Raman mapping reveals alpha radiation damage zonation and its annealing in Durango apatite

•Raman mapping of apatite can be used to reveal the zonation of radiation damage in the mineral.•The FWHM of apatite ν1(PO4) band reveals the accumulation of alpha radiation damage in the crystal lattice.•Fission tracks (with a density on the order of 106 tracks/cm2 and below) in apatite have minima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth and planetary science letters Jg. 671; S. 119636
Hauptverfasser: Zeng, Xiaowei, Pastore, Guido, Shen, Chuanbo, Resentini, Alberto, Fu, Hongyang, Yang, Chaoqun, Buret, Yannick, Vermeesch, Pieter, Malusà, Marco G.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.12.2025
Schlagworte:
ISSN:0012-821X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Raman mapping of apatite can be used to reveal the zonation of radiation damage in the mineral.•The FWHM of apatite ν1(PO4) band reveals the accumulation of alpha radiation damage in the crystal lattice.•Fission tracks (with a density on the order of 106 tracks/cm2 and below) in apatite have minimal impact on Raman signals. The accumulation of alpha radiation damage and annealing mechanisms in apatite are crucial for thermochronological studies, yet they are challenging to explore. We conducted annealing experiments on four slices from one single Durango apatite crystal, utilizing Raman spectroscopy high-resolution mapping to investigate peak positions and full width at half maximum (FWHM) of the ν1(PO4) and ν3(PO4) bands. Additionally, LA-ICP-MS mapping was conducted on all samples to obtain their effective uranium content distribution. We assessed track density in various regions of the crystal, used a normalized track density reduction model to estimate original alpha radiation damage, and applied heavy ion irradiation to simulate the fission process and enhance the visibility of confined tracks. Our analysis shows that the FWHM of the ν1(PO4) band in Durango apatite is a reliable indicator of alpha radiation damage accumulation and does not correlate with fission track damage. We also found that the alpha radiation damage has negligible effect on fission-track annealing in young samples. While Raman peak position behaviour is still enigmatic, our results suggest that it may be influenced both by the chemical composition of apatite and by radiation damage accumulation. Our results underscore the potential of Raman spectroscopy as a powerful tool for assessing alpha radiation damage and annealing processes in apatite crystals.
AbstractList •Raman mapping of apatite can be used to reveal the zonation of radiation damage in the mineral.•The FWHM of apatite ν1(PO4) band reveals the accumulation of alpha radiation damage in the crystal lattice.•Fission tracks (with a density on the order of 106 tracks/cm2 and below) in apatite have minimal impact on Raman signals. The accumulation of alpha radiation damage and annealing mechanisms in apatite are crucial for thermochronological studies, yet they are challenging to explore. We conducted annealing experiments on four slices from one single Durango apatite crystal, utilizing Raman spectroscopy high-resolution mapping to investigate peak positions and full width at half maximum (FWHM) of the ν1(PO4) and ν3(PO4) bands. Additionally, LA-ICP-MS mapping was conducted on all samples to obtain their effective uranium content distribution. We assessed track density in various regions of the crystal, used a normalized track density reduction model to estimate original alpha radiation damage, and applied heavy ion irradiation to simulate the fission process and enhance the visibility of confined tracks. Our analysis shows that the FWHM of the ν1(PO4) band in Durango apatite is a reliable indicator of alpha radiation damage accumulation and does not correlate with fission track damage. We also found that the alpha radiation damage has negligible effect on fission-track annealing in young samples. While Raman peak position behaviour is still enigmatic, our results suggest that it may be influenced both by the chemical composition of apatite and by radiation damage accumulation. Our results underscore the potential of Raman spectroscopy as a powerful tool for assessing alpha radiation damage and annealing processes in apatite crystals.
ArticleNumber 119636
Author Resentini, Alberto
Fu, Hongyang
Pastore, Guido
Zeng, Xiaowei
Shen, Chuanbo
Vermeesch, Pieter
Yang, Chaoqun
Malusà, Marco G.
Buret, Yannick
Author_xml – sequence: 1
  givenname: Xiaowei
  orcidid: 0009-0009-6783-2948
  surname: Zeng
  fullname: Zeng, Xiaowei
  organization: Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan 430074, China
– sequence: 2
  givenname: Guido
  orcidid: 0000-0002-9456-2324
  surname: Pastore
  fullname: Pastore, Guido
  organization: Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano 20126, Italy
– sequence: 3
  givenname: Chuanbo
  surname: Shen
  fullname: Shen, Chuanbo
  email: cbshen@cug.edu.cn
  organization: Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan 430074, China
– sequence: 4
  givenname: Alberto
  orcidid: 0000-0002-3491-8165
  surname: Resentini
  fullname: Resentini, Alberto
  organization: Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano 20126, Italy
– sequence: 5
  givenname: Hongyang
  surname: Fu
  fullname: Fu, Hongyang
  organization: Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan 430074, China
– sequence: 6
  givenname: Chaoqun
  surname: Yang
  fullname: Yang, Chaoqun
  organization: State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, Sichuan, China
– sequence: 7
  givenname: Yannick
  surname: Buret
  fullname: Buret, Yannick
  organization: Imaging and Analysis Centre, Natural History Museum, Cromwell Road, London SW5 7BD, United Kingdom
– sequence: 8
  givenname: Pieter
  orcidid: 0000-0003-3404-1209
  surname: Vermeesch
  fullname: Vermeesch, Pieter
  organization: Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
– sequence: 9
  givenname: Marco G.
  orcidid: 0000-0001-7890-5668
  surname: Malusà
  fullname: Malusà, Marco G.
  organization: Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano 20126, Italy
BookMark eNp9kE1LAzEQQHOoYKv-AU_5A7vmY5Pughepn1AQREG8hGkyW1Pa7JKsBf31ZlnPnoaB94bhLcgsdAEJueSs5Izrq12JfdqXgglVct5oqWdkzhgXRS34-ylZpLRjjGmlmzn5eIEDBHqAvvdhSyMeEfaJwr7_BBrBeRh8F6jL1BbpTxemHYKjfshcCJkfTR_o7VeEsO0o9Bka8JyctPkWXvzNM_J2f_e6eizWzw9Pq5t1YYWSQ1FrkMvWNRxVs6nVpmZWiQqYXTa1ZpWsWymRa8VkLbRVS6krDrZSstm4zII8I2K6a2OXUsTW9NEfIH4bzsxYxOzMWMSMRcxUJEvXk4T5s6PHaJL1GCw6H9EOxnX-P_0XaDpt-A
Cites_doi 10.1016/j.chemgeo.2005.02.007
10.1130/B36266.1
10.1016/j.chemgeo.2018.12.004
10.1016/0168-583X(86)90601-4
10.1016/j.radphyschem.2023.111131
10.2138/am.2014.4669
10.1016/j.gca.2021.01.022
10.1016/j.nimb.2010.02.091
10.1016/j.epsl.2005.05.027
10.1016/j.gca.2019.04.014
10.1016/j.chemgeo.2020.119740
10.1016/j.chemgeo.2016.07.013
10.5194/gchron-3-351-2021
10.3390/cryst10111032
10.1366/13-07275
10.1007/s00339-008-4402-9
10.3389/feart.2022.926114
10.5194/gchron-6-553-2024
10.1016/0016-7037(87)90164-5
10.1016/j.chemgeo.2019.07.012
10.2138/am-2001-0411
10.1088/0256-307X/37/5/056101
10.1016/j.chemgeo.2013.12.010
10.1016/j.saa.2013.01.008
10.1016/0168-9622(85)90023-5
10.2475/03.2013.01
10.2138/am.2013.4249
10.1016/j.chemgeo.2020.119828
10.2138/rmg.2005.58.11
10.1016/j.gca.2011.05.020
10.1016/S0009-2541(02)00152-3
10.1016/j.gca.2009.01.015
10.1016/j.chemgeo.2016.03.028
10.1111/j.1751-908X.2011.00120.x
10.1016/j.jsames.2018.09.014
10.1016/j.chemgeo.2016.12.039
10.1016/j.jeurceramsoc.2008.06.011
10.1016/j.chemgeo.2004.10.002
10.1016/j.chemgeo.2007.02.007
10.2138/am-2015-5167
10.1017/S1431927612013505
10.2113/gsecongeo.83.8.1886
10.1016/j.chemgeo.2011.10.026
10.5194/gchron-3-259-2021
10.1016/j.chemgeo.2015.09.014
10.1007/s00269-010-0403-2
10.1016/j.gca.2005.01.024
10.1016/j.gca.2019.01.033
10.1177/0003702820942540
10.1016/j.chemgeo.2014.07.012
10.1016/j.gca.2011.11.037
10.2138/am-2022-8006
10.1016/j.gca.2019.03.006
10.1016/j.chemgeo.2010.11.010
10.1039/D1JA00110H
10.1180/002646199548826
10.1007/s004100000235
10.1016/S0009-2541(02)00424-2
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.epsl.2025.119636
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
ExternalDocumentID 10_1016_j_epsl_2025_119636
S0012821X25004340
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABLJU
ABMAC
ABQEM
ABQYD
ABUFD
ACDAQ
ACGFS
ACLOT
ACLVX
ACRLP
ACSBN
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ATOGT
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LY3
LZ4
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SHN
SPC
SPCBC
SSE
SSZ
T5K
TN5
WH7
XSW
ZMT
~02
~G-
~HD
1RT
29G
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACRPL
ADIYS
ADMUD
ADNMO
ADXHL
AGQPQ
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HMA
HME
HVGLF
HZ~
H~9
LPU
OHT
R2-
SEP
VH1
VJK
VOH
WUQ
XOL
ZKB
ZY4
ID FETCH-LOGICAL-c253t-86a37fd91e59b85b80c524a0c79860438f33e16503826c573641ac4539bd80ca3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001573399500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0012-821X
IngestDate Thu Nov 27 00:58:43 EST 2025
Sat Nov 29 17:01:42 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Apatite cathodoluminescence zonation
Annealing of radiation damage
Raman mapping
Radiation damage zonation
Alpha radiation damage
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c253t-86a37fd91e59b85b80c524a0c79860438f33e16503826c573641ac4539bd80ca3
ORCID 0000-0001-7890-5668
0009-0009-6783-2948
0000-0003-3404-1209
0000-0002-9456-2324
0000-0002-3491-8165
ParticipantIDs crossref_primary_10_1016_j_epsl_2025_119636
elsevier_sciencedirect_doi_10_1016_j_epsl_2025_119636
PublicationCentury 2000
PublicationDate 2025-12-01
2025-12-00
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Earth and planetary science letters
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Carlson (bib0008) 1990; 75
Jonckheere, den haute, Ratschbacher (bib0029) 2015; 417
Li, Kluth, Schauries, Rodriguez, Lang, Zhang, Zdorovets, Trautmann, Ewing (bib0035) 2014; 99
Váczi (bib0056) 2014; 68
Liu, Glasmacher, Lang, Trautmann, Voss, Neumann, Wagner, Miletich (bib0037) 2008; 91
Sousa, Cox, Rasbury, Hemming, Lanzirotti, Newville (bib0052) 2024; 6
O’Donnell, Hill, Law, Fong (bib0047) 2009; 29
Pidgeon (bib0048) 2014; 367
McDowell, McIntosh, Farley (bib0043) 2005; 214
Ansberque, Mark, Caulfield, Chew (bib0002) 2019; 524
Nasdala, Wenzel, Vavra, Irmer, Wenzel, Kober (bib0046) 2001; 141
Härtel, Jonckheere, Wauschkuhn, Ratschbacher (bib0024) 2021; 3
Hourigan, Reiners, Brandon (bib0027) 2005; 69
Weikusat, Glasmacher, Schuster, Trautmann, Miletich, Neumann (bib0059) 2011; 38
Barbarand, Pagel (bib0006) 2001; 86
Doucelance, Bruand, Matte, Bosq, Auclair, Gannoun (bib0014) 2020; 550
Sun, Wiedenbeck, Joachimski, Beier, Kemner, Weinzierl (bib0055) 2016; 440
Cerico (bib0009) 2021
Shah (bib0051) 2020; 75
Malusà, Fitzgerald (bib0040) 2019
Ritter, Märk (bib0050) 1986; 14
Li, Cheng, Feng, Niu, Liu, Skuratov, Zdorovets, Boatner, Ewing (bib0034) 2021; 299
Chew, Sylvester, Tubrett (bib0011) 2011; 280
Ault, Flowers (bib0004) 2012; 79
Wu, Gao, Lin, Zhang, He, Zhang (bib0060) 2020; 37
Frost, Xi, Scholz, Belotti, Lopez (bib0019) 2013; 106
Guenthner, Reiners, Ketcham, Nasdala, Giester (bib0023) 2013; 313
Horne, Van Soest, Hodges (bib0026) 2019; 506
Ginster, Reiners, Nasdala, Chanmuang (bib0021) 2019; 249
Resentini, Andò, Garzanti, Malusà, Pastore, Vermeesch, Chanvry, Dall’Asta (bib0049) 2020; 555
Yang, Wu, Yang, Chew, Xie, Chu, Zhang, Huang (bib0062) 2014; 385
Nadzri, Schauries, Mota-Santiago, Trautmann, Gleadow, Hawley, Kluth (bib0044) 2017; 451
Li, Shen, Zhou, Nan, Chen, Ewing (bib0036) 2017; 7
Boyce, Hodges (bib0007) 2005; 219
Farley, Shuster, Ketcham (bib0015) 2011; 75
Corona-Esquivel, Levresse, Solé, Henriquez, Pi (bib0013) 2018; 88
Gautheron, Pinna-Jamme, Derycke, Ahadi, Sanchez, Haurine, Monvoisin, Barbosa, Delpech, Maltese, Sarda, Tassan-Got (bib0020) 2021; 3
Stormer, Pierson, Tacker (bib0054) 1993; 78
Zeitler, Herczeg, McDougall, Honda (bib0064) 1987; 51
Flowers, Zeitler, Danišík, Reiners, Gautheron, Ketcham, Metcalf, Stockli, Enkelmann, Brown (bib0018) 2022; 135
MacRae, Wilson, Torpy, Davidson (bib0039) 2012; 18
Ziegler, Ziegler, Biersack (bib0065) 2010; 268
Flowers, Ketcham, Shuster, Farley (bib0017) 2009; 73
Li (bib0033) 2010
Steadman, Goemann, Thompson, MacRae, Belousov, Hohl (bib0053) 2022; 10
Lyons (bib0038) 1988; 83
McDannell, Issler, O’Sullivan (bib0042) 2019; 252
Van Acker, Van Malderen, Van Helden, Stremtan, Šala, van Elteren, Vanhaecke (bib0057) 2021; 36
Nasdala, Lengauer, Hanchar, Kronz, Wirth, Blanc, Kennedy, Seydoux-Guillaume (bib0045) 2002; 191
Zattin, Bersani, Carter (bib0063) 2007; 240
Marks, Wenzel, Whitehouse, Loose, Zack, Barth, Worgard, Krasz, Eby, Stosnach, Markl (bib0041) 2012; 291
Ketcham, Guenthner, Reiners (bib0032) 2013; 98
Vrushabhadas, Bhaskar, Arunachalam (bib0058) 2023; 212
Chew, Babechuk, Cogné, Mark, O’Sullivan, Henrichs, Doepke, McKenna (bib0010) 2016; 435
Comodi, Liu, Stoppa, Woolley (bib0012) 1999; 63
Barbarand, Carter, Wood, Hurford (bib0005) 2003; 198
Ketcham, Carter, Hurford (bib0031) 2015; 100
Hendriks, Redfield (bib0025) 2005; 236
Xu, Kou, Etschmann, Liu, Brugger (bib0061) 2020; 10
Ashley, McKeeby, Harlov, Bodnar, Ramsey (bib0003) 2018
Ketcham (bib0030) 2005; 58
Green (bib0022) 1985; 58
Fau, Beyssac, Gauthier, Panczer, Gasnault, Meslin, Bernard, Maurice, Forni, Boulliard, Bosc, Drouet (bib0016) 2022; 107
Jochum, Weis, Stoll, Kuzmin, Yang, Raczek, Jacob, Stracke, Birbaum, Frick, Günther, Enzweiler (bib0028) 2011; 35
Andersson, Wagner, Jonsson, Fusswinkel, Whitehouse (bib0001) 2019; 255
Liu (10.1016/j.epsl.2025.119636_bib0037) 2008; 91
Resentini (10.1016/j.epsl.2025.119636_bib0049) 2020; 555
Carlson (10.1016/j.epsl.2025.119636_bib0008) 1990; 75
Li (10.1016/j.epsl.2025.119636_bib0033) 2010
Zattin (10.1016/j.epsl.2025.119636_bib0063) 2007; 240
Pidgeon (10.1016/j.epsl.2025.119636_bib0048) 2014; 367
Doucelance (10.1016/j.epsl.2025.119636_bib0014) 2020; 550
Nasdala (10.1016/j.epsl.2025.119636_bib0046) 2001; 141
Ketcham (10.1016/j.epsl.2025.119636_bib0032) 2013; 98
Härtel (10.1016/j.epsl.2025.119636_bib0024) 2021; 3
Andersson (10.1016/j.epsl.2025.119636_bib0001) 2019; 255
Barbarand (10.1016/j.epsl.2025.119636_bib0005) 2003; 198
Van Acker (10.1016/j.epsl.2025.119636_bib0057) 2021; 36
Gautheron (10.1016/j.epsl.2025.119636_bib0020) 2021; 3
Ansberque (10.1016/j.epsl.2025.119636_bib0002) 2019; 524
Shah (10.1016/j.epsl.2025.119636_bib0051) 2020; 75
Corona-Esquivel (10.1016/j.epsl.2025.119636_bib0013) 2018; 88
Ginster (10.1016/j.epsl.2025.119636_bib0021) 2019; 249
Nasdala (10.1016/j.epsl.2025.119636_bib0045) 2002; 191
Frost (10.1016/j.epsl.2025.119636_bib0019) 2013; 106
Li (10.1016/j.epsl.2025.119636_bib0035) 2014; 99
Guenthner (10.1016/j.epsl.2025.119636_bib0023) 2013; 313
Jochum (10.1016/j.epsl.2025.119636_bib0028) 2011; 35
Ketcham (10.1016/j.epsl.2025.119636_bib0031) 2015; 100
Vrushabhadas (10.1016/j.epsl.2025.119636_bib0058) 2023; 212
Yang (10.1016/j.epsl.2025.119636_bib0062) 2014; 385
Nadzri (10.1016/j.epsl.2025.119636_bib0044) 2017; 451
MacRae (10.1016/j.epsl.2025.119636_bib0039) 2012; 18
Ziegler (10.1016/j.epsl.2025.119636_bib0065) 2010; 268
Li (10.1016/j.epsl.2025.119636_bib0034) 2021; 299
Sun (10.1016/j.epsl.2025.119636_bib0055) 2016; 440
Flowers (10.1016/j.epsl.2025.119636_bib0017) 2009; 73
Farley (10.1016/j.epsl.2025.119636_bib0015) 2011; 75
O’Donnell (10.1016/j.epsl.2025.119636_bib0047) 2009; 29
Comodi (10.1016/j.epsl.2025.119636_bib0012) 1999; 63
Horne (10.1016/j.epsl.2025.119636_bib0026) 2019; 506
Marks (10.1016/j.epsl.2025.119636_bib0041) 2012; 291
Jonckheere (10.1016/j.epsl.2025.119636_bib0029) 2015; 417
Chew (10.1016/j.epsl.2025.119636_bib0010) 2016; 435
Váczi (10.1016/j.epsl.2025.119636_bib0056) 2014; 68
Ketcham (10.1016/j.epsl.2025.119636_bib0030) 2005; 58
Boyce (10.1016/j.epsl.2025.119636_bib0007) 2005; 219
Flowers (10.1016/j.epsl.2025.119636_bib0018) 2022; 135
McDowell (10.1016/j.epsl.2025.119636_bib0043) 2005; 214
Stormer (10.1016/j.epsl.2025.119636_bib0054) 1993; 78
Hendriks (10.1016/j.epsl.2025.119636_bib0025) 2005; 236
Cerico (10.1016/j.epsl.2025.119636_bib0009) 2021
Barbarand (10.1016/j.epsl.2025.119636_bib0006) 2001; 86
Weikusat (10.1016/j.epsl.2025.119636_bib0059) 2011; 38
Xu (10.1016/j.epsl.2025.119636_bib0061) 2020; 10
Ashley (10.1016/j.epsl.2025.119636_bib0003) 2018
Wu (10.1016/j.epsl.2025.119636_bib0060) 2020; 37
Hourigan (10.1016/j.epsl.2025.119636_bib0027) 2005; 69
McDannell (10.1016/j.epsl.2025.119636_bib0042) 2019; 252
Sousa (10.1016/j.epsl.2025.119636_bib0052) 2024; 6
Fau (10.1016/j.epsl.2025.119636_bib0016) 2022; 107
Steadman (10.1016/j.epsl.2025.119636_bib0053) 2022; 10
Zeitler (10.1016/j.epsl.2025.119636_bib0064) 1987; 51
Malusà (10.1016/j.epsl.2025.119636_bib0040) 2019
Chew (10.1016/j.epsl.2025.119636_bib0011) 2011; 280
Li (10.1016/j.epsl.2025.119636_bib0036) 2017; 7
Ault (10.1016/j.epsl.2025.119636_bib0004) 2012; 79
Green (10.1016/j.epsl.2025.119636_bib0022) 1985; 58
Ritter (10.1016/j.epsl.2025.119636_bib0050) 1986; 14
Lyons (10.1016/j.epsl.2025.119636_bib0038) 1988; 83
References_xml – volume: 38
  start-page: 293
  year: 2011
  end-page: 303
  ident: bib0059
  article-title: Raman study of apatite amorphised with swift heavy ions under various irradiation conditions
  publication-title: Phys. Chem. Miner.
– volume: 212
  year: 2023
  ident: bib0058
  article-title: A comprehensive study on intrinsic alpha corpuscular radiation damage in monazite crystals using picometer-scale imaging, coupled with SCXRD and Raman spectroscopy
  publication-title: Radiat. Phys. Chem.
– volume: 524
  start-page: 406
  year: 2019
  end-page: 420
  ident: bib0002
  article-title: Combined in-situ determination of halogen (F, Cl) content in igneous and detrital apatite by SEM-EDS and LA-Q-ICPMS: a potential new provenance tool
  publication-title: Chem. Geol.
– volume: 191
  start-page: 121
  year: 2002
  end-page: 140
  ident: bib0045
  article-title: Annealing radiation damage and the recovery of cathodoluminescence
  publication-title: Chem. Geol.
– volume: 255
  start-page: 163
  year: 2019
  end-page: 187
  ident: bib0001
  article-title: Apatite as a tracer of the source, chemistry and evolution of ore-forming fluids: the case of the Olserum-Djupedal REE-phosphate mineralisation, SE Sweden
  publication-title: Geochim. Cosmochim. Acta
– volume: 299
  start-page: 1
  year: 2021
  end-page: 14
  ident: bib0034
  article-title: Alpha-decay induced shortening of fission tracks simulated by in situ ion irradiation
  publication-title: Geochim. Cosmochim. Acta
– volume: 107
  start-page: 1341
  year: 2022
  end-page: 1352
  ident: bib0016
  article-title: Time-resolved raman and luminescence spectroscopy of synthetic REE-doped hydroxylapatites and natural apatites
  publication-title: Am. Mineral.
– volume: 99
  start-page: 1127
  year: 2014
  end-page: 1132
  ident: bib0035
  article-title: Effect of orientation on ion track formation in apatite and zircon
  publication-title: Am. Mineral.
– volume: 291
  start-page: 241
  year: 2012
  end-page: 255
  ident: bib0041
  article-title: The volatile inventory (F, Cl, Br, S, C) of magmatic apatite: an integrated analytical approach
  publication-title: Chem. Geol.
– volume: 51
  start-page: 2865
  year: 1987
  end-page: 2868
  ident: bib0064
  article-title: U-Th-He dating of apatite: a potential thermochronometer
  publication-title: Geochim. Cosmochim. Acta
– volume: 58
  start-page: 1
  year: 1985
  end-page: 22
  ident: bib0022
  article-title: Comparison of zeta calibration baselines for fission-track dating of apatite, zircon and sphene
  publication-title: Chem. Geol.: Isot. Geosci. sect.
– volume: 106
  start-page: 216
  year: 2013
  end-page: 223
  ident: bib0019
  article-title: Infrared and raman spectroscopic characterization of the phosphate mineral fairfieldite – Ca
  publication-title: Spectrochim. Acta, Part A
– volume: 100
  start-page: 1452
  year: 2015
  end-page: 1468
  ident: bib0031
  article-title: Inter-laboratory comparison of fission track confined length and etch figure measurements in apatite
  publication-title: Am. Mineral.
– volume: 252
  start-page: 213
  year: 2019
  end-page: 239
  ident: bib0042
  article-title: Radiation-enhanced fission track annealing revisited and consequences for apatite thermochronometry
  publication-title: Geochim. Cosmochim. Acta
– volume: 88
  start-page: 367
  year: 2018
  end-page: 373
  ident: bib0013
  article-title: New age in the geological evolution of the Cerro de Mercado iron oxide apatite deposit, Mexico: implication in the Durango apatite standard (DAP) age variability
  publication-title: J. South Am. Earth Sci.
– volume: 10
  year: 2022
  ident: bib0053
  article-title: Hyperspectral cathodoluminescence, trace element, and U-Pb geochronological characterization of apatite from the Ernest Henry iron oxide copper-gold (IOCG) deposit, Cloncurry district, Queensland
  publication-title: Front. Earth Sci.
– volume: 506
  start-page: 40
  year: 2019
  end-page: 50
  ident: bib0026
  article-title: U/Pb and (U-Th-Sm)/He “double” dating of detrital apatite by laser ablation: a critical evaluation
  publication-title: Chem. Geol.
– volume: 91
  start-page: 17
  year: 2008
  end-page: 22
  ident: bib0037
  article-title: Raman spectroscopy of apatite irradiated with swift heavy ions with and without simultaneous exertion of high pressure
  publication-title: Appl. Phys. A
– volume: 435
  start-page: 35
  year: 2016
  end-page: 48
  ident: bib0010
  article-title: LA,Q)-ICPMS trace-element analyses of Durango and McClure Mountain apatite and implications for making natural LA-ICPMS mineral standards
  publication-title: Chem. Geol.
– volume: 313
  start-page: 145
  year: 2013
  end-page: 198
  ident: bib0023
  article-title: Helium diffusion in natural zircon: radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology
  publication-title: Am. J. Sci.
– volume: 240
  start-page: 197
  year: 2007
  end-page: 204
  ident: bib0063
  article-title: Raman microspectroscopy: a non-destructive tool for routine calibration of apatite crystallographic structure for fission-track analyses
  publication-title: Chem. Geol.
– volume: 198
  start-page: 107
  year: 2003
  end-page: 137
  ident: bib0005
  article-title: Compositional and structural control of fission-track annealing in apatite
  publication-title: Chem. Geol.
– volume: 73
  start-page: 2347
  year: 2009
  end-page: 2365
  ident: bib0017
  article-title: Apatite (U–Th)/He thermochronometry using a radiation damage accumulation and annealing model
  publication-title: Geochim. Cosmochim. Acta
– volume: 10
  start-page: 1032
  year: 2020
  ident: bib0061
  article-title: Spectroscopic, raman, EMPA, micro-XRF and micro-XANES analyses of sulphur concentration and oxidation State of natural apatite crystals
  publication-title: Crystals
– year: 2018
  ident: bib0003
  article-title: High-resolution Raman spectroscopy constraints on apatite halogen composition: implications for planetary volcanism and igneous processes
  publication-title: Abstract for the Lunar and Planetary Science Conference
– volume: 417
  start-page: 44
  year: 2015
  end-page: 57
  ident: bib0029
  article-title: Standardless fission-track dating of the Durango apatite age standard
  publication-title: Chem. Geol.
– volume: 78
  start-page: 641
  year: 1993
  end-page: 648
  ident: bib0054
  article-title: Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis
  publication-title: Am. Mineral.
– volume: 550
  year: 2020
  ident: bib0014
  article-title: In-situ determination of Nd isotope ratios in apatite by LA-MC-ICPMS: challenges and limitations
  publication-title: Chem. Geol.
– volume: 14
  start-page: 314
  year: 1986
  end-page: 322
  ident: bib0050
  article-title: Radiation damage and its annealing in apatite
  publication-title: Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At.
– volume: 75
  start-page: 4515
  year: 2011
  end-page: 4530
  ident: bib0015
  article-title: U and Th zonation in apatite observed by laser ablation ICPMS, and implications for the (U–Th)/He system
  publication-title: Geochim. Cosmochim. Acta
– volume: 98
  start-page: 350
  year: 2013
  end-page: 360
  ident: bib0032
  article-title: Geometric analysis of radiation damage connectivity in zircon, and its implications for helium diffusion
  publication-title: Am. Mineral.
– volume: 29
  start-page: 377
  year: 2009
  end-page: 384
  ident: bib0047
  article-title: Raman spectroscopy, 19F and 31P MAS-NMR of a series of fluorochloroapatites
  publication-title: J. Eur. Ceram. Soc.
– volume: 219
  start-page: 261
  year: 2005
  end-page: 274
  ident: bib0007
  article-title: U and Th zoning in Cerro de Mercado (Durango, Mexico) fluorapatite: insights regarding the impact of recoil redistribution of radiogenic
  publication-title: Chem. Geol.
– volume: 280
  start-page: 200
  year: 2011
  end-page: 216
  ident: bib0011
  article-title: U–Pb and Th–Pb dating of apatite by LA-ICPMS
  publication-title: Chem. Geol.
– volume: 63
  start-page: 661
  year: 1999
  end-page: 672
  ident: bib0012
  article-title: A multi-method analysis of Si-, S- and
  publication-title: Mineral. Mag.
– volume: 385
  start-page: 35
  year: 2014
  end-page: 55
  ident: bib0062
  article-title: Sr and Nd isotopic compositions of apatite reference materials used in U–Th–Pb geochronology
  publication-title: Chem. Geol.
– volume: 75
  start-page: 1120
  year: 1990
  end-page: 1139
  ident: bib0008
  article-title: Mechanisms and kinetics of apatite fission-track annealing
  publication-title: Am. Mineral.
– volume: 141
  start-page: 125
  year: 2001
  end-page: 144
  ident: bib0046
  article-title: Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage
  publication-title: Contrib. Mineral. Petrol.
– volume: 18
  start-page: 1239
  year: 2012
  end-page: 1245
  ident: bib0039
  article-title: Hyperspectral cathodoluminescence imaging and analysis extending from ultraviolet to near infrared
  publication-title: Microsc. Microanal.
– volume: 79
  start-page: 60
  year: 2012
  end-page: 78
  ident: bib0004
  article-title: Is apatite U–Th zonation information necessary for accurate interpretation of apatite (U–Th)/He thermochronometry data?
  publication-title: Geochim. Cosmochim. Acta
– volume: 268
  start-page: 1818
  year: 2010
  end-page: 1823
  ident: bib0065
  article-title: SRIM – The stopping and range of ions in matter (2010)
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B
– volume: 86
  start-page: 473
  year: 2001
  end-page: 484
  ident: bib0006
  article-title: Cathodoluminescence study of apatite crystals
  publication-title: Am. Mineral.
– year: 2010
  ident: bib0033
  article-title: Structural Characterisation of Apatite-Like Materials
– volume: 367
  start-page: 13
  year: 2014
  end-page: 22
  ident: bib0048
  article-title: Zircon radiation damage ages
  publication-title: Chem. Geol.
– volume: 249
  start-page: 225
  year: 2019
  end-page: 246
  ident: bib0021
  article-title: Annealing kinetics of radiation damage in zircon
  publication-title: Geochim. Cosmochim. Acta
– volume: 214
  start-page: 249
  year: 2005
  end-page: 263
  ident: bib0043
  article-title: A precise 40Ar–39Ar reference age for the Durango apatite (U–Th)/He and fission-track dating standard
  publication-title: Chem. Geol.
– volume: 83
  start-page: 1886
  year: 1988
  end-page: 1906
  ident: bib0038
  article-title: Volcanogenic iron oxide deposits, Cerro de Mercado and vicinity
  publication-title: Durango. Econ. Geol.
– volume: 35
  start-page: 397
  year: 2011
  end-page: 429
  ident: bib0028
  article-title: Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines
  publication-title: Geostand. Geoanal. Res.
– year: 2019
  ident: bib0040
  article-title: Fission-Track Thermochronology and Its Application to Geology
– volume: 6
  start-page: 553
  year: 2024
  end-page: 570
  ident: bib0052
  article-title: U and Th zonation in apatite observed by synchrotron X-ray fluorescence tomography and implications for the (U–Th)/He system
  publication-title: Geochronology
– volume: 36
  start-page: 1201
  year: 2021
  end-page: 1209
  ident: bib0057
  article-title: Analytical figures of merit of a low-dispersion aerosol transport system for high-throughput LA-ICP-MS analysis
  publication-title: J. Anal. At. Spectrom.
– volume: 68
  start-page: 1274
  year: 2014
  end-page: 1278
  ident: bib0056
  article-title: A new, simple approximation for the deconvolution of instrumental broadening in spectroscopic band profiles
  publication-title: Appl. Spectrosc.
– volume: 3
  start-page: 351
  year: 2021
  end-page: 370
  ident: bib0020
  article-title: Technical note: analytical protocols and performance for apatite and zircon (U–Th)/He analysis on quadrupole and magnetic sector mass spectrometer systems between 2007 and 2020
  publication-title: Geochronology
– volume: 3
  start-page: 259
  year: 2021
  end-page: 272
  ident: bib0024
  article-title: The closure temperature(s) of zircon Raman dating
  publication-title: Geochronology
– volume: 451
  start-page: 9
  year: 2017
  end-page: 16
  ident: bib0044
  article-title: Composition and orientation dependent annealing of ion tracks in apatite - implications for fission track thermochronology
  publication-title: Chem. Geol.
– volume: 69
  start-page: 3349
  year: 2005
  end-page: 3365
  ident: bib0027
  article-title: U-Th zonation-dependent alpha-ejection in (U-Th)/He chronometry
  publication-title: Geochim. Cosmochim. Acta
– volume: 7
  year: 2017
  ident: bib0036
  article-title: In situ TEM observation of alpha-particle induced annealing of radiation damage in Durango apatite
  publication-title: Sci. Rep.
– volume: 555
  year: 2020
  ident: bib0049
  article-title: Zircon as a provenance tracer: coupling raman spectroscopy and UPb geochronology in source-to-sink studies
  publication-title: Chem. Geol.
– volume: 236
  start-page: 443
  year: 2005
  end-page: 458
  ident: bib0025
  article-title: Apatite fission track and (U-Th)/He data from Fennoscandia: an example of underestimation of fission track annealing in apatite
  publication-title: Earth Planet. Sci. Lett.
– volume: 58
  start-page: 275
  year: 2005
  end-page: 314
  ident: bib0030
  article-title: Forward and inverse modeling of low-temperature thermochronometry data
  publication-title: Rev. Mineral. Geochem.
– volume: 75
  start-page: 475
  year: 2020
  end-page: 479
  ident: bib0051
  article-title: Characterization of synthetic hydroxyapatite fibers using high-resolution, polarized raman spectroscopy
  publication-title: Appl. Spectrosc.
– volume: 37
  year: 2020
  ident: bib0060
  article-title: Bubble formation in apatite structures by He-ion irradiation at high temperature
  publication-title: Chin. Phys. Lett.
– volume: 135
  start-page: 104
  year: 2022
  end-page: 136
  ident: bib0018
  article-title: (U-Th)/He chronology: part 1. Data, uncertainty, and reporting
  publication-title: GSA Bull
– year: 2021
  ident: bib0009
  article-title: Experimental Simulation and Modeling By Ion Beams of Alpha Decay Damage in Apatite - Applications to Thermochronology and to Nuclear Sciences For Energy
– volume: 440
  start-page: 164
  year: 2016
  end-page: 178
  ident: bib0055
  article-title: Chemical and oxygen isotope composition of gem-quality apatites: implications for oxygen isotope reference materials for secondary ion mass spectrometry (SIMS)
  publication-title: Chem. Geol.
– volume: 219
  start-page: 261
  year: 2005
  ident: 10.1016/j.epsl.2025.119636_bib0007
  article-title: U and Th zoning in Cerro de Mercado (Durango, Mexico) fluorapatite: insights regarding the impact of recoil redistribution of radiogenic 4He on (U–Th)/He thermochronology
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2005.02.007
– year: 2010
  ident: 10.1016/j.epsl.2025.119636_bib0033
– volume: 135
  start-page: 104
  year: 2022
  ident: 10.1016/j.epsl.2025.119636_bib0018
  article-title: (U-Th)/He chronology: part 1. Data, uncertainty, and reporting
  publication-title: GSA Bull
  doi: 10.1130/B36266.1
– volume: 506
  start-page: 40
  year: 2019
  ident: 10.1016/j.epsl.2025.119636_bib0026
  article-title: U/Pb and (U-Th-Sm)/He “double” dating of detrital apatite by laser ablation: a critical evaluation
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2018.12.004
– volume: 14
  start-page: 314
  year: 1986
  ident: 10.1016/j.epsl.2025.119636_bib0050
  article-title: Radiation damage and its annealing in apatite
  publication-title: Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At.
  doi: 10.1016/0168-583X(86)90601-4
– volume: 212
  year: 2023
  ident: 10.1016/j.epsl.2025.119636_bib0058
  article-title: A comprehensive study on intrinsic alpha corpuscular radiation damage in monazite crystals using picometer-scale imaging, coupled with SCXRD and Raman spectroscopy
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2023.111131
– volume: 99
  start-page: 1127
  year: 2014
  ident: 10.1016/j.epsl.2025.119636_bib0035
  article-title: Effect of orientation on ion track formation in apatite and zircon
  publication-title: Am. Mineral.
  doi: 10.2138/am.2014.4669
– volume: 299
  start-page: 1
  year: 2021
  ident: 10.1016/j.epsl.2025.119636_bib0034
  article-title: Alpha-decay induced shortening of fission tracks simulated by in situ ion irradiation
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2021.01.022
– volume: 268
  start-page: 1818
  year: 2010
  ident: 10.1016/j.epsl.2025.119636_bib0065
  article-title: SRIM – The stopping and range of ions in matter (2010)
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B
  doi: 10.1016/j.nimb.2010.02.091
– volume: 236
  start-page: 443
  year: 2005
  ident: 10.1016/j.epsl.2025.119636_bib0025
  article-title: Apatite fission track and (U-Th)/He data from Fennoscandia: an example of underestimation of fission track annealing in apatite
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2005.05.027
– volume: 255
  start-page: 163
  year: 2019
  ident: 10.1016/j.epsl.2025.119636_bib0001
  article-title: Apatite as a tracer of the source, chemistry and evolution of ore-forming fluids: the case of the Olserum-Djupedal REE-phosphate mineralisation, SE Sweden
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2019.04.014
– volume: 550
  year: 2020
  ident: 10.1016/j.epsl.2025.119636_bib0014
  article-title: In-situ determination of Nd isotope ratios in apatite by LA-MC-ICPMS: challenges and limitations
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2020.119740
– volume: 440
  start-page: 164
  year: 2016
  ident: 10.1016/j.epsl.2025.119636_bib0055
  article-title: Chemical and oxygen isotope composition of gem-quality apatites: implications for oxygen isotope reference materials for secondary ion mass spectrometry (SIMS)
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2016.07.013
– volume: 3
  start-page: 351
  year: 2021
  ident: 10.1016/j.epsl.2025.119636_bib0020
  article-title: Technical note: analytical protocols and performance for apatite and zircon (U–Th)/He analysis on quadrupole and magnetic sector mass spectrometer systems between 2007 and 2020
  publication-title: Geochronology
  doi: 10.5194/gchron-3-351-2021
– volume: 10
  start-page: 1032
  year: 2020
  ident: 10.1016/j.epsl.2025.119636_bib0061
  article-title: Spectroscopic, raman, EMPA, micro-XRF and micro-XANES analyses of sulphur concentration and oxidation State of natural apatite crystals
  publication-title: Crystals
  doi: 10.3390/cryst10111032
– volume: 68
  start-page: 1274
  year: 2014
  ident: 10.1016/j.epsl.2025.119636_bib0056
  article-title: A new, simple approximation for the deconvolution of instrumental broadening in spectroscopic band profiles
  publication-title: Appl. Spectrosc.
  doi: 10.1366/13-07275
– volume: 91
  start-page: 17
  year: 2008
  ident: 10.1016/j.epsl.2025.119636_bib0037
  article-title: Raman spectroscopy of apatite irradiated with swift heavy ions with and without simultaneous exertion of high pressure
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-008-4402-9
– volume: 10
  year: 2022
  ident: 10.1016/j.epsl.2025.119636_bib0053
  article-title: Hyperspectral cathodoluminescence, trace element, and U-Pb geochronological characterization of apatite from the Ernest Henry iron oxide copper-gold (IOCG) deposit, Cloncurry district, Queensland
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2022.926114
– volume: 6
  start-page: 553
  year: 2024
  ident: 10.1016/j.epsl.2025.119636_bib0052
  article-title: U and Th zonation in apatite observed by synchrotron X-ray fluorescence tomography and implications for the (U–Th)/He system
  publication-title: Geochronology
  doi: 10.5194/gchron-6-553-2024
– volume: 51
  start-page: 2865
  year: 1987
  ident: 10.1016/j.epsl.2025.119636_bib0064
  article-title: U-Th-He dating of apatite: a potential thermochronometer
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(87)90164-5
– volume: 524
  start-page: 406
  year: 2019
  ident: 10.1016/j.epsl.2025.119636_bib0002
  article-title: Combined in-situ determination of halogen (F, Cl) content in igneous and detrital apatite by SEM-EDS and LA-Q-ICPMS: a potential new provenance tool
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2019.07.012
– volume: 7
  year: 2017
  ident: 10.1016/j.epsl.2025.119636_bib0036
  article-title: In situ TEM observation of alpha-particle induced annealing of radiation damage in Durango apatite
  publication-title: Sci. Rep.
– volume: 86
  start-page: 473
  year: 2001
  ident: 10.1016/j.epsl.2025.119636_bib0006
  article-title: Cathodoluminescence study of apatite crystals
  publication-title: Am. Mineral.
  doi: 10.2138/am-2001-0411
– volume: 37
  year: 2020
  ident: 10.1016/j.epsl.2025.119636_bib0060
  article-title: Bubble formation in apatite structures by He-ion irradiation at high temperature
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/37/5/056101
– volume: 367
  start-page: 13
  year: 2014
  ident: 10.1016/j.epsl.2025.119636_bib0048
  article-title: Zircon radiation damage ages
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2013.12.010
– volume: 106
  start-page: 216
  year: 2013
  ident: 10.1016/j.epsl.2025.119636_bib0019
  article-title: Infrared and raman spectroscopic characterization of the phosphate mineral fairfieldite – Ca2(Mn2+,Fe2+)2(PO4)2·2(H2O)
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2013.01.008
– volume: 58
  start-page: 1
  year: 1985
  ident: 10.1016/j.epsl.2025.119636_bib0022
  article-title: Comparison of zeta calibration baselines for fission-track dating of apatite, zircon and sphene
  publication-title: Chem. Geol.: Isot. Geosci. sect.
  doi: 10.1016/0168-9622(85)90023-5
– volume: 313
  start-page: 145
  year: 2013
  ident: 10.1016/j.epsl.2025.119636_bib0023
  article-title: Helium diffusion in natural zircon: radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology
  publication-title: Am. J. Sci.
  doi: 10.2475/03.2013.01
– volume: 98
  start-page: 350
  year: 2013
  ident: 10.1016/j.epsl.2025.119636_bib0032
  article-title: Geometric analysis of radiation damage connectivity in zircon, and its implications for helium diffusion
  publication-title: Am. Mineral.
  doi: 10.2138/am.2013.4249
– volume: 555
  year: 2020
  ident: 10.1016/j.epsl.2025.119636_bib0049
  article-title: Zircon as a provenance tracer: coupling raman spectroscopy and UPb geochronology in source-to-sink studies
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2020.119828
– volume: 58
  start-page: 275
  year: 2005
  ident: 10.1016/j.epsl.2025.119636_bib0030
  article-title: Forward and inverse modeling of low-temperature thermochronometry data
  publication-title: Rev. Mineral. Geochem.
  doi: 10.2138/rmg.2005.58.11
– volume: 75
  start-page: 4515
  year: 2011
  ident: 10.1016/j.epsl.2025.119636_bib0015
  article-title: U and Th zonation in apatite observed by laser ablation ICPMS, and implications for the (U–Th)/He system
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2011.05.020
– volume: 75
  start-page: 1120
  year: 1990
  ident: 10.1016/j.epsl.2025.119636_bib0008
  article-title: Mechanisms and kinetics of apatite fission-track annealing
  publication-title: Am. Mineral.
– volume: 191
  start-page: 121
  year: 2002
  ident: 10.1016/j.epsl.2025.119636_bib0045
  article-title: Annealing radiation damage and the recovery of cathodoluminescence
  publication-title: Chem. Geol.
  doi: 10.1016/S0009-2541(02)00152-3
– volume: 73
  start-page: 2347
  year: 2009
  ident: 10.1016/j.epsl.2025.119636_bib0017
  article-title: Apatite (U–Th)/He thermochronometry using a radiation damage accumulation and annealing model
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2009.01.015
– year: 2021
  ident: 10.1016/j.epsl.2025.119636_bib0009
– volume: 435
  start-page: 35
  year: 2016
  ident: 10.1016/j.epsl.2025.119636_bib0010
  article-title: LA,Q)-ICPMS trace-element analyses of Durango and McClure Mountain apatite and implications for making natural LA-ICPMS mineral standards
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2016.03.028
– volume: 35
  start-page: 397
  year: 2011
  ident: 10.1016/j.epsl.2025.119636_bib0028
  article-title: Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/j.1751-908X.2011.00120.x
– volume: 88
  start-page: 367
  year: 2018
  ident: 10.1016/j.epsl.2025.119636_bib0013
  article-title: New age in the geological evolution of the Cerro de Mercado iron oxide apatite deposit, Mexico: implication in the Durango apatite standard (DAP) age variability
  publication-title: J. South Am. Earth Sci.
  doi: 10.1016/j.jsames.2018.09.014
– volume: 451
  start-page: 9
  year: 2017
  ident: 10.1016/j.epsl.2025.119636_bib0044
  article-title: Composition and orientation dependent annealing of ion tracks in apatite - implications for fission track thermochronology
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2016.12.039
– volume: 29
  start-page: 377
  year: 2009
  ident: 10.1016/j.epsl.2025.119636_bib0047
  article-title: Raman spectroscopy, 19F and 31P MAS-NMR of a series of fluorochloroapatites
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2008.06.011
– volume: 214
  start-page: 249
  year: 2005
  ident: 10.1016/j.epsl.2025.119636_bib0043
  article-title: A precise 40Ar–39Ar reference age for the Durango apatite (U–Th)/He and fission-track dating standard
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2004.10.002
– volume: 240
  start-page: 197
  year: 2007
  ident: 10.1016/j.epsl.2025.119636_bib0063
  article-title: Raman microspectroscopy: a non-destructive tool for routine calibration of apatite crystallographic structure for fission-track analyses
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2007.02.007
– volume: 78
  start-page: 641
  year: 1993
  ident: 10.1016/j.epsl.2025.119636_bib0054
  article-title: Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis
  publication-title: Am. Mineral.
– volume: 100
  start-page: 1452
  year: 2015
  ident: 10.1016/j.epsl.2025.119636_bib0031
  article-title: Inter-laboratory comparison of fission track confined length and etch figure measurements in apatite
  publication-title: Am. Mineral.
  doi: 10.2138/am-2015-5167
– volume: 18
  start-page: 1239
  year: 2012
  ident: 10.1016/j.epsl.2025.119636_bib0039
  article-title: Hyperspectral cathodoluminescence imaging and analysis extending from ultraviolet to near infrared
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927612013505
– volume: 83
  start-page: 1886
  year: 1988
  ident: 10.1016/j.epsl.2025.119636_bib0038
  article-title: Volcanogenic iron oxide deposits, Cerro de Mercado and vicinity
  publication-title: Durango. Econ. Geol.
  doi: 10.2113/gsecongeo.83.8.1886
– volume: 291
  start-page: 241
  year: 2012
  ident: 10.1016/j.epsl.2025.119636_bib0041
  article-title: The volatile inventory (F, Cl, Br, S, C) of magmatic apatite: an integrated analytical approach
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2011.10.026
– volume: 3
  start-page: 259
  year: 2021
  ident: 10.1016/j.epsl.2025.119636_bib0024
  article-title: The closure temperature(s) of zircon Raman dating
  publication-title: Geochronology
  doi: 10.5194/gchron-3-259-2021
– volume: 417
  start-page: 44
  year: 2015
  ident: 10.1016/j.epsl.2025.119636_bib0029
  article-title: Standardless fission-track dating of the Durango apatite age standard
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2015.09.014
– volume: 38
  start-page: 293
  year: 2011
  ident: 10.1016/j.epsl.2025.119636_bib0059
  article-title: Raman study of apatite amorphised with swift heavy ions under various irradiation conditions
  publication-title: Phys. Chem. Miner.
  doi: 10.1007/s00269-010-0403-2
– volume: 69
  start-page: 3349
  year: 2005
  ident: 10.1016/j.epsl.2025.119636_bib0027
  article-title: U-Th zonation-dependent alpha-ejection in (U-Th)/He chronometry
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2005.01.024
– volume: 249
  start-page: 225
  year: 2019
  ident: 10.1016/j.epsl.2025.119636_bib0021
  article-title: Annealing kinetics of radiation damage in zircon
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2019.01.033
– volume: 75
  start-page: 475
  year: 2020
  ident: 10.1016/j.epsl.2025.119636_bib0051
  article-title: Characterization of synthetic hydroxyapatite fibers using high-resolution, polarized raman spectroscopy
  publication-title: Appl. Spectrosc.
  doi: 10.1177/0003702820942540
– volume: 385
  start-page: 35
  year: 2014
  ident: 10.1016/j.epsl.2025.119636_bib0062
  article-title: Sr and Nd isotopic compositions of apatite reference materials used in U–Th–Pb geochronology
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2014.07.012
– volume: 79
  start-page: 60
  year: 2012
  ident: 10.1016/j.epsl.2025.119636_bib0004
  article-title: Is apatite U–Th zonation information necessary for accurate interpretation of apatite (U–Th)/He thermochronometry data?
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2011.11.037
– year: 2019
  ident: 10.1016/j.epsl.2025.119636_bib0040
– volume: 107
  start-page: 1341
  year: 2022
  ident: 10.1016/j.epsl.2025.119636_bib0016
  article-title: Time-resolved raman and luminescence spectroscopy of synthetic REE-doped hydroxylapatites and natural apatites
  publication-title: Am. Mineral.
  doi: 10.2138/am-2022-8006
– year: 2018
  ident: 10.1016/j.epsl.2025.119636_bib0003
  article-title: High-resolution Raman spectroscopy constraints on apatite halogen composition: implications for planetary volcanism and igneous processes
– volume: 252
  start-page: 213
  year: 2019
  ident: 10.1016/j.epsl.2025.119636_bib0042
  article-title: Radiation-enhanced fission track annealing revisited and consequences for apatite thermochronometry
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2019.03.006
– volume: 280
  start-page: 200
  year: 2011
  ident: 10.1016/j.epsl.2025.119636_bib0011
  article-title: U–Pb and Th–Pb dating of apatite by LA-ICPMS
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2010.11.010
– volume: 36
  start-page: 1201
  year: 2021
  ident: 10.1016/j.epsl.2025.119636_bib0057
  article-title: Analytical figures of merit of a low-dispersion aerosol transport system for high-throughput LA-ICP-MS analysis
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D1JA00110H
– volume: 63
  start-page: 661
  year: 1999
  ident: 10.1016/j.epsl.2025.119636_bib0012
  article-title: A multi-method analysis of Si-, S- and REE-rich apatite from a new find of kalsilite-bearing leucitite (Abruzzi, Italy)
  publication-title: Mineral. Mag.
  doi: 10.1180/002646199548826
– volume: 141
  start-page: 125
  year: 2001
  ident: 10.1016/j.epsl.2025.119636_bib0046
  article-title: Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage
  publication-title: Contrib. Mineral. Petrol.
  doi: 10.1007/s004100000235
– volume: 198
  start-page: 107
  year: 2003
  ident: 10.1016/j.epsl.2025.119636_bib0005
  article-title: Compositional and structural control of fission-track annealing in apatite
  publication-title: Chem. Geol.
  doi: 10.1016/S0009-2541(02)00424-2
SSID ssj0006569
Score 2.491065
Snippet •Raman mapping of apatite can be used to reveal the zonation of radiation damage in the mineral.•The FWHM of apatite ν1(PO4) band reveals the accumulation of...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 119636
SubjectTerms Alpha radiation damage
Annealing of radiation damage
Apatite cathodoluminescence zonation
Radiation damage zonation
Raman mapping
Title Raman mapping reveals alpha radiation damage zonation and its annealing in Durango apatite
URI https://dx.doi.org/10.1016/j.epsl.2025.119636
Volume 671
WOSCitedRecordID wos001573399500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0012-821X
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006569
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELagBYkLKi9RXvKB2ypSYseJfazapRShCpWCVr1EjuO0qUqyymb74NczfsQtW4QAiUsURY535fkyHs_MN4PQW5nWmtdERpSlhpITq0jqTMN3pZMq15IqW-3z68d8f5_PZuKTj-AvbDuBvG355aWY_1dRwzMQtqHO_oW4w6TwAO5B6HAFscP1jwR_II1b_pucWyaUqdBkKiRbTu2kN5UIrMQrGHWsJ9875w0MMQQJeleeeaLLzhJ2suNuIk3a9fBT0tBU9p4UNzfpsoNJvhspQmeWIhSM9SPt9Mmskd2Fbq6DViYx0_pTd5dN1QVfj-eLbJ8sZVuGxweWJtXYDlQmsKD7obvpsiBsJf3jNpfG6WYYxYltoBN0c-b6s9zS887lcApb9sLEjwgD1Q-qZKWott2mP9toIcwLxl6c0jS-i9ZJzgSowPWtvensQ9i4wbR1pyX_RzzHyqUDrv7Sr-2YG7bJ4QZ66A8VeMuB4RG6o9vH6P6ubdp8BXc2zVctnqAjCw7swYE9OLAFBw7gwA4ceAQHBjFjAAcO4MBNiz04sAfHU_Tl3fRw-33ku2tEijA6RDyTNK8r-CiZKDkreawYSWWscsEzEx-uKdVJZsoFkUyxnGZpIlXKqCgrGCvpM7TWdq1-jrCCgQlXQtRCpALO3DKtspJVJKthkjLZRJNxrYq5K6JSjNmFp4VZ2cKsbOFWdhOxcTkLD1xn3hUg_d-89-If33uJHlyD9BVaG_qlfo3uqfOhWfRvPEh-ANEKhAg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Raman+mapping+reveals+alpha+radiation+damage+zonation+and+its+annealing+in+Durango+apatite&rft.jtitle=Earth+and+planetary+science+letters&rft.au=Zeng%2C+Xiaowei&rft.au=Pastore%2C+Guido&rft.au=Shen%2C+Chuanbo&rft.au=Resentini%2C+Alberto&rft.date=2025-12-01&rft.pub=Elsevier+B.V&rft.issn=0012-821X&rft.volume=671&rft_id=info:doi/10.1016%2Fj.epsl.2025.119636&rft.externalDocID=S0012821X25004340
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-821X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-821X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-821X&client=summon