Anomaly detection of ship behavior based on deep neural networks
•A HybridAttn-BiRNN model with temporal and feature attention is proposed for ship trajectory prediction.•An anomaly detection framework integrating HDBSCAN clustering and the HybridAttn-BiRNN model is established.•Multiple anomaly types are detected using threshold discrimination and feature deviat...
Uloženo v:
| Vydáno v: | Reliability engineering & system safety Ročník 266; s. 111801 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.02.2026
|
| Témata: | |
| ISSN: | 0951-8320 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A HybridAttn-BiRNN model with temporal and feature attention is proposed for ship trajectory prediction.•An anomaly detection framework integrating HDBSCAN clustering and the HybridAttn-BiRNN model is established.•Multiple anomaly types are detected using threshold discrimination and feature deviation analysis.•Ship anomalies are detected with 92.7 % accuracy using Shanghai Port AIS data in experiments.
With the acceleration of the digitalization process in the global shipping industry. The anomaly detection of ship behaviors, including ship speed, course, and trajectory, has become a core challenge to ensure maritime traffic safety. To address this challenge, a method that integrates a hierarchical density-based spatial clustering algorithm (HDBSCAN) with a deep learning model is proposed in this paper. Unlike conventional approaches that rely solely on clustering or prediction models, AIS trajectories are compressed and clustered by our method to extract normal behavior patterns. Ship behavior is then predicted using a deep learning model with feature and temporal attention mechanisms. A dual-threshold mechanism is employed to identify various anomalies, including speed and course deviations, based on prediction errors. A case study is conducted using the AIS data from the waters of Shanghai Port. The experimental results show that abnormal ship behavior can be effectively identified by this method, with an average detection accuracy of 92.7% for various types of anomalies. The method proposed in this research could proactively identify potential maritime risks, thereby improving the overall safety and reliability of shipping operations. |
|---|---|
| AbstractList | •A HybridAttn-BiRNN model with temporal and feature attention is proposed for ship trajectory prediction.•An anomaly detection framework integrating HDBSCAN clustering and the HybridAttn-BiRNN model is established.•Multiple anomaly types are detected using threshold discrimination and feature deviation analysis.•Ship anomalies are detected with 92.7 % accuracy using Shanghai Port AIS data in experiments.
With the acceleration of the digitalization process in the global shipping industry. The anomaly detection of ship behaviors, including ship speed, course, and trajectory, has become a core challenge to ensure maritime traffic safety. To address this challenge, a method that integrates a hierarchical density-based spatial clustering algorithm (HDBSCAN) with a deep learning model is proposed in this paper. Unlike conventional approaches that rely solely on clustering or prediction models, AIS trajectories are compressed and clustered by our method to extract normal behavior patterns. Ship behavior is then predicted using a deep learning model with feature and temporal attention mechanisms. A dual-threshold mechanism is employed to identify various anomalies, including speed and course deviations, based on prediction errors. A case study is conducted using the AIS data from the waters of Shanghai Port. The experimental results show that abnormal ship behavior can be effectively identified by this method, with an average detection accuracy of 92.7% for various types of anomalies. The method proposed in this research could proactively identify potential maritime risks, thereby improving the overall safety and reliability of shipping operations. |
| ArticleNumber | 111801 |
| Author | Liu, Chengyong Gan, Langxiong Shu, Yaqing Dong, Ao Song, Lan |
| Author_xml | – sequence: 1 givenname: Yaqing surname: Shu fullname: Shu, Yaqing organization: State Key Laboratory of Maritime Technology and Safety, Wuhan University of Technology, Wuhan 430063, China – sequence: 2 givenname: Ao surname: Dong fullname: Dong, Ao organization: School of Navigation, Wuhan University of Technology, Wuhan 430063, China – sequence: 3 givenname: Chengyong surname: Liu fullname: Liu, Chengyong organization: State Key Laboratory of Maritime Technology and Safety, Wuhan University of Technology, Wuhan 430063, China – sequence: 4 givenname: Langxiong surname: Gan fullname: Gan, Langxiong organization: State Key Laboratory of Maritime Technology and Safety, Wuhan University of Technology, Wuhan 430063, China – sequence: 5 givenname: Lan surname: Song fullname: Song, Lan email: lansong@eitech.edu.cn organization: College of Engineering, Eastern Institute of Technology, Ningbo 315200, China |
| BookMark | eNp9j71OwzAUhT0UibbwAkx-gYRrJ3YSiYGq4k-qxAKz5cTXqkMaR3Yo6tuTKMxMZzj6js63Iave90jIHYOUAZP3bRowxpQDFyljrAS2ImuoBEvKjMM12cTYAkBeiWJNHne9P-nuQg2O2IzO99RbGo9uoDUe9dn5QGsd0dCpMYgD7fE76G6K8ceHr3hDrqzuIt7-5ZZ8Pj997F-Tw_vL2353SBousjGpjOS6yEAi54iiKHIuC2lLUclcgObWGMihFGCEFkZWAEYyU9eiqXMLNsu2hC-7TfAxBrRqCO6kw0UxULO3atXsrWZvtXhP0MMC4fTs7DCo2DjsGzQuTLbKePcf_gvZLGSh |
| Cites_doi | 10.1109/TGCN.2022.3158004 10.1016/j.oceaneng.2024.119189 10.1016/j.ocecoaman.2024.107473 10.1016/j.ocecoaman.2021.106015 10.1016/j.ress.2024.110344 10.1016/j.ress.2021.108061 10.1016/j.oceaneng.2023.116640 10.1016/j.aap.2023.107342 10.1016/j.tra.2025.104427 10.1016/j.trc.2020.102685 10.1016/j.oceaneng.2024.119530 10.1016/j.ress.2024.110105 10.1016/j.eswa.2017.09.040 10.1016/j.ress.2024.110553 10.1016/j.ress.2024.110046 10.1016/j.oceaneng.2024.119057 10.1016/j.ocecoaman.2024.107320 10.1016/j.isatra.2021.02.030 10.3390/jmse9060566 10.1109/TPAMI.1979.4766909 10.1016/j.oceaneng.2025.121303 10.1016/j.joes.2021.03.001 10.1017/S0373463319000031 10.1016/j.ress.2021.107819 10.1016/j.ress.2020.107395 10.1016/j.oceaneng.2025.121023 10.1016/j.apenergy.2024.123382 10.1016/j.oceaneng.2023.116316 10.1016/j.oceaneng.2022.112777 10.1016/j.ress.2025.110810 10.1109/TITS.2021.3055614 10.1016/j.trpro.2014.10.051 10.1016/j.oceaneng.2024.117186 10.1016/j.ress.2024.110463 10.1016/j.oceaneng.2023.115723 10.1016/j.oceaneng.2025.120796 10.1016/j.ress.2023.109166 10.1016/j.oceaneng.2024.118026 10.1109/TITS.2022.3190834 10.1016/j.oceaneng.2023.116082 10.1016/j.ress.2024.110187 10.1016/j.ress.2024.110489 10.1016/j.ress.2025.110804 10.1016/j.oceaneng.2023.113673 10.1016/j.ress.2025.110911 10.1016/j.oceaneng.2024.119791 10.1016/j.ocecoaman.2024.107311 10.1016/j.ress.2024.110148 10.1016/j.tre.2024.103770 10.1016/j.knosys.2023.111313 10.1016/j.ijar.2013.03.012 10.1016/j.ocecoaman.2022.106323 10.1016/j.ress.2024.110765 10.1016/j.ress.2023.109195 10.1016/j.oceaneng.2020.107092 10.1016/j.ress.2025.111156 10.1016/j.oceaneng.2025.121138 10.1016/j.eswa.2023.120561 10.1016/j.oceaneng.2025.121073 10.1016/j.ocecoaman.2024.107168 10.1016/0377-0427(87)90125-7 |
| ContentType | Journal Article |
| Copyright | 2025 |
| Copyright_xml | – notice: 2025 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ress.2025.111801 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_ress_2025_111801 S0951832025010014 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9DU 9JN 9JO AABNK AAEDT AAEDW AAFJI AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABEFU ABFNM ABJNI ABMAC ABMMH ABWVN ABXDB ACDAQ ACGFS ACIWK ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFRAH AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOMHK APXCP ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSB SSO SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~G- ~HD AAYXX CITATION |
| ID | FETCH-LOGICAL-c253t-9d62a7306e22ee57742676f8596450a2fdd040850d5a5d6900d61dbb5cb4f0f33 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001608386000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0951-8320 |
| IngestDate | Thu Nov 27 01:06:25 EST 2025 Wed Dec 10 14:26:09 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | HDBSCAN AIS data Deep neural networks Anomaly detection Ship behavior |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c253t-9d62a7306e22ee57742676f8596450a2fdd040850d5a5d6900d61dbb5cb4f0f33 |
| ParticipantIDs | crossref_primary_10_1016_j_ress_2025_111801 elsevier_sciencedirect_doi_10_1016_j_ress_2025_111801 |
| PublicationCentury | 2000 |
| PublicationDate | February 2026 2026-02-00 |
| PublicationDateYYYYMMDD | 2026-02-01 |
| PublicationDate_xml | – month: 02 year: 2026 text: February 2026 |
| PublicationDecade | 2020 |
| PublicationTitle | Reliability engineering & system safety |
| PublicationYear | 2026 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhang, Lee, Lee (bib0066) 2018; 92 Dugan, Utne (bib0010) 2025; 262 Gan, Zheng, Song, Cui, Shu, Yang (bib0013) 2025; 331 Zhang, Ren, Wang, Wang (bib0064) 2020 Murray, Perera (bib0038) 2022; 7 Rousseeuw (bib0046) 1987; 20 Wang, Wang, Ding, Yu (bib0057) 2024; 252 Jiang, Zhang, Wan, Zhang, Soares (bib0019) 2024; 259 Wang, Chen, Chen, Mou (bib0056) 2021; 9 Bolbot, Bergström, Rahikainen, Valdez Banda (bib0003) 2025; 257 Montewka, Wróbel, Heikkilä, Valdez Banda, Goerlandt, Haugen (bib0035) 2018; 14 Zaman, Marijan, Kholodna (bib0063) 2024; 312 Zhang, Taimuri, Zhang, Zhang, Yan, Kujala, Hirdaris (bib0068) 2025; 253 Osekowska, Johnson, Carlsson (bib0040) 2014; 3 Zhang, Liu, Guo, Liu (bib0065) 2023; 288 Hussain, Zhang (bib0018) 2025; 254 Xu, Huang, Huang, Wen, Cheng, van Gelder (bib0060) 2025; 329 Czaplewski, Dzwonkowski (bib0007) 2022; 119 Davies, Bouldin (bib0008) 2009 Shu, Xiong, Zhu, Liu, Liu, Xu, Gan, Zhang (bib0053) 2024; 253 Yildiz, Uğurlu, Wang, Loughney (bib0061) 2021; 208 Gan, Gao, Zhang, Xu, Liu, Xie, Shu (bib0011) 2025; 257 Liu, Li, Liu (bib0030) 2024; 305 Nguyen, Vadaine, Hajduch, Garello, Fablet (bib0039) 2022; 23 Ma, Lian, Zhang, Lang, Rong, Mao, Zhang (bib0032) 2025; 315 Singh, Fowdur, Gawlikowski, Medina (bib0054) 2022; 23 Shu, Hu, Zheng, Gan, Xiao, Zhou, Song (bib0051) 2023; 287 Zhou, Shen, Fu, Zhang, Hao (bib0070) 2025; 325 Laxhammar, R., Falkman, G., Sviestins, E., Ieee, 2009. Anomaly detection in sea traffic - a comparison of the Gaussian Mixture Model and the kernel density Estimator, FUSION: 2009 12TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, pp. 756-+. Munim, Sørli, Kim, Alon (bib0036) 2024; 248 Rong, Teixeira, Guedes Soares (bib0045) 2024; 247 Zhao, Shi (bib0069) 2019; 72 Ou, Wang, Liu, Zhu, Li, Zhao, Deng (bib0041) 2025; 330 Guo, Bolbot, Valdez Banda (bib0015) 2024; 312 Han, Zhang, Fan, Zhang, Zhang (bib0016) 2024; 194 Lentzakis, Seshadri, Akkinepally, Vu, Ben-Akiva (bib0023) 2020; 118 Li, Çelik, Bashir, Zou, Yang (bib0024) 2024; 249 Gil, Montewka, Krata (bib0014) 2025; 256 Liu, Guo, Nie, Hu, Xiong, Yu, Guizani (bib0031) 2022; 6 Shu, Han, Song, Yan, Gan, Zhu, Zheng (bib0050) 2024; 367 Gan, Li, Yan, Song, Xiao, Shu (bib0012) 2025; 317 Papageorgiou, Hansen, Dittmann, Blanke (bib0042) 2022; 266 Wang, Liu, Liu, Liu, Yuan (bib0058) 2023; 271 Duan, Ma, Miao, Zhang (bib0009) 2022; 218 Liu, Jia, Li, Liu, Qi (bib0028) 2023; 290 Shiokari, Itoh, Yuzui, Ishimura, Miyake, Kudo, Kawashima (bib0048) 2024; 247 Rong, Teixeira, Guedes Soares (bib0044) 2022; 217 Smith, Reece, Roberts, Rezek (bib0055) 2012 Li, Li, Wang, Yang, Guan, Zhang (bib0025) 2024; 313 Murray, Perera (bib0037) 2021; 215 Bairami-Khankandi, Bolbot, BahooToroody, Goerlandt (bib0002) 2025; 258 Chen, Zhang, Huang, Dai, Hu (bib0006) 2022; 228 Kong, Lin, Li, He (bib0021) 2024; 251 Xie, Bai, Xu, Xiao (bib0059) 2024; 293 Huang, Wen, Guo, Zhu, Zhou, Zhang, Zhu (bib0017) 2020; 201 Mascaro, Nicholson, Korb (bib0033) 2014; 55 Meng, Li, Zhang, Zhou, Yang (bib0034) 2024; 256 Johansen, Blindheim, Torben, Utne, Johansen, Sørensen (bib0020) 2023; 234 Liang, Weng, Gao, Li, Du (bib0027) 2024; 284 Li, Xing, Jiao, Yuen, Gao, Li, Matthews, Yang (bib0026) 2024; 192 Shu, Huang, Wu, Chen, Song, Gan, Yang (bib0052) 2025 Antão, Sun, Teixeira, Guedes Soares (bib0001) 2023; 234 Yu, Liu, Kong, Xin (bib0062) 2025; 194 Shahir, Glasser, Shahir, Wehn (bib0047) 2015 Liu, Wu, Li, Zong, Shu (bib0029) 2025 Zhang, Liu, Zhang, Wu, Dong (bib0067) 2025; 330 Campello, Moulavi, Sander (bib0004) 2013 Ribeiro, Paes, Oliveira (bib0043) 2023; 231 Shu, Cui, Song, Gan, Xu, Wu, Zheng (bib0049) 2024; 256 Chen, Yang, Mou, Chen, Li (bib0005) 2024; 299 Li (10.1016/j.ress.2025.111801_bib0025) 2024; 313 Shu (10.1016/j.ress.2025.111801_bib0049) 2024; 256 Rousseeuw (10.1016/j.ress.2025.111801_bib0046) 1987; 20 Zhang (10.1016/j.ress.2025.111801_bib0066) 2018; 92 Zhou (10.1016/j.ress.2025.111801_bib0070) 2025; 325 Wang (10.1016/j.ress.2025.111801_bib0058) 2023; 271 Shu (10.1016/j.ress.2025.111801_bib0051) 2023; 287 Smith (10.1016/j.ress.2025.111801_bib0055) 2012 Nguyen (10.1016/j.ress.2025.111801_bib0039) 2022; 23 Zaman (10.1016/j.ress.2025.111801_bib0063) 2024; 312 Zhang (10.1016/j.ress.2025.111801_bib0068) 2025; 253 Rong (10.1016/j.ress.2025.111801_bib0045) 2024; 247 Davies (10.1016/j.ress.2025.111801_bib0008) 2009 Johansen (10.1016/j.ress.2025.111801_bib0020) 2023; 234 Wang (10.1016/j.ress.2025.111801_bib0057) 2024; 252 Zhang (10.1016/j.ress.2025.111801_bib0065) 2023; 288 Jiang (10.1016/j.ress.2025.111801_bib0019) 2024; 259 Papageorgiou (10.1016/j.ress.2025.111801_bib0042) 2022; 266 Campello (10.1016/j.ress.2025.111801_bib0004) 2013 Dugan (10.1016/j.ress.2025.111801_bib0010) 2025; 262 Shu (10.1016/j.ress.2025.111801_bib0052) 2025 Kong (10.1016/j.ress.2025.111801_bib0021) 2024; 251 Czaplewski (10.1016/j.ress.2025.111801_bib0007) 2022; 119 Liu (10.1016/j.ress.2025.111801_bib0030) 2024; 305 Mascaro (10.1016/j.ress.2025.111801_bib0033) 2014; 55 Zhang (10.1016/j.ress.2025.111801_bib0064) 2020 Gil (10.1016/j.ress.2025.111801_bib0014) 2025; 256 Shahir (10.1016/j.ress.2025.111801_bib0047) 2015 Gan (10.1016/j.ress.2025.111801_bib0013) 2025; 331 Shu (10.1016/j.ress.2025.111801_bib0053) 2024; 253 Guo (10.1016/j.ress.2025.111801_bib0015) 2024; 312 Liu (10.1016/j.ress.2025.111801_bib0028) 2023; 290 Munim (10.1016/j.ress.2025.111801_bib0036) 2024; 248 Meng (10.1016/j.ress.2025.111801_bib0034) 2024; 256 Singh (10.1016/j.ress.2025.111801_bib0054) 2022; 23 Hussain (10.1016/j.ress.2025.111801_bib0018) 2025; 254 Shu (10.1016/j.ress.2025.111801_bib0050) 2024; 367 Murray (10.1016/j.ress.2025.111801_bib0037) 2021; 215 Zhang (10.1016/j.ress.2025.111801_bib0067) 2025; 330 Antão (10.1016/j.ress.2025.111801_bib0001) 2023; 234 Bairami-Khankandi (10.1016/j.ress.2025.111801_bib0002) 2025; 258 Liu (10.1016/j.ress.2025.111801_bib0031) 2022; 6 Ribeiro (10.1016/j.ress.2025.111801_bib0043) 2023; 231 Duan (10.1016/j.ress.2025.111801_bib0009) 2022; 218 Gan (10.1016/j.ress.2025.111801_bib0011) 2025; 257 Osekowska (10.1016/j.ress.2025.111801_bib0040) 2014; 3 Yu (10.1016/j.ress.2025.111801_bib0062) 2025; 194 Ma (10.1016/j.ress.2025.111801_bib0032) 2025; 315 Ou (10.1016/j.ress.2025.111801_bib0041) 2025; 330 Xu (10.1016/j.ress.2025.111801_bib0060) 2025; 329 Li (10.1016/j.ress.2025.111801_bib0026) 2024; 192 Montewka (10.1016/j.ress.2025.111801_bib0035) 2018; 14 Liang (10.1016/j.ress.2025.111801_bib0027) 2024; 284 Han (10.1016/j.ress.2025.111801_bib0016) 2024; 194 Zhao (10.1016/j.ress.2025.111801_bib0069) 2019; 72 Chen (10.1016/j.ress.2025.111801_bib0005) 2024; 299 Huang (10.1016/j.ress.2025.111801_bib0017) 2020; 201 Gan (10.1016/j.ress.2025.111801_bib0012) 2025; 317 Yildiz (10.1016/j.ress.2025.111801_bib0061) 2021; 208 Liu (10.1016/j.ress.2025.111801_bib0029) 2025 Wang (10.1016/j.ress.2025.111801_bib0056) 2021; 9 Xie (10.1016/j.ress.2025.111801_bib0059) 2024; 293 Bolbot (10.1016/j.ress.2025.111801_bib0003) 2025; 257 Li (10.1016/j.ress.2025.111801_bib0024) 2024; 249 Chen (10.1016/j.ress.2025.111801_bib0006) 2022; 228 Murray (10.1016/j.ress.2025.111801_bib0038) 2022; 7 10.1016/j.ress.2025.111801_bib0022 Lentzakis (10.1016/j.ress.2025.111801_bib0023) 2020; 118 Shiokari (10.1016/j.ress.2025.111801_bib0048) 2024; 247 Rong (10.1016/j.ress.2025.111801_bib0044) 2022; 217 |
| References_xml | – volume: 266 year: 2022 ident: bib0042 article-title: Anticipation of ship behaviours in multi-vessel scenarios publication-title: Ocean Eng – volume: 6 start-page: 1574 year: 2022 end-page: 1587 ident: bib0031 article-title: Intelligent edge-enabled efficient multi-source data fusion for autonomous surface vehicles in maritime internet of things publication-title: IEEE Trans Green Commun Netw – volume: 9 year: 2021 ident: bib0056 article-title: Ship AIS trajectory clustering: an HDBSCAN-based approach publication-title: J Mar Sci Eng – volume: 218 year: 2022 ident: bib0009 article-title: A semi-supervised deep learning approach for vessel trajectory classification based on AIS data publication-title: Ocean Coast Manag – volume: 293 year: 2024 ident: bib0059 article-title: An anomaly detection method based on ship behavior trajectory publication-title: Ocean Eng – volume: 215 year: 2021 ident: bib0037 article-title: An AIS-based deep learning framework for regional ship behavior prediction publication-title: Reliab Eng Syst Saf – volume: 258 year: 2025 ident: bib0002 article-title: A systems-theoretic approach using association rule mining and predictive bayesian trend analysis to identify patterns in maritime accident causes publication-title: Reliab Eng Syst Saf – volume: 248 year: 2024 ident: bib0036 article-title: Predicting maritime accident risk using Automated Machine Learning publication-title: Reliab Eng Syst Saf – volume: 72 start-page: 894 year: 2019 end-page: 916 ident: bib0069 article-title: Maritime anomaly detection using density-based clustering and recurrent neural network publication-title: J Navig – volume: 234 year: 2023 ident: bib0020 article-title: Development and testing of a risk-based control system for autonomous ships publication-title: Reliab Eng Syst Saf – volume: 217 year: 2022 ident: bib0044 article-title: Maritime traffic probabilistic prediction based on ship motion pattern extraction publication-title: Reliab Eng Syst Saf – volume: 330 year: 2025 ident: bib0067 article-title: Detecting abnormal ship states and joint risky behaviors based on an improved graph attention network publication-title: Ocean Eng – volume: 251 year: 2024 ident: bib0021 article-title: Development of an improved Bayesian network method for maritime accident safety assessment based on multiscale scenario analysis theory publication-title: Reliab Eng Syst Saf – volume: 256 year: 2024 ident: bib0034 article-title: Analyzing risk influencing factors of ship collision accidents: a data-driven bayesian network model integrating physical knowledge publication-title: Ocean Coast Manag – start-page: 224 year: 2009 end-page: 227 ident: bib0008 article-title: A cluster separation measure publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 262 year: 2025 ident: bib0010 article-title: Improved identification of maritime risk-influencing factors using AIS data in regression analysis publication-title: Reliab Eng Syst Saf – volume: 271 year: 2023 ident: bib0058 article-title: Data-driven methods for detection of abnormal ship behavior: progress and trends publication-title: Ocean Eng – volume: 329 year: 2025 ident: bib0060 article-title: A framework for ship semantic behavior representation and indexing publication-title: Ocean Eng – start-page: 160 year: 2013 end-page: 172 ident: bib0004 article-title: Density-based clustering based on hierarchical Density estimates publication-title: Advances in knowledge discovery and data mining – volume: 284 year: 2024 ident: bib0027 article-title: Unsupervised maritime anomaly detection for intelligent situational awareness using AIS data publication-title: Knowl Based Syst – volume: 201 year: 2020 ident: bib0017 article-title: Mobility pattern analysis of ship trajectories based on semantic transformation and topic model publication-title: Ocean Eng – volume: 313 year: 2024 ident: bib0025 article-title: STAD: ship trajectory anomaly detection in ocean with dynamic pattern clustering publication-title: Ocean Eng – volume: 330 year: 2025 ident: bib0041 article-title: Multi-stage trajectory compression via speed information for preserving maritime traffic information integrity publication-title: Ocean Eng – volume: 331 year: 2025 ident: bib0013 article-title: A multi-vector-field based inland ship path planning using an anisotropic fast marching method publication-title: Ocean Eng – volume: 118 year: 2020 ident: bib0023 article-title: Hierarchical density-based clustering methods for tolling zone definition and their impact on distance-based toll optimization publication-title: Transp Res C: Emerg Technol – volume: 194 year: 2025 ident: bib0062 article-title: Time-evolving graph-based approach for multi-ship encounter analysis: insights into ship behavior across different scenario complexity levels publication-title: Transp Res A Policy Pract – volume: 312 year: 2024 ident: bib0063 article-title: Online Ornstein–Uhlenbeck based anomaly detection and behavior classification using AIS data in maritime publication-title: Ocean Eng – volume: 231 year: 2023 ident: bib0043 article-title: AIS-based maritime anomaly traffic detection: a review publication-title: Expert Syst Appl – volume: 305 year: 2024 ident: bib0030 article-title: AIS-based kinematic anomaly classification for maritime surveillance publication-title: Ocean Eng – volume: 194 year: 2024 ident: bib0016 article-title: A dynamic Bayesian network model to evaluate the availability of machinery systems in maritime autonomous surface ships publication-title: Accid Anal Prev – volume: 234 year: 2023 ident: bib0001 article-title: Quantitative assessment of ship collision risk influencing factors from worldwide accident and fleet data publication-title: Reliab Eng Syst Saf – volume: 257 year: 2025 ident: bib0011 article-title: Graph neural networks enabled accident causation prediction for maritime vessel traffic publication-title: Reliab Eng Syst Saf – volume: 256 year: 2024 ident: bib0049 article-title: Influence of sea ice on ship routes and speed along the Arctic Northeast Passage publication-title: Ocean Coast Manag – volume: 254 year: 2025 ident: bib0018 article-title: Machine learning-based outlier detection for pipeline in-line inspection data publication-title: Reliab Eng Syst Saf – volume: 315 year: 2025 ident: bib0032 article-title: A machine learning method for the recognition of ship behavior using AIS data publication-title: Ocean Eng – volume: 14 start-page: 16 year: 2018 end-page: 21 ident: bib0035 article-title: Challenges, solution proposals and research directions in safety and risk assessment of autonomous shipping publication-title: Probabilistic Saf Assess Manag PSAM – volume: 23 start-page: 5655 year: 2022 end-page: 5667 ident: bib0039 article-title: GeoTrackNet–A maritime anomaly detector using probabilistic neural network representation of AIS tracks and A contrario detection publication-title: IEEE Trans Intell Transp Syst – volume: 253 year: 2025 ident: bib0068 article-title: Systems driven intelligent decision support methods for ship collision and grounding prevention: present status, possible solutions, and challenges publication-title: Reliab Eng Syst Saf – start-page: 1 year: 2025 end-page: 11 ident: bib0052 article-title: Research on ship following behavior based on data mining in arctic waters publication-title: IEEE Trans Intell Transp Syst – volume: 288 year: 2023 ident: bib0065 article-title: A novel ship trajectory clustering analysis and anomaly detection method based on AIS data publication-title: Ocean Eng – start-page: 1279 year: 2015 end-page: 1289 ident: bib0047 article-title: Maritime situation analysis framework vessel interaction classification and anomaly detection publication-title: PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA – volume: 312 year: 2024 ident: bib0015 article-title: An adaptive trajectory compression and feature preservation method for maritime traffic analysis publication-title: Ocean Eng – start-page: 316 year: 2020 end-page: 320 ident: bib0064 article-title: Research progress on ship anomaly detection based on big data publication-title: 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS). IEEE – start-page: 1 year: 2025 end-page: 12 ident: bib0029 article-title: Research on ship anomaly detection algorithm based on transformer-GSA encoder publication-title: IEEE Trans Intell Transp Syst – volume: 299 year: 2024 ident: bib0005 article-title: Regional ship behavior and trajectory prediction for maritime traffic management: a social generative adversarial network approach publication-title: Ocean Eng – volume: 259 year: 2024 ident: bib0019 article-title: A data-driven bayesian network model for risk influencing factors quantification based on global maritime accident database publication-title: Ocean Coast Manag – volume: 119 start-page: 1 year: 2022 end-page: 16 ident: bib0007 article-title: A novel approach exploiting properties of convolutional neural networks for vessel movement anomaly detection and classification publication-title: ISA Trans – reference: Laxhammar, R., Falkman, G., Sviestins, E., Ieee, 2009. Anomaly detection in sea traffic - a comparison of the Gaussian Mixture Model and the kernel density Estimator, FUSION: 2009 12TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, pp. 756-+. – volume: 317 year: 2025 ident: bib0012 article-title: Intelligent ship path planning based on improved artificial potential field in narrow inland waterways publication-title: Ocean Eng – volume: 208 year: 2021 ident: bib0061 article-title: Application of the HFACS-PV approach for identification of human and organizational factors (HOFs) influencing marine accidents publication-title: Reliab Eng Syst Saf – volume: 192 year: 2024 ident: bib0026 article-title: Bi-directional information fusion-driven deep network for ship trajectory prediction in intelligent transportation systems publication-title: Transp Res E: Logist Transp Rev – volume: 20 start-page: 53 year: 1987 end-page: 65 ident: bib0046 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J Comput Appl Math – volume: 367 year: 2024 ident: bib0050 article-title: Analyzing the spatio-temporal correlation between tide and shipping behavior at estuarine port for energy-saving purposes publication-title: Appl Energy – volume: 325 year: 2025 ident: bib0070 article-title: Framework for detecting abnormal behaviors of passenger ships: a case study from the Yangtze River Estuary publication-title: Ocean Eng – volume: 253 year: 2024 ident: bib0053 article-title: Reference path for ships in ports and waterways based on optimal control publication-title: Ocean Coast Manag – volume: 7 start-page: 1 year: 2022 end-page: 13 ident: bib0038 article-title: Ship behavior prediction via trajectory extraction-based clustering for maritime situation awareness publication-title: J Ocean Eng Sci – volume: 257 year: 2025 ident: bib0003 article-title: Investigation into safety acceptance principles for autonomous ships publication-title: Reliab Eng Syst Saf – volume: 290 year: 2023 ident: bib0028 article-title: The model of vessel trajectory abnormal behavior detection based on graph attention prediction and reconstruction network publication-title: Ocean Eng – volume: 247 year: 2024 ident: bib0048 article-title: Structure model-based hazard identification method for autonomous ships publication-title: Reliab Eng Syst Saf – volume: 287 year: 2023 ident: bib0051 article-title: Evaluation of ship emission intensity and the inaccuracy of exhaust emission estimation model publication-title: Ocean Eng – volume: 252 year: 2024 ident: bib0057 article-title: Interaction aware and multi-modal distribution for ship trajectory prediction with spatio-temporal crisscross hybrid network publication-title: Reliab Eng Syst Saf – volume: 3 start-page: 720 year: 2014 end-page: 729 ident: bib0040 article-title: Grid size optimization for potential field based maritime anomaly detection publication-title: Transp Res Procedia – volume: 256 year: 2025 ident: bib0014 article-title: Predicting a passenger ship's response during evasive maneuvers using Bayesian Learning publication-title: Reliab Eng Syst Saf – volume: 55 start-page: 84 year: 2014 end-page: 98 ident: bib0033 article-title: Anomaly detection in vessel tracks using bayesian networks publication-title: Int J Approx Reason – volume: 249 year: 2024 ident: bib0024 article-title: Incorporation of a global perspective into data-driven analysis of maritime collision accident risk publication-title: Reliab Eng Syst Saf – volume: 247 year: 2024 ident: bib0045 article-title: A framework for ship abnormal behaviour detection and classification using AIS data publication-title: Reliab Eng Syst Saf – volume: 92 start-page: 1 year: 2018 end-page: 11 ident: bib0066 article-title: Hierarchical trajectory clustering for spatio-temporal periodic pattern mining publication-title: Expert Syst Appl – volume: 228 year: 2022 ident: bib0006 article-title: Risk assessment of marine accidents with Fuzzy Bayesian Networks and causal analysis publication-title: Ocean Coast Manage – volume: 23 start-page: 23488 year: 2022 end-page: 23502 ident: bib0054 article-title: Leveraging graph and deep learning uncertainties to detect anomalous maritime trajectories publication-title: IEEE Trans Intell Transp Syst – start-page: 645 year: 2012 end-page: 654 ident: bib0055 article-title: Online maritime abnormality detection using gaussian processes and Extreme value theory publication-title: 12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2012) – volume: 6 start-page: 1574 issue: 3 year: 2022 ident: 10.1016/j.ress.2025.111801_bib0031 article-title: Intelligent edge-enabled efficient multi-source data fusion for autonomous surface vehicles in maritime internet of things publication-title: IEEE Trans Green Commun Netw doi: 10.1109/TGCN.2022.3158004 – volume: 312 year: 2024 ident: 10.1016/j.ress.2025.111801_bib0015 article-title: An adaptive trajectory compression and feature preservation method for maritime traffic analysis publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2024.119189 – start-page: 645 year: 2012 ident: 10.1016/j.ress.2025.111801_bib0055 article-title: Online maritime abnormality detection using gaussian processes and Extreme value theory – volume: 259 year: 2024 ident: 10.1016/j.ress.2025.111801_bib0019 article-title: A data-driven bayesian network model for risk influencing factors quantification based on global maritime accident database publication-title: Ocean Coast Manag doi: 10.1016/j.ocecoaman.2024.107473 – volume: 218 year: 2022 ident: 10.1016/j.ress.2025.111801_bib0009 article-title: A semi-supervised deep learning approach for vessel trajectory classification based on AIS data publication-title: Ocean Coast Manag doi: 10.1016/j.ocecoaman.2021.106015 – volume: 251 year: 2024 ident: 10.1016/j.ress.2025.111801_bib0021 article-title: Development of an improved Bayesian network method for maritime accident safety assessment based on multiscale scenario analysis theory publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2024.110344 – volume: 217 year: 2022 ident: 10.1016/j.ress.2025.111801_bib0044 article-title: Maritime traffic probabilistic prediction based on ship motion pattern extraction publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.108061 – volume: 293 year: 2024 ident: 10.1016/j.ress.2025.111801_bib0059 article-title: An anomaly detection method based on ship behavior trajectory publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2023.116640 – volume: 194 year: 2024 ident: 10.1016/j.ress.2025.111801_bib0016 article-title: A dynamic Bayesian network model to evaluate the availability of machinery systems in maritime autonomous surface ships publication-title: Accid Anal Prev doi: 10.1016/j.aap.2023.107342 – volume: 194 year: 2025 ident: 10.1016/j.ress.2025.111801_bib0062 article-title: Time-evolving graph-based approach for multi-ship encounter analysis: insights into ship behavior across different scenario complexity levels publication-title: Transp Res A Policy Pract doi: 10.1016/j.tra.2025.104427 – volume: 118 year: 2020 ident: 10.1016/j.ress.2025.111801_bib0023 article-title: Hierarchical density-based clustering methods for tolling zone definition and their impact on distance-based toll optimization publication-title: Transp Res C: Emerg Technol doi: 10.1016/j.trc.2020.102685 – volume: 313 year: 2024 ident: 10.1016/j.ress.2025.111801_bib0025 article-title: STAD: ship trajectory anomaly detection in ocean with dynamic pattern clustering publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2024.119530 – volume: 247 year: 2024 ident: 10.1016/j.ress.2025.111801_bib0045 article-title: A framework for ship abnormal behaviour detection and classification using AIS data publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2024.110105 – start-page: 316 year: 2020 ident: 10.1016/j.ress.2025.111801_bib0064 article-title: Research progress on ship anomaly detection based on big data – volume: 92 start-page: 1 year: 2018 ident: 10.1016/j.ress.2025.111801_bib0066 article-title: Hierarchical trajectory clustering for spatio-temporal periodic pattern mining publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.09.040 – volume: 254 year: 2025 ident: 10.1016/j.ress.2025.111801_bib0018 article-title: Machine learning-based outlier detection for pipeline in-line inspection data publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2024.110553 – volume: 247 year: 2024 ident: 10.1016/j.ress.2025.111801_bib0048 article-title: Structure model-based hazard identification method for autonomous ships publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2024.110046 – volume: 312 year: 2024 ident: 10.1016/j.ress.2025.111801_bib0063 article-title: Online Ornstein–Uhlenbeck based anomaly detection and behavior classification using AIS data in maritime publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2024.119057 – volume: 256 year: 2024 ident: 10.1016/j.ress.2025.111801_bib0049 article-title: Influence of sea ice on ship routes and speed along the Arctic Northeast Passage publication-title: Ocean Coast Manag doi: 10.1016/j.ocecoaman.2024.107320 – volume: 119 start-page: 1 year: 2022 ident: 10.1016/j.ress.2025.111801_bib0007 article-title: A novel approach exploiting properties of convolutional neural networks for vessel movement anomaly detection and classification publication-title: ISA Trans doi: 10.1016/j.isatra.2021.02.030 – volume: 9 issue: 6 year: 2021 ident: 10.1016/j.ress.2025.111801_bib0056 article-title: Ship AIS trajectory clustering: an HDBSCAN-based approach publication-title: J Mar Sci Eng doi: 10.3390/jmse9060566 – start-page: 224 issue: 2 year: 2009 ident: 10.1016/j.ress.2025.111801_bib0008 article-title: A cluster separation measure publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.1979.4766909 – volume: 331 year: 2025 ident: 10.1016/j.ress.2025.111801_bib0013 article-title: A multi-vector-field based inland ship path planning using an anisotropic fast marching method publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2025.121303 – volume: 7 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.ress.2025.111801_bib0038 article-title: Ship behavior prediction via trajectory extraction-based clustering for maritime situation awareness publication-title: J Ocean Eng Sci doi: 10.1016/j.joes.2021.03.001 – volume: 72 start-page: 894 issue: 4 year: 2019 ident: 10.1016/j.ress.2025.111801_bib0069 article-title: Maritime anomaly detection using density-based clustering and recurrent neural network publication-title: J Navig doi: 10.1017/S0373463319000031 – volume: 215 year: 2021 ident: 10.1016/j.ress.2025.111801_bib0037 article-title: An AIS-based deep learning framework for regional ship behavior prediction publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.107819 – volume: 208 year: 2021 ident: 10.1016/j.ress.2025.111801_bib0061 article-title: Application of the HFACS-PV approach for identification of human and organizational factors (HOFs) influencing marine accidents publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2020.107395 – start-page: 1279 year: 2015 ident: 10.1016/j.ress.2025.111801_bib0047 article-title: Maritime situation analysis framework vessel interaction classification and anomaly detection – volume: 329 year: 2025 ident: 10.1016/j.ress.2025.111801_bib0060 article-title: A framework for ship semantic behavior representation and indexing publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2025.121023 – volume: 367 year: 2024 ident: 10.1016/j.ress.2025.111801_bib0050 article-title: Analyzing the spatio-temporal correlation between tide and shipping behavior at estuarine port for energy-saving purposes publication-title: Appl Energy doi: 10.1016/j.apenergy.2024.123382 – start-page: 1 year: 2025 ident: 10.1016/j.ress.2025.111801_bib0052 article-title: Research on ship following behavior based on data mining in arctic waters publication-title: IEEE Trans Intell Transp Syst – volume: 290 year: 2023 ident: 10.1016/j.ress.2025.111801_bib0028 article-title: The model of vessel trajectory abnormal behavior detection based on graph attention prediction and reconstruction network publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2023.116316 – volume: 266 year: 2022 ident: 10.1016/j.ress.2025.111801_bib0042 article-title: Anticipation of ship behaviours in multi-vessel scenarios publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2022.112777 – volume: 257 year: 2025 ident: 10.1016/j.ress.2025.111801_bib0003 article-title: Investigation into safety acceptance principles for autonomous ships publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2025.110810 – volume: 23 start-page: 5655 issue: 6 year: 2022 ident: 10.1016/j.ress.2025.111801_bib0039 article-title: GeoTrackNet–A maritime anomaly detector using probabilistic neural network representation of AIS tracks and A contrario detection publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2021.3055614 – volume: 3 start-page: 720 year: 2014 ident: 10.1016/j.ress.2025.111801_bib0040 article-title: Grid size optimization for potential field based maritime anomaly detection publication-title: Transp Res Procedia doi: 10.1016/j.trpro.2014.10.051 – volume: 299 year: 2024 ident: 10.1016/j.ress.2025.111801_bib0005 article-title: Regional ship behavior and trajectory prediction for maritime traffic management: a social generative adversarial network approach publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2024.117186 – volume: 252 year: 2024 ident: 10.1016/j.ress.2025.111801_bib0057 article-title: Interaction aware and multi-modal distribution for ship trajectory prediction with spatio-temporal crisscross hybrid network publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2024.110463 – volume: 287 year: 2023 ident: 10.1016/j.ress.2025.111801_bib0051 article-title: Evaluation of ship emission intensity and the inaccuracy of exhaust emission estimation model publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2023.115723 – volume: 325 year: 2025 ident: 10.1016/j.ress.2025.111801_bib0070 article-title: Framework for detecting abnormal behaviors of passenger ships: a case study from the Yangtze River Estuary publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2025.120796 – volume: 234 year: 2023 ident: 10.1016/j.ress.2025.111801_bib0001 article-title: Quantitative assessment of ship collision risk influencing factors from worldwide accident and fleet data publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2023.109166 – volume: 305 year: 2024 ident: 10.1016/j.ress.2025.111801_bib0030 article-title: AIS-based kinematic anomaly classification for maritime surveillance publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2024.118026 – volume: 23 start-page: 23488 issue: 12 year: 2022 ident: 10.1016/j.ress.2025.111801_bib0054 article-title: Leveraging graph and deep learning uncertainties to detect anomalous maritime trajectories publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2022.3190834 – volume: 288 year: 2023 ident: 10.1016/j.ress.2025.111801_bib0065 article-title: A novel ship trajectory clustering analysis and anomaly detection method based on AIS data publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2023.116082 – volume: 249 year: 2024 ident: 10.1016/j.ress.2025.111801_bib0024 article-title: Incorporation of a global perspective into data-driven analysis of maritime collision accident risk publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2024.110187 – volume: 14 start-page: 16 year: 2018 ident: 10.1016/j.ress.2025.111801_bib0035 article-title: Challenges, solution proposals and research directions in safety and risk assessment of autonomous shipping publication-title: Probabilistic Saf Assess Manag PSAM – volume: 253 year: 2025 ident: 10.1016/j.ress.2025.111801_bib0068 article-title: Systems driven intelligent decision support methods for ship collision and grounding prevention: present status, possible solutions, and challenges publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2024.110489 – volume: 257 year: 2025 ident: 10.1016/j.ress.2025.111801_bib0011 article-title: Graph neural networks enabled accident causation prediction for maritime vessel traffic publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2025.110804 – volume: 271 year: 2023 ident: 10.1016/j.ress.2025.111801_bib0058 article-title: Data-driven methods for detection of abnormal ship behavior: progress and trends publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2023.113673 – volume: 258 year: 2025 ident: 10.1016/j.ress.2025.111801_bib0002 article-title: A systems-theoretic approach using association rule mining and predictive bayesian trend analysis to identify patterns in maritime accident causes publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2025.110911 – volume: 315 year: 2025 ident: 10.1016/j.ress.2025.111801_bib0032 article-title: A machine learning method for the recognition of ship behavior using AIS data publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2024.119791 – volume: 256 year: 2024 ident: 10.1016/j.ress.2025.111801_bib0034 article-title: Analyzing risk influencing factors of ship collision accidents: a data-driven bayesian network model integrating physical knowledge publication-title: Ocean Coast Manag doi: 10.1016/j.ocecoaman.2024.107311 – volume: 248 year: 2024 ident: 10.1016/j.ress.2025.111801_bib0036 article-title: Predicting maritime accident risk using Automated Machine Learning publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2024.110148 – volume: 192 year: 2024 ident: 10.1016/j.ress.2025.111801_bib0026 article-title: Bi-directional information fusion-driven deep network for ship trajectory prediction in intelligent transportation systems publication-title: Transp Res E: Logist Transp Rev doi: 10.1016/j.tre.2024.103770 – volume: 284 year: 2024 ident: 10.1016/j.ress.2025.111801_bib0027 article-title: Unsupervised maritime anomaly detection for intelligent situational awareness using AIS data publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2023.111313 – volume: 55 start-page: 84 issue: 1 year: 2014 ident: 10.1016/j.ress.2025.111801_bib0033 article-title: Anomaly detection in vessel tracks using bayesian networks publication-title: Int J Approx Reason doi: 10.1016/j.ijar.2013.03.012 – volume: 228 year: 2022 ident: 10.1016/j.ress.2025.111801_bib0006 article-title: Risk assessment of marine accidents with Fuzzy Bayesian Networks and causal analysis publication-title: Ocean Coast Manage doi: 10.1016/j.ocecoaman.2022.106323 – start-page: 160 year: 2013 ident: 10.1016/j.ress.2025.111801_bib0004 article-title: Density-based clustering based on hierarchical Density estimates – volume: 256 year: 2025 ident: 10.1016/j.ress.2025.111801_bib0014 article-title: Predicting a passenger ship's response during evasive maneuvers using Bayesian Learning publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2024.110765 – volume: 234 year: 2023 ident: 10.1016/j.ress.2025.111801_bib0020 article-title: Development and testing of a risk-based control system for autonomous ships publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2023.109195 – volume: 201 year: 2020 ident: 10.1016/j.ress.2025.111801_bib0017 article-title: Mobility pattern analysis of ship trajectories based on semantic transformation and topic model publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2020.107092 – volume: 262 year: 2025 ident: 10.1016/j.ress.2025.111801_bib0010 article-title: Improved identification of maritime risk-influencing factors using AIS data in regression analysis publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2025.111156 – start-page: 1 year: 2025 ident: 10.1016/j.ress.2025.111801_bib0029 article-title: Research on ship anomaly detection algorithm based on transformer-GSA encoder publication-title: IEEE Trans Intell Transp Syst – volume: 330 year: 2025 ident: 10.1016/j.ress.2025.111801_bib0067 article-title: Detecting abnormal ship states and joint risky behaviors based on an improved graph attention network publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2025.121138 – volume: 231 year: 2023 ident: 10.1016/j.ress.2025.111801_bib0043 article-title: AIS-based maritime anomaly traffic detection: a review publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.120561 – volume: 317 year: 2025 ident: 10.1016/j.ress.2025.111801_bib0012 article-title: Intelligent ship path planning based on improved artificial potential field in narrow inland waterways publication-title: Ocean Eng – volume: 330 year: 2025 ident: 10.1016/j.ress.2025.111801_bib0041 article-title: Multi-stage trajectory compression via speed information for preserving maritime traffic information integrity publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2025.121073 – ident: 10.1016/j.ress.2025.111801_bib0022 – volume: 253 year: 2024 ident: 10.1016/j.ress.2025.111801_bib0053 article-title: Reference path for ships in ports and waterways based on optimal control publication-title: Ocean Coast Manag doi: 10.1016/j.ocecoaman.2024.107168 – volume: 20 start-page: 53 year: 1987 ident: 10.1016/j.ress.2025.111801_bib0046 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J Comput Appl Math doi: 10.1016/0377-0427(87)90125-7 |
| SSID | ssj0004957 |
| Score | 2.4707222 |
| Snippet | •A HybridAttn-BiRNN model with temporal and feature attention is proposed for ship trajectory prediction.•An anomaly detection framework integrating HDBSCAN... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 111801 |
| SubjectTerms | AIS data Anomaly detection Deep neural networks HDBSCAN Ship behavior |
| Title | Anomaly detection of ship behavior based on deep neural networks |
| URI | https://dx.doi.org/10.1016/j.ress.2025.111801 |
| Volume | 266 |
| WOSCitedRecordID | wos001608386000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0951-8320 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0004957 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFLZK4cAOEz8FbEw-cIsyOU6dxLdVE4MhhJBgUm-REzuoCNKOtqj973mvtpsC0wSTdokSJ3Gi91kvn5_f-0LIUZaISKfahDKuTNiRioUqjuAwNTLSTMlIzUVcz9OLi6zXk5et1rmvhXm8S-s6m07l8L9CDW0ANpbOvgPuRafQAPsAOmwBdti-CXiY0N-ru1mgzdiUng-6nCxbkh_gp0vjMoE2ZhigpCUAVduE8NEyXcWEZSvkPQtMo1w4Hy9WAzoYqcpJiVilx8ncqavf_pOIJNml_XYHi_Sf_sSu9UOns0Fz5YmrhFD1zbTv211Mgi_SmH2gzBfLNJlJNuIYheBA2LLz5fafK68cuY0p3H7FmAPM4rlA3565ZzwXyL7CjrFfYHOoKNVZIas8FTJrk9Xuz-PeWVMnK63yq38RV0Rl8_1ePunPRGWJfFxvkI9u1kC7Fu1N0jL1FvmwpCW5Tb453OkCdzqoKOJOPe50jjuFM4g7tbhTj_sO-fXj-Pr7aeh-jxGWXMTjUOqEK3DQieHcGAE8nidpUmVCJh3BFK-0Zqhfx7RQQieSMZ1EuihEWXQqVsXxLmnXg9rsEZoCVTJpwcoK-SjMGQQzPC6A-zIdFwXbJ4G3RT60Kii5Tw-8zdFyOVout5bbJ8KbK3c8zvKzHND9y30H_3jfJ7LeDMLPpD1-mJhDslY-jvujhy9uEDwBWiVsnQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+detection+of+ship+behavior+based+on+deep+neural+networks&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Shu%2C+Yaqing&rft.au=Dong%2C+Ao&rft.au=Liu%2C+Chengyong&rft.au=Gan%2C+Langxiong&rft.date=2026-02-01&rft.pub=Elsevier+Ltd&rft.issn=0951-8320&rft.volume=266&rft_id=info:doi/10.1016%2Fj.ress.2025.111801&rft.externalDocID=S0951832025010014 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon |