf
– volume: 72
  start-page: 894
  year: 2019
  end-page: 916
  ident: bib0069
  article-title: Maritime anomaly detection using density-based clustering and recurrent neural network
  publication-title: J Navig
– volume: 234
  year: 2023
  ident: bib0020
  article-title: Development and testing of a risk-based control system for autonomous ships
  publication-title: Reliab Eng Syst Saf
– volume: 217
  year: 2022
  ident: bib0044
  article-title: Maritime traffic probabilistic prediction based on ship motion pattern extraction
  publication-title: Reliab Eng Syst Saf
– volume: 330
  year: 2025
  ident: bib0067
  article-title: Detecting abnormal ship states and joint risky behaviors based on an improved graph attention network
  publication-title: Ocean Eng
– volume: 251
  year: 2024
  ident: bib0021
  article-title: Development of an improved Bayesian network method for maritime accident safety assessment based on multiscale scenario analysis theory
  publication-title: Reliab Eng Syst Saf
– volume: 256
  year: 2024
  ident: bib0034
  article-title: Analyzing risk influencing factors of ship collision accidents: a data-driven bayesian network model integrating physical knowledge
  publication-title: Ocean Coast Manag
– start-page: 224
  year: 2009
  end-page: 227
  ident: bib0008
  article-title: A cluster separation measure
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 262
  year: 2025
  ident: bib0010
  article-title: Improved identification of maritime risk-influencing factors using AIS data in regression analysis
  publication-title: Reliab Eng Syst Saf
– volume: 271
  year: 2023
  ident: bib0058
  article-title: Data-driven methods for detection of abnormal ship behavior: progress and trends
  publication-title: Ocean Eng
– volume: 329
  year: 2025
  ident: bib0060
  article-title: A framework for ship semantic behavior representation and indexing
  publication-title: Ocean Eng
– start-page: 160
  year: 2013
  end-page: 172
  ident: bib0004
  article-title: Density-based clustering based on hierarchical Density estimates
  publication-title: Advances in knowledge discovery and data mining
– volume: 284
  year: 2024
  ident: bib0027
  article-title: Unsupervised maritime anomaly detection for intelligent situational awareness using AIS data
  publication-title: Knowl Based Syst
– volume: 201
  year: 2020
  ident: bib0017
  article-title: Mobility pattern analysis of ship trajectories based on semantic transformation and topic model
  publication-title: Ocean Eng
– volume: 313
  year: 2024
  ident: bib0025
  article-title: STAD: ship trajectory anomaly detection in ocean with dynamic pattern clustering
  publication-title: Ocean Eng
– volume: 330
  year: 2025
  ident: bib0041
  article-title: Multi-stage trajectory compression via speed information for preserving maritime traffic information integrity
  publication-title: Ocean Eng
– volume: 331
  year: 2025
  ident: bib0013
  article-title: A multi-vector-field based inland ship path planning using an anisotropic fast marching method
  publication-title: Ocean Eng
– volume: 118
  year: 2020
  ident: bib0023
  article-title: Hierarchical density-based clustering methods for tolling zone definition and their impact on distance-based toll optimization
  publication-title: Transp Res C: Emerg Technol
– volume: 194
  year: 2025
  ident: bib0062
  article-title: Time-evolving graph-based approach for multi-ship encounter analysis: insights into ship behavior across different scenario complexity levels
  publication-title: Transp Res A Policy Pract
– volume: 312
  year: 2024
  ident: bib0063
  article-title: Online Ornstein–Uhlenbeck based anomaly detection and behavior classification using AIS data in maritime
  publication-title: Ocean Eng
– volume: 231
  year: 2023
  ident: bib0043
  article-title: AIS-based maritime anomaly traffic detection: a review
  publication-title: Expert Syst Appl
– volume: 305
  year: 2024
  ident: bib0030
  article-title: AIS-based kinematic anomaly classification for maritime surveillance
  publication-title: Ocean Eng
– volume: 194
  year: 2024
  ident: bib0016
  article-title: A dynamic Bayesian network model to evaluate the availability of machinery systems in maritime autonomous surface ships
  publication-title: Accid Anal Prev
– volume: 234
  year: 2023
  ident: bib0001
  article-title: Quantitative assessment of ship collision risk influencing factors from worldwide accident and fleet data
  publication-title: Reliab Eng Syst Saf
– volume: 257
  year: 2025
  ident: bib0011
  article-title: Graph neural networks enabled accident causation prediction for maritime vessel traffic
  publication-title: Reliab Eng Syst Saf
– volume: 256
  year: 2024
  ident: bib0049
  article-title: Influence of sea ice on ship routes and speed along the Arctic Northeast Passage
  publication-title: Ocean Coast Manag
– volume: 254
  year: 2025
  ident: bib0018
  article-title: Machine learning-based outlier detection for pipeline in-line inspection data
  publication-title: Reliab Eng Syst Saf
– volume: 315
  year: 2025
  ident: bib0032
  article-title: A machine learning method for the recognition of ship behavior using AIS data
  publication-title: Ocean Eng
– volume: 14
  start-page: 16
  year: 2018
  end-page: 21
  ident: bib0035
  article-title: Challenges, solution proposals and research directions in safety and risk assessment of autonomous shipping
  publication-title: Probabilistic Saf Assess Manag PSAM
– volume: 23
  start-page: 5655
  year: 2022
  end-page: 5667
  ident: bib0039
  article-title: GeoTrackNet–A maritime anomaly detector using probabilistic neural network representation of AIS tracks and A contrario detection
  publication-title: IEEE Trans Intell Transp Syst
– volume: 253
  year: 2025
  ident: bib0068
  article-title: Systems driven intelligent decision support methods for ship collision and grounding prevention: present status, possible solutions, and challenges
  publication-title: Reliab Eng Syst Saf
– start-page: 1
  year: 2025
  end-page: 11
  ident: bib0052
  article-title: Research on ship following behavior based on data mining in arctic waters
  publication-title: IEEE Trans Intell Transp Syst
– volume: 288
  year: 2023
  ident: bib0065
  article-title: A novel ship trajectory clustering analysis and anomaly detection method based on AIS data
  publication-title: Ocean Eng
– start-page: 1279
  year: 2015
  end-page: 1289
  ident: bib0047
  article-title: Maritime situation analysis framework vessel interaction classification and anomaly detection
  publication-title: PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA
– volume: 312
  year: 2024
  ident: bib0015
  article-title: An adaptive trajectory compression and feature preservation method for maritime traffic analysis
  publication-title: Ocean Eng
– start-page: 316
  year: 2020
  end-page: 320
  ident: bib0064
  article-title: Research progress on ship anomaly detection based on big data
  publication-title: 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS). IEEE
– start-page: 1
  year: 2025
  end-page: 12
  ident: bib0029
  article-title: Research on ship anomaly detection algorithm based on transformer-GSA encoder
  publication-title: IEEE Trans Intell Transp Syst
– volume: 299
  year: 2024
  ident: bib0005
  article-title: Regional ship behavior and trajectory prediction for maritime traffic management: a social generative adversarial network approach
  publication-title: Ocean Eng
– volume: 259
  year: 2024
  ident: bib0019
  article-title: A data-driven bayesian network model for risk influencing factors quantification based on global maritime accident database
  publication-title: Ocean Coast Manag
– volume: 119
  start-page: 1
  year: 2022
  end-page: 16
  ident: bib0007
  article-title: A novel approach exploiting properties of convolutional neural networks for vessel movement anomaly detection and classification
  publication-title: ISA Trans
– reference: Laxhammar, R., Falkman, G., Sviestins, E., Ieee, 2009. Anomaly detection in sea traffic - a comparison of the Gaussian Mixture Model and the kernel density Estimator, FUSION: 2009 12TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, pp. 756-+.
– volume: 317
  year: 2025
  ident: bib0012
  article-title: Intelligent ship path planning based on improved artificial potential field in narrow inland waterways
  publication-title: Ocean Eng
– volume: 208
  year: 2021
  ident: bib0061
  article-title: Application of the HFACS-PV approach for identification of human and organizational factors (HOFs) influencing marine accidents
  publication-title: Reliab Eng Syst Saf
– volume: 192
  year: 2024
  ident: bib0026
  article-title: Bi-directional information fusion-driven deep network for ship trajectory prediction in intelligent transportation systems
  publication-title: Transp Res E: Logist Transp Rev
– volume: 20
  start-page: 53
  year: 1987
  end-page: 65
  ident: bib0046
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J Comput Appl Math
– volume: 367
  year: 2024
  ident: bib0050
  article-title: Analyzing the spatio-temporal correlation between tide and shipping behavior at estuarine port for energy-saving purposes
  publication-title: Appl Energy
– volume: 325
  year: 2025
  ident: bib0070
  article-title: Framework for detecting abnormal behaviors of passenger ships: a case study from the Yangtze River Estuary
  publication-title: Ocean Eng
– volume: 253
  year: 2024
  ident: bib0053
  article-title: Reference path for ships in ports and waterways based on optimal control
  publication-title: Ocean Coast Manag
– volume: 7
  start-page: 1
  year: 2022
  end-page: 13
  ident: bib0038
  article-title: Ship behavior prediction via trajectory extraction-based clustering for maritime situation awareness
  publication-title: J Ocean Eng Sci
– volume: 257
  year: 2025
  ident: bib0003
  article-title: Investigation into safety acceptance principles for autonomous ships
  publication-title: Reliab Eng Syst Saf
– volume: 290
  year: 2023
  ident: bib0028
  article-title: The model of vessel trajectory abnormal behavior detection based on graph attention prediction and reconstruction network
  publication-title: Ocean Eng
– volume: 247
  year: 2024
  ident: bib0048
  article-title: Structure model-based hazard identification method for autonomous ships
  publication-title: Reliab Eng Syst Saf
– volume: 287
  year: 2023
  ident: bib0051
  article-title: Evaluation of ship emission intensity and the inaccuracy of exhaust emission estimation model
  publication-title: Ocean Eng
– volume: 252
  year: 2024
  ident: bib0057
  article-title: Interaction aware and multi-modal distribution for ship trajectory prediction with spatio-temporal crisscross hybrid network
  publication-title: Reliab Eng Syst Saf
– volume: 3
  start-page: 720
  year: 2014
  end-page: 729
  ident: bib0040
  article-title: Grid size optimization for potential field based maritime anomaly detection
  publication-title: Transp Res Procedia
– volume: 256
  year: 2025
  ident: bib0014
  article-title: Predicting a passenger ship's response during evasive maneuvers using Bayesian Learning
  publication-title: Reliab Eng Syst Saf
– volume: 55
  start-page: 84
  year: 2014
  end-page: 98
  ident: bib0033
  article-title: Anomaly detection in vessel tracks using bayesian networks
  publication-title: Int J Approx Reason
– volume: 249
  year: 2024
  ident: bib0024
  article-title: Incorporation of a global perspective into data-driven analysis of maritime collision accident risk
  publication-title: Reliab Eng Syst Saf
– volume: 247
  year: 2024
  ident: bib0045
  article-title: A framework for ship abnormal behaviour detection and classification using AIS data
  publication-title: Reliab Eng Syst Saf
– volume: 92
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib0066
  article-title: Hierarchical trajectory clustering for spatio-temporal periodic pattern mining
  publication-title: Expert Syst Appl
– volume: 228
  year: 2022
  ident: bib0006
  article-title: Risk assessment of marine accidents with Fuzzy Bayesian Networks and causal analysis
  publication-title: Ocean Coast Manage
– volume: 23
  start-page: 23488
  year: 2022
  end-page: 23502
  ident: bib0054
  article-title: Leveraging graph and deep learning uncertainties to detect anomalous maritime trajectories
  publication-title: IEEE Trans Intell Transp Syst
– start-page: 645
  year: 2012
  end-page: 654
  ident: bib0055
  article-title: Online maritime abnormality detection using gaussian processes and Extreme value theory
  publication-title: 12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2012)
– volume: 6
  start-page: 1574
  issue: 3
  year: 2022
  ident: 10.1016/j.ress.2025.111801_bib0031
  article-title: Intelligent edge-enabled efficient multi-source data fusion for autonomous surface vehicles in maritime internet of things
  publication-title: IEEE Trans Green Commun Netw
  doi: 10.1109/TGCN.2022.3158004
– volume: 312
  year: 2024
  ident: 10.1016/j.ress.2025.111801_bib0015
  article-title: An adaptive trajectory compression and feature preservation method for maritime traffic analysis
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2024.119189
– start-page: 645
  year: 2012
  ident: 10.1016/j.ress.2025.111801_bib0055
  article-title: Online maritime abnormality detection using gaussian processes and Extreme value theory
– volume: 259
  year: 2024
  ident: 10.1016/j.ress.2025.111801_bib0019
  article-title: A data-driven bayesian network model for risk influencing factors quantification based on global maritime accident database
  publication-title: Ocean Coast Manag
  doi: 10.1016/j.ocecoaman.2024.107473
– volume: 218
  year: 2022
  ident: 10.1016/j.ress.2025.111801_bib0009
  article-title: A semi-supervised deep learning approach for vessel trajectory classification based on AIS data
  publication-title: Ocean Coast Manag
  doi: 10.1016/j.ocecoaman.2021.106015
– volume: 251
  year: 2024
  ident: 10.1016/j.ress.2025.111801_bib0021
  article-title: Development of an improved Bayesian network method for maritime accident safety assessment based on multiscale scenario analysis theory
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2024.110344
– volume: 217
  year: 2022
  ident: 10.1016/j.ress.2025.111801_bib0044
  article-title: Maritime traffic probabilistic prediction based on ship motion pattern extraction
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.108061
– volume: 293
  year: 2024
  ident: 10.1016/j.ress.2025.111801_bib0059
  article-title: An anomaly detection method based on ship behavior trajectory
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2023.116640
– volume: 194
  year: 2024
  ident: 10.1016/j.ress.2025.111801_bib0016
  article-title: A dynamic Bayesian network model to evaluate the availability of machinery systems in maritime autonomous surface ships
  publication-title: Accid Anal Prev
  doi: 10.1016/j.aap.2023.107342
– volume: 194
  year: 2025
  ident: 10.1016/j.ress.2025.111801_bib0062
  article-title: Time-evolving graph-based approach for multi-ship encounter analysis: insights into ship behavior across different scenario complexity levels
  publication-title: Transp Res A Policy Pract
  doi: 10.1016/j.tra.2025.104427
– volume: 118
  year: 2020
  ident: 10.1016/j.ress.2025.111801_bib0023
  article-title: Hierarchical density-based clustering methods for tolling zone definition and their impact on distance-based toll optimization
  publication-title: Transp Res C: Emerg Technol
  doi: 10.1016/j.trc.2020.102685
– volume: 313
  year: 2024
  ident: 10.1016/j.ress.2025.111801_bib0025
  article-title: STAD: ship trajectory anomaly detection in ocean with dynamic pattern clustering
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2024.119530
– volume: 247
  year: 2024
  ident: 10.1016/j.ress.2025.111801_bib0045
  article-title: A framework for ship abnormal behaviour detection and classification using AIS data
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2024.110105
– start-page: 316
  year: 2020
  ident: 10.1016/j.ress.2025.111801_bib0064
  article-title: Research progress on ship anomaly detection based on big data
– volume: 92
  start-page: 1
  year: 2018
  ident: 10.1016/j.ress.2025.111801_bib0066
  article-title: Hierarchical trajectory clustering for spatio-temporal periodic pattern mining
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.09.040
– volume: 254
  year: 2025
  ident: 10.1016/j.ress.2025.111801_bib0018
  article-title: Machine learning-based outlier detection for pipeline in-line inspection data
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2024.110553
– volume: 247
  year: 2024
  ident: 10.1016/j.ress.2025.111801_bib0048
  article-title: Structure model-based hazard identification method for autonomous ships
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2024.110046
– volume: 312
  year: 2024
  ident: 10.1016/j.ress.2025.111801_bib0063
  article-title: Online Ornstein–Uhlenbeck based anomaly detection and behavior classification using AIS data in maritime
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2024.119057
– volume: 256
  year: 2024
  ident: 10.1016/j.ress.2025.111801_bib0049
  article-title: Influence of sea ice on ship routes and speed along the Arctic Northeast Passage
  publication-title: Ocean Coast Manag
  doi: 10.1016/j.ocecoaman.2024.107320
– volume: 119
  start-page: 1
  year: 2022
  ident: 10.1016/j.ress.2025.111801_bib0007
  article-title: A novel approach exploiting properties of convolutional neural networks for vessel movement anomaly detection and classification
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2021.02.030
– volume: 9
  issue: 6
  year: 2021
  ident: 10.1016/j.ress.2025.111801_bib0056
  article-title: Ship AIS trajectory clustering: an HDBSCAN-based approach
  publication-title: J Mar Sci Eng
  doi: 10.3390/jmse9060566
– start-page: 224
  issue: 2
  year: 2009
  ident: 10.1016/j.ress.2025.111801_bib0008
  article-title: A cluster separation measure
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.1979.4766909
– volume: 331
  year: 2025
  ident: 10.1016/j.ress.2025.111801_bib0013
  article-title: A multi-vector-field based inland ship path planning using an anisotropic fast marching method
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2025.121303
– volume: 7
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.ress.2025.111801_bib0038
  article-title: Ship behavior prediction via trajectory extraction-based clustering for maritime situation awareness
  publication-title: J Ocean Eng Sci
  doi: 10.1016/j.joes.2021.03.001
– volume: 72
  start-page: 894
  issue: 4
  year: 2019
  ident: 10.1016/j.ress.2025.111801_bib0069
  article-title: Maritime anomaly detection using density-based clustering and recurrent neural network
  publication-title: J Navig
  doi: 10.1017/S0373463319000031
– volume: 215
  year: 2021
  ident: 10.1016/j.ress.2025.111801_bib0037
  article-title: An AIS-based deep learning framework for regional ship behavior prediction
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.107819
– volume: 208
  year: 2021
  ident: 10.1016/j.ress.2025.111801_bib0061
  article-title: Application of the HFACS-PV approach for identification of human and organizational factors (HOFs) influencing marine accidents
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.107395
– start-page: 1279
  year: 2015
  ident: 10.1016/j.ress.2025.111801_bib0047
  article-title: Maritime situation analysis framework vessel interaction classification and anomaly detection
– volume: 329
  year: 2025
  ident: 10.1016/j.ress.2025.111801_bib0060
  article-title: A framework for ship semantic behavior representation and indexing
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2025.121023
– volume: 367
  year: 2024
  ident: 10.1016/j.ress.2025.111801_bib0050
  article-title: Analyzing the spatio-temporal correlation between tide and shipping behavior at estuarine port for energy-saving purposes
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2024.123382
– start-page: 1
  year: 2025
  ident: 10.1016/j.ress.2025.111801_bib0052
  article-title: Research on ship following behavior based on data mining in arctic waters
  publication-title: IEEE Trans Intell Transp Syst
– volume: 290
  year: 2023
  ident: 10.1016/j.ress.2025.111801_bib0028
  article-title: The model of vessel trajectory abnormal behavior detection based on graph attention prediction and reconstruction network
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2023.116316
– volume: 266
  year: 2022
  ident: 10.1016/j.ress.2025.111801_bib0042
  article-title: Anticipation of ship behaviours in multi-vessel scenarios
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2022.112777
– volume: 257
  year: 2025
  ident: 10.1016/j.ress.2025.111801_bib0003
  article-title: Investigation into safety acceptance principles for autonomous ships
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2025.110810
– volume: 23
  start-page: 5655
  issue: 6
  year: 2022
  ident: 10.1016/j.ress.2025.111801_bib0039
  article-title: GeoTrackNet–A maritime anomaly detector using probabilistic neural network representation of AIS tracks and A contrario detection
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2021.3055614
– volume: 3
  start-page: 720
  year: 2014
  ident: 10.1016/j.ress.2025.111801_bib0040
  article-title: Grid size optimization for potential field based maritime anomaly detection
  publication-title: Transp Res Procedia
  doi: 10.1016/j.trpro.2014.10.051
– volume: 299
  year: 2024
  ident: 10.1016/j.ress.2025.111801_bib0005
  article-title: Regional ship behavior and trajectory prediction for maritime traffic management: a social generative adversarial network approach
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2024.117186
– volume: 252
  year: 2024
  ident: 10.1016/j.ress.2025.111801_bib0057
  article-title: Interaction aware and multi-modal distribution for ship trajectory prediction with spatio-temporal crisscross hybrid network
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2024.110463
– volume: 287
  year: 2023
  ident: 10.1016/j.ress.2025.111801_bib0051
  article-title: Evaluation of ship emission intensity and the inaccuracy of exhaust emission estimation model
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2023.115723
– volume: 325
  year: 2025
  ident: 10.1016/j.ress.2025.111801_bib0070
  article-title: Framework for detecting abnormal behaviors of passenger ships: a case study from the Yangtze River Estuary
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2025.120796
– volume: 234
  year: 2023
  ident: 10.1016/j.ress.2025.111801_bib0001
  article-title: Quantitative assessment of ship collision risk influencing factors from worldwide accident and fleet data
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2023.109166
– volume: 305
  year: 2024
  ident: 10.1016/j.ress.2025.111801_bib0030
  article-title: AIS-based kinematic anomaly classification for maritime surveillance
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2024.118026
– volume: 23
  start-page: 23488
  issue: 12
  year: 2022
  ident: 10.1016/j.ress.2025.111801_bib0054
  article-title: Leveraging graph and deep learning uncertainties to detect anomalous maritime trajectories
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2022.3190834
– volume: 288
  year: 2023
  ident: 10.1016/j.ress.2025.111801_bib0065
  article-title: A novel ship trajectory clustering analysis and anomaly detection method based on AIS data
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2023.116082
– volume: 249
  year: 2024
  ident: 10.1016/j.ress.2025.111801_bib0024
  article-title: Incorporation of a global perspective into data-driven analysis of maritime collision accident risk
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2024.110187
– volume: 14
  start-page: 16
  year: 2018
  ident: 10.1016/j.ress.2025.111801_bib0035
  article-title: Challenges, solution proposals and research directions in safety and risk assessment of autonomous shipping
  publication-title: Probabilistic Saf Assess Manag PSAM
– volume: 253
  year: 2025
  ident: 10.1016/j.ress.2025.111801_bib0068
  article-title: Systems driven intelligent decision support methods for ship collision and grounding prevention: present status, possible solutions, and challenges
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2024.110489
– volume: 257
  year: 2025
  ident: 10.1016/j.ress.2025.111801_bib0011
  article-title: Graph neural networks enabled accident causation prediction for maritime vessel traffic
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2025.110804
– volume: 271
  year: 2023
  ident: 10.1016/j.ress.2025.111801_bib0058
  article-title: Data-driven methods for detection of abnormal ship behavior: progress and trends
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2023.113673
– volume: 258
  year: 2025
  ident: 10.1016/j.ress.2025.111801_bib0002
  article-title: A systems-theoretic approach using association rule mining and predictive bayesian trend analysis to identify patterns in maritime accident causes
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2025.110911
– volume: 315
  year: 2025
  ident: 10.1016/j.ress.2025.111801_bib0032
  article-title: A machine learning method for the recognition of ship behavior using AIS data
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2024.119791
– volume: 256
  year: 2024
  ident: 10.1016/j.ress.2025.111801_bib0034
  article-title: Analyzing risk influencing factors of ship collision accidents: a data-driven bayesian network model integrating physical knowledge
  publication-title: Ocean Coast Manag
  doi: 10.1016/j.ocecoaman.2024.107311
– volume: 248
  year: 2024
  ident: 10.1016/j.ress.2025.111801_bib0036
  article-title: Predicting maritime accident risk using Automated Machine Learning
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2024.110148
– volume: 192
  year: 2024
  ident: 10.1016/j.ress.2025.111801_bib0026
  article-title: Bi-directional information fusion-driven deep network for ship trajectory prediction in intelligent transportation systems
  publication-title: Transp Res E: Logist Transp Rev
  doi: 10.1016/j.tre.2024.103770
– volume: 284
  year: 2024
  ident: 10.1016/j.ress.2025.111801_bib0027
  article-title: Unsupervised maritime anomaly detection for intelligent situational awareness using AIS data
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2023.111313
– volume: 55
  start-page: 84
  issue: 1
  year: 2014
  ident: 10.1016/j.ress.2025.111801_bib0033
  article-title: Anomaly detection in vessel tracks using bayesian networks
  publication-title: Int J Approx Reason
  doi: 10.1016/j.ijar.2013.03.012
– volume: 228
  year: 2022
  ident: 10.1016/j.ress.2025.111801_bib0006
  article-title: Risk assessment of marine accidents with Fuzzy Bayesian Networks and causal analysis
  publication-title: Ocean Coast Manage
  doi: 10.1016/j.ocecoaman.2022.106323
– start-page: 160
  year: 2013
  ident: 10.1016/j.ress.2025.111801_bib0004
  article-title: Density-based clustering based on hierarchical Density estimates
– volume: 256
  year: 2025
  ident: 10.1016/j.ress.2025.111801_bib0014
  article-title: Predicting a passenger ship's response during evasive maneuvers using Bayesian Learning
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2024.110765
– volume: 234
  year: 2023
  ident: 10.1016/j.ress.2025.111801_bib0020
  article-title: Development and testing of a risk-based control system for autonomous ships
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2023.109195
– volume: 201
  year: 2020
  ident: 10.1016/j.ress.2025.111801_bib0017
  article-title: Mobility pattern analysis of ship trajectories based on semantic transformation and topic model
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2020.107092
– volume: 262
  year: 2025
  ident: 10.1016/j.ress.2025.111801_bib0010
  article-title: Improved identification of maritime risk-influencing factors using AIS data in regression analysis
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2025.111156
– start-page: 1
  year: 2025
  ident: 10.1016/j.ress.2025.111801_bib0029
  article-title: Research on ship anomaly detection algorithm based on transformer-GSA encoder
  publication-title: IEEE Trans Intell Transp Syst
– volume: 330
  year: 2025
  ident: 10.1016/j.ress.2025.111801_bib0067
  article-title: Detecting abnormal ship states and joint risky behaviors based on an improved graph attention network
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2025.121138
– volume: 231
  year: 2023
  ident: 10.1016/j.ress.2025.111801_bib0043
  article-title: AIS-based maritime anomaly traffic detection: a review
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.120561
– volume: 317
  year: 2025
  ident: 10.1016/j.ress.2025.111801_bib0012
  article-title: Intelligent ship path planning based on improved artificial potential field in narrow inland waterways
  publication-title: Ocean Eng
– volume: 330
  year: 2025
  ident: 10.1016/j.ress.2025.111801_bib0041
  article-title: Multi-stage trajectory compression via speed information for preserving maritime traffic information integrity
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2025.121073
– ident: 10.1016/j.ress.2025.111801_bib0022
– volume: 253
  year: 2024
  ident: 10.1016/j.ress.2025.111801_bib0053
  article-title: Reference path for ships in ports and waterways based on optimal control
  publication-title: Ocean Coast Manag
  doi: 10.1016/j.ocecoaman.2024.107168
– volume: 20
  start-page: 53
  year: 1987
  ident: 10.1016/j.ress.2025.111801_bib0046
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J Comput Appl Math
  doi: 10.1016/0377-0427(87)90125-7
SSID ssj0004957
Score 2.4706452
Snippet •A HybridAttn-BiRNN model with temporal and feature attention is proposed for ship trajectory prediction.•An anomaly detection framework integrating HDBSCAN...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 111801
SubjectTerms AIS data
Anomaly detection
Deep neural networks
HDBSCAN
Ship behavior
Title Anomaly detection of ship behavior based on deep neural networks
URI https://dx.doi.org/10.1016/j.ress.2025.111801
Volume 266
WOSCitedRecordID wos001608386000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0951-8320
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004957
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELaWdg_sAbEsaHmtfOAWpUqc2IlvVKj7OlR7AKm3yI2dVRGkhbao_feMYzsJqIvoYS9R5SaTyPNlPDOZ-YzQBWMqULKgfsKEzlbFic9TePGESEXIBElFLqvNJpLhMB2N-B-b0J9X2wkkZZmuVnz2X1UNY6Bs3Tq7hbproTAAv0HpcAS1w_FdioeA_l7crT2pFip3_qCtyTIt-Z5euqT-TCCVmnma0hIUVZqC8HnbXdUFy4bIe-2phrmwwovhgPbmorBUIobpcVkZdfHglkTtJNuy3_60Lv-ZLM23fhC6njZn_rCdEKL8u5q4cZuTIHUZcyu5GPpgK4K2nSWsbSlDzT0XbjTiJp9w29P5BojgCe01J79kzH61ktX1ha507TbTMjItIzMydlCXJJSnHdTt_xqMfjc9tNywwrontw1Wphbw9ZNsdmJajsn1PtqzEQXuGyR8Rh9UeYA-tXgmv6BLiwlcYwJPC6wxgR0mcIUJDP9oTGCDCewwcYhuvg-ur376dusMPyc0WvhcMiLAeDNFiFIUfHzCElaklLOYBoIUUgaa2y6QVFDJeBBIFsrxmObjuAiKKDpCnXJaqq8I50kOTn7ORBirWI0ZFxGE0EUEnmYqIXo9Rp6bi2xmGFKyf8__MaJuujLr4xnfLQPtv3HdyVZ3OUW7DSzPUGfxuFTn6GP-tJjMH79Z1T8DbzdxPg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+detection+of+ship+behavior+based+on+deep+neural+networks&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Shu%2C+Yaqing&rft.au=Dong%2C+Ao&rft.au=Liu%2C+Chengyong&rft.au=Gan%2C+Langxiong&rft.date=2026-02-01&rft.issn=0951-8320&rft.volume=266&rft.spage=111801&rft_id=info:doi/10.1016%2Fj.ress.2025.111801&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ress_2025_111801
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon